Skip to main content

Physical Views on ParABS-Mediated DNA Segregation

  • Chapter
  • First Online:
Physical Microbiology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1267))

Abstract

In this chapter, we will focus on ParABS: an apparently simple, three-component system, required for the segregation of bacterial chromosomes and plasmids. We will specifically describe how biophysical measurements combined with physical modeling advanced our understanding of the mechanism of ParABS-mediated complex assembly, segregation and positioning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

DNA:

deoxyribonucleic acid

GTP:

guanosine triphosphate

ATP:

adenosine triphosphate

NTP:

nucleoside triphosphate

CBP:

centromere binding protein

Ori :

replication origin region

Ter :

replication termination region

nsDNA:

non-specific DNA

Kb:

kilobase

References

  • Adachi S, Hori K, Hiraga S (2006) Subcellular positioning of F plasmid mediated by dynamic localization of SopA and SopB. J Mol Biol 356(4):850–863

    CAS  PubMed  Google Scholar 

  • Ah-Seng Y, Rech J, Lane D, Bouet J-Y (2013) Defining the role of ATP hydrolysis in mitotic segregation of bacterial plasmids. PLoS Genet 9(12):e1003956

    PubMed  PubMed Central  Google Scholar 

  • Alipour E, Marko JF (2012) Self-Organization of Domain Structures by DNA-loop-extruding enzymes. Nucleic Acids Res 40(22):11202–11212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Austin S, Wierzbicki A (1983) Two mini-F-encoded proteins are essential for equipartition. Plasmid 10(1):73–81

    CAS  PubMed  Google Scholar 

  • Badrinarayanan A, Le TBK, Laub MT (2015) Bacterial chromosome organization and segregation. Annu Rev Cell Dev Biol 31:171–199

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baxter JC, Funnell BE (2014) Plasmid partition mechanisms. Microbiol Spectr 2(6). https://doi.org/10.1128/microbiolspec.PLAS-0023-2014

  • Ben-Yehuda S, Rudner DZ, Losick R (2003) RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299(5606):532–536

    CAS  PubMed  Google Scholar 

  • Bergeler S, Frey E (2018) Regulation of Pom cluster dynamics in Myxococcus Xanthus. PLoS Comput Biol 14(8):e1006358

    PubMed  PubMed Central  Google Scholar 

  • Bouet J-Y, Funnell BE (2019) Plasmid localization and partition in Enterobacteriaceae. EcoSal Plus 8(2). https://doi.org/10.1128/ecosalplus.ESP-0003-2019

  • Bouet JY, Rech J, Egloff S, Biek DP (2005) Probing plasmid partition with centromere-based incompatibility. Molecular. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2958.2004.04396.x

  • Bouet J-Y, Ah-Seng Y, Benmeradi N, Lane D (2007) Polymerization of SopA partition ATPase: regulation by DNA binding and SopB. Mol Microbiol 63(2):468–481

    CAS  PubMed  Google Scholar 

  • Bowman GR, Comolli LR, Zhu J, Eckart M, Koenig M, Downing KH, Moerner WE, Earnest T, Shapiro L (2008) A polymeric protein anchors the chromosomal origin/ParB complex at a bacterial cell pole. Cell 134(6):945–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breier AM, Grossman AD (2007) Whole-genome analysis of the chromosome partitioning and sporulation protein Spo0J (ParB) reveals spreading and origin-distal sites on the Bacillus subtilis chromosome. Mol Microbiol 64(3):703–718

    CAS  PubMed  Google Scholar 

  • Broedersz CP, Wang X, Meir Y, Loparo JJ, Rudner DZ, Wingreen NS (2014) Condensation and localization of the partitioning protein ParB on the bacterial chromosome. Proc Natl Acad Sci U S A 111(24):8809–8814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brooks AC, Hwang LC (2017) Reconstitutions of plasmid partition systems and their mechanisms. Plasmid 91:37–41

    CAS  PubMed  Google Scholar 

  • Chen B-W, Lin M-H, Chu C-H, Hsu C-E, Sun Y-J (2015) Insights into ParB spreading from the complex structure of Spo0J and parS. Proc Natl Acad Sci U S A 112(21):6613–6618

    CAS  PubMed  PubMed Central  Google Scholar 

  • Davey MJ, Funnell BE (1994) The P1 plasmid partition protein ParA. A role for ATP in site-specific DNA binding. J Biol Chem 269(47):29908–29913

    CAS  PubMed  Google Scholar 

  • Davey MJ, Funnell BE (1997) Modulation of the P1 plasmid partition protein ParA by ATP, ADP, and P1 ParB. J Biol Chem 272(24):15286–15292

    CAS  PubMed  Google Scholar 

  • Davis MA, Martin KA, Austin SJ (1992) Biochemical activities of the parA partition protein of the P1 plasmid. Mol Microbiol 6(9):1141–1147

    CAS  PubMed  Google Scholar 

  • Debaugny RE, Sanchez A, Rech J, Labourdette D, Dorignac J, Geniet F et al (2018) A conserved mechanism drives partition complex assembly on bacterial chromosomes and plasmids. Mol Syst Biol 14(11):e8516

    PubMed  PubMed Central  Google Scholar 

  • Ebersbach G, Briegel A, Jensen GJ, Jacobs-Wagner C (2008) A self-associating protein critical for chromosome attachment, division, and polar organization in Caulobacter. Cell 134(6):956–968

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ebersbach G, Gerdes K (2005) Plasmid segregation mechanisms. Annu Rev Genet 39:453–479

    CAS  PubMed  Google Scholar 

  • Ebersbach G, Ringgaard S, Moller-Jensen J, Wang Q, Sherratt DJ, Gerdes K (2006) Regular cellular distribution of plasmids by oscillating and filament-forming ParA ATPase of plasmid pB171. Mol Microbiol 61:1428–1442. https://doi.org/10.1111/j.1365-2958.2006.05322.x

    Article  CAS  PubMed  Google Scholar 

  • Fisher GL, Pastrana CL, Higman VA, Koh A, Taylor JA, Butterer A, Craggs T, Sobott F, Murray H, Crump MP, Moreno-Herrero F, Dillingham MS (2017) The structural basis for dynamic DNA binding and bridging interactions which condense the bacterial centromere. elife 6. https://doi.org/10.7554/eLife.28086

  • Fung E, Bouet JY, Funnell BE (2001) Probing the ATP-binding site of P1 ParA: partition and repression have different requirements for ATP binding and hydrolysis. EMBO J 20(17):4901–4911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Funnell BE (2016) ParB partition proteins: complex formation and spreading at bacterial and plasmid centromeres. Front Mol Biosci 3:44

    PubMed  PubMed Central  Google Scholar 

  • Furey TS (2012) ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Nat Rev Genet 13(12):840–852

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Gennes P-G, Gennes P-G (1979) Scaling concepts in polymer physics. Cornell University Press

    Google Scholar 

  • Gerdes K, Møller-Jensen J, Bugge Jensen R (2000) Plasmid and chromosome partitioning: surprises from phylogeny. Mol Microbiol 37(3):455–466

    CAS  PubMed  Google Scholar 

  • Graham TGW, Wang X, Song D, Etson CM, van Oijen AM, Rudner DZ, Loparo JJ (2014) ParB spreading requires DNA bridging. Genes Dev 28(11):1228–1238

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gruber S (2018) SMC complexes sweeping through the chromosome: going with the flow and against the tide. Curr Opin Microbiol 42:96–103

    CAS  PubMed  Google Scholar 

  • Gruber S, Errington J (2009) Recruitment of Condensin to replication origin regions by ParB/SpoOJ promotes chromosome segregation in B. subtilis. Cell 137:685–696. https://doi.org/10.1016/j.cell.2009.02.035

    Article  CAS  PubMed  Google Scholar 

  • Gruber S, Veening J-W, Bach J, Blettinger M, Bramkamp M, Errington J (2014) Interlinked sister chromosomes arise in the absence of condensin during fast replication in B. subtilis. Curr Biol 24(3):293–298

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guilhas, B., J. C. Walter, J. Rech, G. David, N-O Walliser, J. Palmeri, C. Mathieu-Demaziere, et al. (2020) ATP-Driven Separation of Liquid Phase Condensates in Bacteria. https://doi.org/10.1101/791368

  • Hatano T, Niki H (2010) Partitioning of P1 plasmids by gradual distribution of the ATPase ParA. Mol Microbiol 78(5):1182–1198

    CAS  PubMed  Google Scholar 

  • Heald R, Nogales E (2002) Microtubule dynamics. J Cell Sci 115(Pt 1):3–4

    CAS  PubMed  Google Scholar 

  • Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J (2015) Directed and persistent movement arises from mechanochemistry of the ParA/ParB system. Proc Natl Acad Sci U S A 112(51):E7055–E7064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu L, Vecchiarelli AG, Mizuuchi K, Neuman KC, Liu J (2017) Brownian ratchet mechanism for faithful segregation of low-copy-number plasmids. Biophys J 112(7):1489–1502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang LC, Vecchiarelli AG, Han Y, Mizuuchi M, Harada Y, Funnell BE, Mizuuchi K (2013) ParA-mediated plasmid partition driven by protein pattern self-organization. EMBO J 32(9):1238–1249

    PubMed  PubMed Central  Google Scholar 

  • Ietswaart R, Szardenings F, Gerdes K, Howard M (2014) Competing ParA structures space bacterial plasmids equally over the nucleoid. PLoS Comput Biol 10(12):e1004009

    PubMed  PubMed Central  Google Scholar 

  • Lagage V, Boccard F, Vallet-Gely I (2016) Regional control of chromosome segregation in Pseudomonas aeruginosa. PLoS Genet 12(11):e1006428

    PubMed  PubMed Central  Google Scholar 

  • Le Gall A, Cattoni DI, Guilhas B, Mathieu-Demazière C, Oudjedi L, Fiche J-B et al (2016) Bacterial partition complexes segregate within the volume of the nucleoid. Nat Commun 7:12107

    PubMed  PubMed Central  Google Scholar 

  • Lee PS, Lin DCH, Moriya S, Grossman AD (2003) Effects of the chromosome partitioning protein Spo0J (ParB) on oriC positioning and replication initiation in Bacillus subtilis. J Bacteriol 185(4):1326–1337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonard TA, Butler PJG, Löwe J (2004) Structural analysis of the chromosome segregation protein Spo0J from Thermus thermophilus. Mol Microbiol 53(2):419–432

    CAS  PubMed  Google Scholar 

  • Libante V, Thion L, Lane D (2001) Role of the ATP-binding site of SopA protein in partition of the F plasmid. J Mol Biol 314(3):387–399

    CAS  PubMed  Google Scholar 

  • Lim GE, Derman AI, Pogliano J (2005) Bacterial DNA segregation by dynamic SopA polymers. Proc Natl Acad Sci U S A 102(49):17658–17663

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lim HC, Surovtsev IV, Beltran BG, Huang F, Bewersdorf J, Jacobs-Wagner C (2014) Evidence for a DNA-relay mechanism in ParABS-mediated chromosome segregation. elife 3:e02758

    PubMed  PubMed Central  Google Scholar 

  • Lin DC, Levin PA, Grossman AD (1997) Bipolar localization of a chromosome partition protein in Bacillus subtilis. Proc Natl Acad Sci U S A 94(9):4721–4726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Livny J, Yamaichi Y, Waldor MK (2007) Distribution of centromere-like parS sites in bacteria: insights from comparative genomics. J Bacteriol 189(23):8693–8703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lutkenhaus J (2007) Assembly dynamics of the bacterial MinCDE system and spatial regulation of the Z ring. Annu Rev Biochem 76:539–562

    CAS  PubMed  Google Scholar 

  • Lynch AS, Wang JC (1995) SopB protein-mediated silencing of genes linked to the sopC locus of Escherichia coli F plasmid. Proc Natl Acad Sci U S A 92(6):1896–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marbouty M, Le Gall A, Cattoni DI, Cournac A, Koh A, Fiche J-B et al (2015) Condensin- and replication-mediated bacterial chromosome folding and origin condensation revealed by Hi-C and super-resolution imaging. Mol Cell 59:588–602. https://doi.org/10.1016/j.molcel.2015.07.020

    Article  CAS  PubMed  Google Scholar 

  • Miermans CA, Broedersz CP (2018) Bacterial chromosome organization by collective dynamics of SMC condensins. J R Soc Interface/R Soc 15(147). https://doi.org/10.1098/rsif.2018.0495

  • Mohl DA, Gober JW (1997) Cell cycle–dependent polar localization of chromosome partitioning proteins in Caulobacter crescentus. Cell 88(5):675–684

    CAS  PubMed  Google Scholar 

  • Murray H, Ferreira H, Errington J (2006) The bacterial chromosome segregation protein Spo0J spreads along DNA from parS nucleation sites. Mol Microbiol 61(5):1352–1361

    CAS  PubMed  Google Scholar 

  • Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304

    CAS  PubMed  Google Scholar 

  • Onogi T, Miki T, Hiraga S (2002) Behavior of sister copies of mini-F plasmid after synchronized plasmid replication in Escherichia coli cells. J Bacteriol 184(11):3142–3145

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ptacin JL, Gahlmann A, Bowman GR, Perez AM, von Diezmann ARS, Eckart MR, Moerner WE, Shapiro L (2014) Bacterial scaffold directs pole-specific centromere segregation. Proc Natl Acad Sci U S A 111(19):E2046–E2055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reyes-Lamothe R, Tran T, Meas D, Lee L, Li AM, Sherratt DJ, Tolmasky ME (2014) High-copy bacterial plasmids diffuse in the nucleoid-free space, replicate stochastically and are randomly partitioned at cell division. Nucleic Acids Res 42(2):1042–1051

    CAS  PubMed  Google Scholar 

  • Ringgaard S, van Zon J, Howard M, Gerdes K (2009) Movement and equipositioning of plasmids by ParA filament disassembly. Proc Natl Acad Sci U S A 106(46):19369–19374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodionov O, Lobocka M, Yarmolinsky M (1999) Silencing of genes flanking the P1 plasmid centromere. Science 283(5401):546–549

    CAS  PubMed  Google Scholar 

  • Sanchez A, Cattoni DI, Walter J-C, Rech J, Parmeggiani A, Nollmann M, Bouet J-Y (2015) Stochastic self-assembly of ParB proteins builds the bacterial DNA segregation apparatus. Cell Syst 1(2):163–173

    CAS  PubMed  Google Scholar 

  • Schiessel H (2013) Biophysics for beginners: a journey through the cell nucleus. CRC Press

    Google Scholar 

  • Schumacher MA, Funnell BE (2005) Structures of ParB bound to DNA reveal mechanism of partition complex formation. Nature 438(7067):516–519

    CAS  PubMed  Google Scholar 

  • Sengupta M, Nielsen HJ, Youngren B, Austin S (2010) P1 plasmid segregation: accurate redistribution by dynamic plasmid pairing and separation. J Bacteriol 192(5):1175–1183

    CAS  PubMed  Google Scholar 

  • Shebelut CW, Guberman JM, van Teeffelen S, Yakhnina AA, Gitai Z (2010) Caulobacter chromosome segregation is an ordered multistep process. Proc Natl Acad Sci U S A 107(32):14194–14198

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song D, Rodrigues K, Graham TGW, Loparo JJ (2017) A network of cis and trans interactions is required for ParB spreading. Nucleic Acids Res 45(12):7106–7117

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stracy M, Lesterlin C, Garza de Leon F, Uphoff S, Zawadzki P, Kapanidis AN (2015) Live-cell superresolution microscopy reveals the organization of RNA polymerase in the bacterial nucleoid. Proc Natl Acad Sci U S A 112(32):E4390–E4399

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sugawara T, Kunihiko K (2011) Chemophoresis as a driving force for intracellular organization: theory and application to plasmid partitioning. Biophysics 7 (September): 77–88

    Google Scholar 

  • Sullivan NL, Marquis K a, Rudner DZ (2009) Recruitment of SMC by ParB-parS organizes the origin region and promotes efficient chromosome segregation. Cell 137(4):697–707

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surovtsev IV, Campos M, Jacobs-Wagner C (2016a) DNA-relay mechanism is sufficient to explain ParA-dependent intracellular transport and patterning of single and multiple cargos. Proc Natl Acad Sci U S A 113(46):E7268–E7276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Surovtsev IV, Lim HC, Jacobs-Wagner C (2016b) The slow mobility of the ParA partitioning protein underlies its steady-state patterning in Caulobacter. Biophys J 110(12):2790–2799

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toro E, Hong S-H, McAdams HH, Shapiro L (2008) Caulobacter requires a dedicated mechanism to initiate chromosome segregation. Proc Natl Acad Sci U S A 105(40):15435–15440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Han Y-W, Tan X, Mizuuchi M, Ghirlando R, Biertümpfel C, Funnell BE, Mizuuchi K (2010) ATP control of dynamic P1 ParA-DNA interactions: a key role for the nucleoid in plasmid partition. Mol Microbiol. https://doi.org/10.1111/j.1365-2958.2010.07314.x

  • Vecchiarelli AG, Hwang LC, Mizuuchi K (2013) Cell-free study of F plasmid partition provides evidence for cargo transport by a diffusion-ratchet mechanism. Proc Natl Acad Sci U S A 110(15):E1390–E1397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Neuman KC, Mizuuchi K (2014a) A propagating ATPase gradient drives transport of surface-confined cellular cargo. Proc Natl Acad Sci U S A 111(13):4880–4885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vecchiarelli AG, Seol Y, Neuman KC, Mizuuchi K (2014b) A moving ParA gradient on the nucleoid directs subcellular cargo transport via a chemophoresis force. BioArchitecture 4(4–5):154–159

    PubMed  Google Scholar 

  • Walter J-C, Walliser N-O, David G, Dorignac J, Geniet F, Palmeri J, Parmeggiani A, Parmeggiani A, Wingreen NS, Broedersz CP (2018) Looping and clustering model for the organization of protein-DNA complexes on the bacterial genome. New J Phys 20:035002. https://doi.org/10.1088/1367-2630/aaad39

    Article  CAS  Google Scholar 

  • Wang Y (2017) Spatial distribution of high copy number plasmids in bacteria. Plasmid 91:2–8

    CAS  PubMed  Google Scholar 

  • Wang X, Rudner DZ (2014) Spatial organization of bacterial chromosomes. Curr Opin Microbiol 22:66–72

    PubMed  PubMed Central  Google Scholar 

  • Wang X, Montero Llopis P, Rudner DZ (2014a) Bacillus subtilis chromosome organization oscillates between two distinct patterns. Proc Natl Acad Sci U S A 111(35):12877–12882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Tang OW, Riley EP, Rudner DZ (2014b) The SMC condensin complex is required for origin segregation in Bacillus subtilis. Curr Biol 24(3):287–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Le TBK, Lajoie BR, Dekker J, Laub MT, Rudner DZ (2015) Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev 29(15):1661–1675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Brandão HB, Le TBK, Laub MT, Rudner DZ (2017) Bacillus subtilis SMC complexes juxtapose chromosome arms as they travel from origin to terminus. Science 355(6324):524–527

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webb CD, Teleman A, Gordon S, Straight A, Belmont A, Lin DC et al (1997) Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis. Cell 88(5):667–674

    CAS  PubMed  Google Scholar 

  • Wingreen NS, Huang KC (2015) Physics of intracellular organization in Bacteria. Annu Rev Microbiol 69:361–379

    CAS  PubMed  Google Scholar 

  • Yamaichi Y, Bruckner R, Ringgaard S, Möll A, Cameron DE, Briegel A, Jensen GJ, Davis BM, Waldor MK (2012) A multidomain hub anchors the chromosome segregation and chemotactic machinery to the bacterial pole. Genes Dev 26(20):2348–2360

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamaichi Y, Fogel MA, Waldor MK (2007) Par genes and the pathology of chromosome loss in Vibrio cholerae. Proc Natl Acad Sci U S A 104(2):630–635

    CAS  PubMed  Google Scholar 

  • Zhang H, Schumacher MA (2017) Structures of partition protein ParA with nonspecific DNA and ParB effector reveal molecular insights into principles governing Walker-box DNA segregation. Genes Dev 31(5):481–492

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcello Nollmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Guilhas, B., Le Gall, A., Nollmann, M. (2020). Physical Views on ParABS-Mediated DNA Segregation. In: Duménil, G., van Teeffelen, S. (eds) Physical Microbiology. Advances in Experimental Medicine and Biology, vol 1267. Springer, Cham. https://doi.org/10.1007/978-3-030-46886-6_3

Download citation

Publish with us

Policies and ethics