Skip to main content

Cardiovascular Calcification in Hutchinson-Gilford Progeria and Correlation with Age-Related Degenerative Calcification

  • Chapter
  • First Online:
Cardiovascular Calcification and Bone Mineralization

Part of the book series: Contemporary Cardiology ((CONCARD))

  • 647 Accesses

Abstract

Hutchinson-Gilford progeria syndrome (HGPS) and other progeroid (premature aging) syndromes are attributable to lamin A processing defects; these result in aberrant nuclear architectures that impact normal transcription and translation, resulting in a premature aging phenotype at the cellular, tissue, and organismal levels. Patients with HGPS are characterized by severe accelerated cardiovascular disease, including valvular calcification and vessel wall stiffening and calcification as well as atherosclerosis, typically culminating in premature death due to myocardial infarction or stroke. Understanding the mechanisms of the early and aggressive vascular and valvular calcification (and vascular atherosclerosis) in the progeroid syndromes may cast important light on the pathways (and therapies) relevant for physiologic aging and senescence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

EC:

Endothelial cells

eNOS:

Endothelial nitric oxide synthase

eNTPD1:

Ectonucleoside triphosphate diphosphohydrolase-1

FACE-1:

Farnesylated protein converting enzyme-1

HGPS:

Hutchinson-Gilford progeria syndrome

KLF2:

Krüppel-like factor 2

PPi:

Inorganic pyrophosphate

ROS:

Reactive oxygen species

TNAP:

Tissue non-specific alkaline phosphatase

VSMC:

Vascular smooth muscle cells

ZMPSTE24:

Zinc metalloproteinase STE24

References

  1. Hutchinson J. A case of congenital absence of hair with atrophic condition of the skin and its appendages. Lancet. 1886;1:923.

    Google Scholar 

  2. Gilford H. On a condition of mixed premature and immature development. Med Chir Trans. 1897;80:17–45.

    Article  CAS  Google Scholar 

  3. Gilford H. Progeria: a form of senilism. Practitioner. 1904;73:188–217.

    Google Scholar 

  4. Meredith MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, et al. Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med. 2008;358:592–604.

    Article  Google Scholar 

  5. Navarro CL, Cau P, Lévy N. Molecular bases of progeroid syndromes. Hum Mol Genet. 2006;15 Spec No 2:R151–61.

    Article  Google Scholar 

  6. Takenouchi T, Hida M, Sakamoto Y, Torii C, Kosaki R, Takahashi T, et al. Severe congenital lipodystrophy and a progeroid appearance: mutation in the penultimate exon of FBN1 causing a recognizable phenotype. Am J Med Genet A. 2013;161A:3057–62.

    Article  Google Scholar 

  7. Pescatore LA, Gamarra LF, Liberman M. Multifaceted mechanisms of vascular calcification in aging. Arterioscler Thromb Vasc Biol. 2019;39:1307–16.

    Article  CAS  Google Scholar 

  8. Arking DE, Krebsova A, Macek M Sr, Macek M Jr, Arking A, Mian IS, et al. Association of human aging with a functional variant of klotho. Proc Natl Acad Sci U S A. 2002;99:856–61.

    Article  CAS  Google Scholar 

  9. Worman HJ. Nuclear lamins and laminopathies. J Pathol. 2012;226:316–25.

    Article  CAS  Google Scholar 

  10. Gruenbaum Y, Foisner R. Lamins: nuclear intermediate filament proteins with fundamental functions in nuclear mechanics and genome regulation. Annu Rev Biochem. 2015;84:131–64.

    Article  CAS  Google Scholar 

  11. Dittmer TA, Misteli T. The lamin protein family. Genome Biol. 2011;12:222–36.

    Article  CAS  Google Scholar 

  12. Dorado B, Andrés V. A-type lamins and cardiovascular disease in premature aging syndromes. Curr Opin Cell Biol. 2017;46:17–25.

    Article  CAS  Google Scholar 

  13. Barrowman J, Wiley PA, Hudon-Miller SE, Hrycyna CA, Michaelis S. Human ZMPSTE24 disease mutations: residual proteolytic activity correlates with disease severity. Hum Mol Genet. 2012;21:4084–93.

    Article  CAS  Google Scholar 

  14. Vidak S, Foisner R. Molecular insights into the premature aging disease progeria. Histochem Cell Biol. 2016;145:401–17.

    Article  CAS  Google Scholar 

  15. Gonzalo S, Kreienkamp R, Askjaer P. Hutchinson-Gilford progeria syndrome: a premature aging disease caused by LMNA gene mutations. Ageing Res Rev. 2017;33:18–29.

    Article  CAS  Google Scholar 

  16. Ji JY. Endothelial nuclear lamina in mechanotransduction under shear stress. Adv Exp Med Biol. 2018;1097:83–104.

    Article  CAS  Google Scholar 

  17. Qi YX, Han Y, Jiang Z. Mechanobiology and vascular remodeling: from membrane to nucleus. Adv Exp Med Biol. 2018;1097:69–82.

    Article  CAS  Google Scholar 

  18. Hamczyk MR, del Campo L, Andrés V. Aging in the cardiovascular system: lessons from Hutchinson-Gilford progeria syndrome. Annu Rev Physiol. 2018;80:27–48.

    Article  CAS  Google Scholar 

  19. Gordon LB, Massaro J, D’Agostino RB Sr, Campbell SE, Brazier J, Brown WT, et al. Impact of farnesylation inhibitors on survival in Hutchinson-Gilford progeria syndrome. Circulation. 2014;130:27–34.

    Article  CAS  Google Scholar 

  20. Gordon LB, Kleinman ME, Massaro J, D’Agostino RB Sr, Shappell H, Gerhard-Herman M, et al. Clinical trial of the protein farnesylation inhibitors lonafarnib, pravastatin, and zoledronic acid in children with Hutchinson-Gilford progeria syndrome. Circulation. 2016;134:114–25.

    Article  CAS  Google Scholar 

  21. Pantsulaia I, Ciszewski WM, Niewiarowska J. Senescent endothelial cells: potential modulators of immunosenescence and ageing. Ageing Res Rev. 2016;29:13–25.

    Article  CAS  Google Scholar 

  22. Bonello-Palot N, Simoncini S, Robert S, Bourgeois P, Sabatier F, Levy N, et al. Prelamin A accumulation in endothelial cells induces premature senescence and functional impairment. Atherosclerosis. 2014;237:45–52.

    Article  CAS  Google Scholar 

  23. Yap B, Garcia-Cardeña G, Gimbrone MA Jr. Endothelial dysfunction and the pathobiology of accelerated atherosclerosis in Hutchinson-Gilford progeria syndrome. FASEB 22 (meeting abstract supplement). 2008; 471.11.

    Google Scholar 

  24. Hutcheson JD, Goettsch C, Bertazzo S, Maldonado N, Ruiz JL, Goh W, et al. Genesis and growth of extracellular vesicle-derived microcalcification in atherosclerotic plaques. Nat Mater. 2016;15:335–43.

    Article  CAS  Google Scholar 

  25. Hutcheson JD, Aikawa E. Extracellular vesicles in cardiovascular homeostasis and disease. Curr Opin Cardiol. 2018;33:290–7.

    Article  Google Scholar 

  26. Olive M, Harten I, Mitchell R, Beers JK, Djabali K, Cao K, et al. Cardiovascular pathology in Hutchinson-Gilford progeria: correlation with the vascular pathology of aging. Arterioscler Thromb Vasc Biol. 2010;30:2301–9.

    Article  CAS  Google Scholar 

  27. Varga R, Eriksson M, Erdos MR, Olive M, Harten I, Kolodgie F, et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome. Proc Natl Acad Sci U S A. 2006;103:3250–5.

    Article  CAS  Google Scholar 

  28. Zhang H, Xiong ZM, Cao K. Mechanisms controlling the smooth muscle cell death in progeria via down-regulation of poly (ADP-ribose) polymerase 1. Proc Natl Acad Sci U S A. 2014;111:E2261–70.

    Article  CAS  Google Scholar 

  29. Villa-Bellosta R, Wang X, Millán JL, Dubyak GR, O’Neill WC. Extracellular pyrophosphate metabolism and calcification in vascular smooth muscle. Am J Physiol Heart Circ Physiol. 2011;301:H61–8.

