Skip to main content

Optimization with Soft Dice Can Lead to a Volumetric Bias

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11992))

Included in the following conference series:

Abstract

Segmentation is a fundamental task in medical image analysis. The clinical interest is often to measure the volume of a structure. To evaluate and compare segmentation methods, the similarity between a segmentation and a predefined ground truth is measured using metrics such as the Dice score. Recent segmentation methods based on convolutional neural networks use a differentiable surrogate of the Dice score, such as soft Dice, explicitly as the loss function during the learning phase. Even though this approach leads to improved Dice scores, we find that, both theoretically and empirically on four medical tasks, it can introduce a volumetric bias for tasks with high inherent uncertainty. As such, this may limit the method’s clinical applicability.

J. Bertels and D. Robben—Contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. NEXIS - Next gEneration X-ray Imaging System. https://www.nexis-project.eu

  2. Ischemic Stroke Lesion Segmentation (ISLES) challenge (2017). http://www.isles-challenge.org/ISLES2017/

  3. Ischemic Stroke Lesion Segmentation (ISLES) challenge (2018). http://www.isles-challenge.org/ISLES2017/

  4. Multimodal Brain Tumor Segmentation (BRATS) challenge (2018). https://www.med.upenn.edu/sbia/brats2018.html

  5. Bakas, S., et al.: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(March), 1–13 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  6. Bakas, S., et al.: Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge (2018). http://arxiv.org/abs/1811.02629

  7. Bertels, J., et al.: Optimizing the Dice score and Jaccard index for medical image segmentation: theory and practice. In: Medical Image Computing and Computer-Assisted Intervention (2019)

    Google Scholar 

  8. De Tobel, J., Radesh, P., Vandermeulen, D., Thevissen, P.W.: An automated technique to stage lower third molar development on panoramic radiographs for age estimation: a pilot study. J. Forensic Odonto-Stomatol. 35(2), 49–60 (2017)

    Google Scholar 

  9. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: Deep Learning and Data Labeling for Medical Applications. LNCS, vol. 10008, pp. 179–187. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-46976-8

  10. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  11. Goyal, M., et al.: Endovascular thrombectomy after large-vessel ischaemic stroke: a meta-analysis of individual patient data from five randomised trials. Lancet 387(10029), 1723–1731 (2016). https://doi.org/10.1016/S0140-6736(16)00163-X

    Article  Google Scholar 

  12. Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21

    Chapter  Google Scholar 

  13. Kamnitsas, K., Ledig, C., Newcombe, V.F.J.: Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med. Image Anal. 36, 61–78 (2017)

    Article  Google Scholar 

  14. Menze, B.H., et al.: The multimodal Brain Tumor Image Segmentation Benchmark (BRATS). IEEE Trans. Med. Imaging (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  15. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision, vol. 4, pp. 1–11 (2016). https://doi.org/10.1109/3DV.2016.79, http://arxiv.org/abs/1606.04797

  16. Sudre, C.H., Li, W., Vercauteren, T., Ourselin, S., Jorge Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 240–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_28

    Chapter  Google Scholar 

  17. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, Heidelberg (1995). https://doi.org/10.1007/978-1-4757-3264-1

    Book  MATH  Google Scholar 

  18. Winzeck, S., et al.: ISLES 2016 and 2017-benchmarking ischemic stroke lesion outcome prediction based on multispectral MRI. Front. Neurol. 9(SEP) (2018). https://doi.org/10.3389/fneur.2018.00679

Download references

Acknowledgements

J.B. is part of NEXIS [1], a project that has received funding from the European Union’s Horizon 2020 Research and Innovations Programme (Grant Agreement #780026). D.R. is supported by an innovation mandate of Flanders Innovation and Entrepreneurship (VLAIO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Bertels .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bertels, J., Robben, D., Vandermeulen, D., Suetens, P. (2020). Optimization with Soft Dice Can Lead to a Volumetric Bias. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2019. Lecture Notes in Computer Science(), vol 11992. Springer, Cham. https://doi.org/10.1007/978-3-030-46640-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46640-4_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46639-8

  • Online ISBN: 978-3-030-46640-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics