Skip to main content

On the Geometry of Random Polytopes

  • Chapter
  • First Online:
Geometric Aspects of Functional Analysis

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2266))

Abstract

We present a simple proof to a fact recently established in Guédon et al. (Commun Contemp Math (to appear, 2018). arXiv:1811.12007): let ξ be a symmetric random variable that has variance 1, let Γ = (ξ ij) be an N × n random matrix whose entries are independent copies of ξ, and set X 1, …, X N to be the rows of Γ. Then under minimal assumptions on ξ and as long as N ≥ c 1n, with high probability

$$\displaystyle c_2 \bigl (B_\infty ^n \cap \sqrt {\log (eN/n)} B_2^n \bigr ) \subset \mathrm {absconv}(X_1,\ldots ,X_N). $$

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A centred random variable is L-sub-Gaussian if for every p ≥ 2, \(\|\xi \|{ }_{L_p} \leq L \sqrt {p}\|\xi \|{ }_{L_2}\).

References

  1. S. Boucheron, G. Lugosi, P. Massart, Concentration inequalities (Oxford University Press, Oxford, 2013). A nonasymptotic theory of independence

    Google Scholar 

  2. V.H. de la Peña, E. Giné, Decoupling: from dependence to independence (Springer, New York, 1999)

    Book  Google Scholar 

  3. A. Giannopoulos, M. Hartzoulaki, Random spaces generated by vertices of the cube. Discrete Comput. Geom. 28(2), 255–273 (2002)

    Article  MathSciNet  Google Scholar 

  4. E.D. Gluskin, Extremal properties of orthogonal parallelepipeds and their applications to the geometry of Banach spaces. Mat. Sb. 136(1), 85–96 (1988)

    Article  MathSciNet  Google Scholar 

  5. O. Guédon, A.E. Litvak, K. Tatarko, Random polytopes obtained by matrices with heavy tailed entries. Commun. Contemp. Math. (to appear, 2018). arXiv:1811.12007

    Google Scholar 

  6. T. Holmstedt, Interpolation of quasi-normed spaces. Math. Scand. 26, 177–199 (1970)

    Article  MathSciNet  Google Scholar 

  7. F. Krahmer, C. Kummerle, H. Rauhut, A quotient property for matrices with heavy-tailed entries and its application to noise-blind compressed sensing (2018). Manuscript, arXiv:1806.04261

    Google Scholar 

  8. M. Ledoux, M. Talagrand, Probability in Banach spaces. Classics in Mathematics (Springer, Berlin, 2011)

    Google Scholar 

  9. A.E. Litvak, A. Pajor, M. Rudelson, N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)

    Article  MathSciNet  Google Scholar 

  10. S. Mendelson, A remark on the diameter of random sections of convex bodies, in Geometric aspects of functional analysis. Lecture Notes in Mathematics, vol. 2116 (Springer, Berlin, 2014), pp. 395–404

    Google Scholar 

  11. S. Mendelson, Learning without concentration. J. ACM 62(3), Art. 21, 25 (2015)

    Google Scholar 

  12. S. Mendelson, Learning without concentration for general loss functions. Probab. Theory Relat. Fields 171(1–2), 459–502 (2018)

    Article  MathSciNet  Google Scholar 

  13. S.J. Montgomery-Smith, The distribution of Rademacher sums. Proc. Am. Math. Soc. 109(2), 517–522 (1990)

    Article  MathSciNet  Google Scholar 

  14. M. Talagrand, Sharper bounds for Gaussian and empirical processes. Ann. Probab. 22(1), 28–76 (1994)

    Article  MathSciNet  Google Scholar 

  15. A.W. van der Vaart, J.A. Wellner, Weak convergence and empirical processes. Springer Series in Statistics (Springer, New York, 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahar Mendelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendelson, S. (2020). On the Geometry of Random Polytopes. In: Klartag, B., Milman, E. (eds) Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol 2266. Springer, Cham. https://doi.org/10.1007/978-3-030-46762-3_8

Download citation

Publish with us

Policies and ethics