    Article  CAS  Google Scholar 

  30. Villa-Bellosta R, Rivera-Torres J, Osorio FG, Acín-Pérez R, Enriquez JA, López-Otín C, et al. Defective extracellular pyrophosphate metabolism promotes vascular calcification in a mouse model of Hutchinson-Gilford progeria syndrome that is ameliorated on pyrophosphate treatment. Circulation. 2014;127:2442–51.

    Article  Google Scholar 

  31. Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ Res. 2013;112:e99–109.

    Article  CAS  Google Scholar 

  32. Nair K, Ramachandran P, Krishnamoorthy KM, Dora S, Achuthan TJ. Hutchinson-Gilford progeria syndrome with severe calcific aortic valve stenosis and calcific mitral valve. J Heart Valve Dis. 2004;13:866–9.

    PubMed  Google Scholar 

  33. Gordon LB, Harten IA, Patti ME, Lichtenstein AH. Reduced adiponectin and HDL cholesterol without elevated C-reactive protein: clues to the biology of premature atherosclerosis in Hutchinson-Gilford progeria syndrome. J Pediatr. 2005;146:336–41.

    Article  CAS  Google Scholar 

  34. Song M, San H, Anderson SA, Cannon RO 3rd, Orlic D. Shear stress-induced mechanotransduction protein deregulation and vasculopathy in a mouse model of progeria. Stem Cell Res Ther. 2014;5:41–52.

    Article  Google Scholar 

  35. Hamczyk MR, Villa-Bellosta R, Gonzalo P, Andrés-Manzano MJ, Nogales P, Bentzon JF, et al. Vascular smooth muscle-specific progerin expression accelerates atherosclerosis and death in a mouse model of Hutchinson-Gilford progeria syndrome. Circulation. 2018;138:266–82.

    Article  CAS  Google Scholar 

  36. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging. Cell. 2013;153:1194–217.

    Article  Google Scholar 

  37. Ashapkin VV, Kutueva LI, Kurchashova SY, Kireev II. Are there common mechanisms between Hutchinson-Gilford progeria syndrome and natural aging? Front Genet. 2019;10:455.

    Article  CAS  Google Scholar 

  38. Ragnauth CD, Warren DT, Liu Y, McNair R, Tajsic T, Figg N, et al. Prelamin A acts to accelerate smooth muscle cell senescence and is a novel biomarker of human vascular aging. Circulation. 2010;121:2200–10.

    Article  CAS  Google Scholar 

  39. Cao K, Blair CD, Faddah DA, Kieckhaefer JE, Olive M, Erdos MR, et al. Progerin and telomere dysfunction collaborate to trigger senescence in normal human fibroblasts. J Clin Invest. 2011;121:2833–44.

    Article  CAS  Google Scholar 

  40. McClintock D, Ratner D, Lokuge M, Owens DM, Gordon LB, Collins FS, et al. The mutant form of lamin A that causes Hutchinson-Gilford progeria is a biomarker of cellular aging in human skin. PLoS One. 2007;2:e1269.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to recognize with appreciation the outstanding and innovative research and the comprehensive HGPS reviews developed by Dr. Vicente Andrés and colleagues at Centro Nacional de Investigaciones Cardiovasculares Carlos III in Madrid, Spain. In addition, Dr. Leslie B. Gordon (Hasbro Children’s Hospital and the Alpert Medical School of Brown University in Providence, RI, and Medical Director of the Progeria Research Foundation) has been a tireless and eloquent international leader and advocate in the pursuit of the understanding and treatment of HGPS; without Dr. Gordon and her colleagues at the PRF, we would know only a fraction of what is understood about the disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard N. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mitchell, R.N. (2020). Cardiovascular Calcification in Hutchinson-Gilford Progeria and Correlation with Age-Related Degenerative Calcification. In: Aikawa, E., Hutcheson, J. (eds) Cardiovascular Calcification and Bone Mineralization. Contemporary Cardiology. Humana, Cham. https://doi.org/10.1007/978-3-030-46725-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46725-8_11

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-46724-1

  • Online ISBN: 978-3-030-46725-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics