Skip to main content

Hypothermic Machine Perfusion in Liver Transplantation Using Grafts From Donation After Circulatory Death Donors

  • Chapter
  • First Online:
Donation after Circulatory Death (DCD) Liver Transplantation

Abstract

Dynamic preservation strategies are a promising option to improve graft quality and to extend preservation time for either logistic or treatment reasons. In contrast to normothermic oxygenated perfusion, which is based on physiologic conditions, thereby aiming to simulate the human body, hypothermic oxygenated liver perfusion appears un-physiologic and induces a unique, mitochondrial response for its protective effect. Both ex vivo perfusion techniques can be used for viability assessment, which will open the door for an increased liver utilization in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abele D, et al. Temperature-dependence of mitochondrial function and production of reactive oxygen species in the intertidal mud clam Mya Mya arenaria. J Exp Biol. 2002;11:1636. https://doi.org/10.1016/j.ecolind.2011.04.007.

    Article  CAS  Google Scholar 

  2. Abele D. Toxic oxygen: the radical life-giver. Nature. 2002;420:27. https://doi.org/10.1038/420027a.

    Article  CAS  PubMed  Google Scholar 

  3. Blier PU, et al. What modulates animal longevity? Fast and slow aging in bivalves as a model for the study of lifespan. Semin Cell Dev Biol. 2017;70:130. https://doi.org/10.1016/j.semcdb.2017.07.046.

    Article  PubMed  Google Scholar 

  4. Boteon Y, et al. Combined hypothermic and normothermic machine perfusion improves functional recovery of extended criteria donor livers. Liver Transpl. 2018;24:1699–715. https://doi.org/10.1002/lt.25315.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Brüggenwirth IMA, et al. A comparative study of single and dual perfusion during end-ischemic subnormothermic liver machine preservation. Transplant Direct. 2018;4:e400. https://doi.org/10.1097/TXD.0000000000000840.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bruinsma BG, et al. Determination and extension of the limits to static cold storage using subnormothermic machine perfusion. Int J Artif Organs. 2013;36(11):775–80. https://doi.org/10.5301/ijao.5000250.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bruinsma BG, et al. Subnormothermic machine perfusion for ex vivo preservation and recovery of the human liver for transplantation. Am J Transplant Off J Am Soc Transplant Am Soc Transplant Surg. 2014;14(6):1400–9. https://doi.org/10.1111/ajt.12727.

    Article  CAS  Google Scholar 

  8. Burlage L, et al. Opposite acute potassium and sodium shifts during transplantation of hypothermic machine perfused donor livers. Am J Transplant. 2018;19:1061. https://doi.org/10.1111/ajt.15173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Croome KP, Lee DD, Keaveny AP, Taner CB. Noneligible donors as a strategy to decrease the organ shortage. Am J Transplant. 2017;17(6):1649–55.

    Article  CAS  PubMed  Google Scholar 

  10. De Carlis L, et al. Sequential use of normothermic regional perfusion and hypothermic machine perfusion in donation after cardiac death liver transplantation with extended warm ischemia time. Transplantation. 2016;100:e101. https://doi.org/10.1097/TP.0000000000001419.

    Article  PubMed  Google Scholar 

  11. De Carlis R, et al. Hypothermic machine perfusion of liver grafts can safely extend cold ischemia for up to 20 hours in cases of necessity. Transplantation. 2017;101:e223–4. https://doi.org/10.1097/TP.0000000000001753.

    Article  PubMed  Google Scholar 

  12. De Carlis R, et al. Successful donation after cardiac death liver transplants with prolonged warm ischemia time using normothermic regional perfusion. Liver Transpl. 2017;23:166. https://doi.org/10.1002/lt.24666.

    Article  PubMed  Google Scholar 

  13. De Carlis R, et al. Donation after cardiac death liver transplantation with normothermic regional perfusion and hypothermic machine perfusion: follow-up of the first Italian series. Portugal: ILTS Conference Lisbon; 2018.

    Google Scholar 

  14. Chouchani ET, et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature. 2014;515(V):431–5. https://doi.org/10.1038/nature13909.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chouchani ET, et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metabolism. 2016;23:254–63. https://doi.org/10.1016/j.cmet.2015.12.009.

    Article  CAS  PubMed  Google Scholar 

  16. Detelich D, Markmann JF. The dawn of liver perfusion machines. Curr Opin Organ Transplant. 2018;23:151. https://doi.org/10.1097/MOT.0000000000000500.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Dufour S, et al. Top-down control analysis of temperature effect on oxidative phosphorylation. Biochem J. 1996;314:743. https://doi.org/10.1042/bj3140743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dugbartey GJ, et al. Renal mitochondrial response to low temperature in non-hibernating and hibernating species. Antioxid Redox Signal. 2017;27:599. https://doi.org/10.1089/ars.2016.6705.

    Article  CAS  PubMed  Google Scholar 

  19. Dutkowski P, Clavien P. Uploading cellular batteries: caring for mitochondria is key. Liver Transpl. 2018;24(4):462–4. https://doi.org/10.1002/lt.25036.

    Article  PubMed  Google Scholar 

  20. European Association for the Study of the Liver. Electronic address: easloffice@easloffice.eu. EASL clinical practice guidelines: liver transplantation. J Hepatol. 2016;64(2):433–85.

    Article  Google Scholar 

  21. Gringeri E, et al. Subnormothermic machine perfusion for non-heart-beating donor liver grafts preservation in a swine model: a new strategy to increase the donor pool? Transplant Proc. 2012;4:2026–8. https://doi.org/10.1016/j.transproceed.2012.06.014.

    Article  Google Scholar 

  22. Hashimoto K, et al. Soluble adhesion molecules during ex vivo lung perfusion are associated with posttransplant primary graft dysfunction. Am J Transplant. 2017;17(5):1396–404. https://doi.org/10.1111/ajt.14160.

    Article  CAS  PubMed  Google Scholar 

  23. He X, et al. The first case of ischemia-free organ transplantation in humans: a proof of concept. Am J Transplant. 2018;18(3):737–44. https://doi.org/10.1111/ajt.14583.

    Article  PubMed  Google Scholar 

  24. Hessheimer A, et al. Superior outcomes using normothermic regional perfusion in cDCD liver transplantation. Portugal: ILTS Conference Lisbon; 2018.

    Google Scholar 

  25. Hosgood SA, et al. Haemoadsorption reduces the inflammatory response and improves blood flow during ex vivo renal perfusion in an experimental model. J Transl Med. 2017;15(1):216. https://doi.org/10.1186/s12967-017-1314-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Iskender I, et al. Cytokine filtration modulates pulmonary metabolism and edema formation during ex vivo lung perfusion [Abstract]. J Heart Lung Transplant. 2016;35(4):S142–3. https://www.jhltonline.org/article/S1053-2498(16)00441-1/fulltext.

  27. Kaltenbach M, et al. Trends in deceased donor liver enzymes prior to transplant: the impact on graft selection and outcomes. Am J Transplant. 2019;20:213. https://doi.org/10.1111/ajt.15573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karki R, Man SM, Kanneganti T-D. Inflammasomes and cancer. Cancer Immunol Res. 2017;5:94. https://doi.org/10.1158/2326-6066.CIR-16-0269.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim M, et al. Attenuation of oxidative damage by targeting mitochondrial complex I in neonatal hypoxic-ischemic brain injury. Free Radic Biol Med. 2018;124:517. https://doi.org/10.1016/j.freeradbiomed.2018.06.040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kron P, et al. Short, cool, and well oxygenated – HOPE for kidney transplantation in a rodent model. Ann Surg. 2016;264:815. https://doi.org/10.1097/SLA.0000000000001766.

    Article  PubMed  Google Scholar 

  31. Kron P, et al. Hypothermic oxygenated perfusion (HOPE) for fatty liver grafts in rats and humans. J Hepatol. 2018;68(1):82–91. https://doi.org/10.1016/j.jhep.2017.08.028.

    Article  CAS  Google Scholar 

  32. Land WG. Emerging role of innate immunity in organ transplantation. Part I: evolution of innate immunity and oxidative allograft injury. Transplant Rev. 2012;26:60–72. https://doi.org/10.1016/j.trre.2011.05.001.

    Article  Google Scholar 

  33. MacDonald JA, Storey KB. cAMP-dependent protein kinase from brown adipose tissue: temperature effects on kinetic properties and enzyme role in hibernating ground squirrels. J Comp Physiol. 1998;168:513. https://doi.org/10.1007/s003600050172.

    Article  CAS  Google Scholar 

  34. Marcon F, et al. Utilisation of declined liver grafts yields comparable transplant outcomes and previous decline should not be a deterrent to graft use. Transplantation. 2018; https://doi.org/10.1097/TP.0000000000002127.

  35. Matton APM, et al. Biliary bicarbonate, pH, and glucose are suitable biomarkers of biliary viability during ex situ normothermic machine perfusion of human donor livers. Transplantation. 2019;103:1405. https://doi.org/10.1097/TP.0000000000002500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. De Meijer V, Fujiyoshi M, Porte R. Ex situ machine perfusion strategies in liver transplantation. J Hepatol. 2018;70:203. https://doi.org/10.1016/j.jhep.2018.09.019.

    Article  PubMed  Google Scholar 

  37. Mergental H, et al. Transplantation of declined liver allografts following normothermic ex-situ evaluation. Am J Transplant. 2016;16(11):3235–45. https://doi.org/10.1111/ajt.13875.

    Article  CAS  PubMed  Google Scholar 

  38. Mergental H. et al. Transplantation of discarded livers following viability testing with normothermic machine perfusion: the VITTAL (VIability Testing and Transplantation of mArginal Livers) trial outcomes’, AASLD 2018, Abstract. 2018.

    Google Scholar 

  39. Michel SG, et al. Twelve-hour hypothermic machine perfusion for donor heart preservation leads to improved ultrastructural characteristics compared to conventional cold storage. Ann Transplant. 2015;20:461–8. https://doi.org/10.12659/AOT.893784.

    Article  CAS  PubMed  Google Scholar 

  40. Mills EL, et al. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell. 2016;167(2):457–470.e13. https://doi.org/10.1016/j.cell.2016.08.064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Minor T, et al. Controlled oxygenated rewarming of cold stored liver grafts by thermally graduated machine perfusion prior to reperfusion. Am J Transplant. 2013;13(6):1450–60. https://doi.org/10.1111/ajt.12235.

    Article  CAS  PubMed  Google Scholar 

  42. Muller X, et al. Defining benchmarks in liver transplantation: a multicenter outcome analysis determining best achievable results. Ann Surg. 2017;267(3):419–25. https://doi.org/10.1097/SLA.0000000000002477.

    Article  Google Scholar 

  43. Muller X, et al. Novel real time prediction of liver graft function during hypothermic oxygenated machine perfusion prior to liver transplantation. Ann Surg. 2019;270(5):783–90.

    Article  PubMed  Google Scholar 

  44. Murphy MP. How mitochondria produce reactive oxygen species. Biochem J. 2009;417(1):1–13. https://doi.org/10.1042/BJ20081386.

    Article  CAS  PubMed  Google Scholar 

  45. Nasralla D, et al. A randomized trial of normothermic preservation in liver transplantation. Nature. 2018;557:50. https://doi.org/10.1038/s41586-018-0047-9.

    Article  CAS  PubMed  Google Scholar 

  46. Patrono D, et al. Hypothermic Oxygenated Machine Perfusion of Liver Grafts from Brain-Dead Donors. Sci Rep. 2019;9(1):1. https://doi.org/10.1038/s41598-019-45843-3.

    Article  CAS  Google Scholar 

  47. Pinto C, et al. Role of inflammation and proinflammatory cytokines in cholangiocyte pathophysiology. Biochim Biophys Acta Mol basis Dis. 2017;1864:1270. https://doi.org/10.1016/j.bbadis.2017.07.024.

    Article  CAS  PubMed  Google Scholar 

  48. Van Rijn R, et al. Dual hypothermic oxygenated machine perfusion in liver transplants donated after circulatory death. Br J Surg. 2017;104:907–17. https://doi.org/10.1002/bjs.10515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Schlegel A, et al. Protective mechanisms of end-ischemic cold machine perfusion in DCD liver grafts. J Hepatol. 2013;58(2):278–86.

    Article  PubMed  Google Scholar 

  50. Schlegel A, et al. Warm vs. cold perfusion techniques to rescue rodent liver grafts. J Hepatol. Elsevier. 2014;61(6):1267–75.

    Article  Google Scholar 

  51. Schlegel A, et al. Warm vs. cold perfusion techniques to rescue rodent liver grafts. J Hepatol. 2014;61(6):1267–75. https://doi.org/10.1016/j.jhep.2014.07.023.

    Article  PubMed  Google Scholar 

  52. Schlegel A, et al. Is single portal vein approach sufficient for hypothermic machine perfusion of DCD liver grafts? J Hepatol. Elsevier. 2016;64:239–41.

    Article  Google Scholar 

  53. Schlegel A, et al. Impact of donor age in donation after cardiac death liver transplantation: Is the cut-off “60” still of relevance? Liver Transplantation. 2017; https://doi.org/10.1002/lt.24865. [Epub ahead of print].

  54. Schlegel A, et al. The UK DCD Risk Score: A new proposal to define futility in donation-after-circulatory-death liver transplantation. J Hepatol. 2018c;68(3):456–64. https://doi.org/10.1016/j.jhep.2017.10.034.

    Article  PubMed  Google Scholar 

  55. Schlegel AA, et al. Outcomes of liver transplantations from donation after circulatory death (DCD) treated by hypothermic oxygenated perfusion (HOPE) before implantation. J Hepatol. 2019;70(1):50–7. https://doi.org/10.1016/j.jhep.2018.10.005.

    Article  CAS  PubMed  Google Scholar 

  56. Schlegel A, Kalisvaart M, Muiesan P. Machine perfusion in liver transplantation - an essential treatment or just an expensive toy? Minerva Anestesiol. 2018;84(2):236–45. https://doi.org/10.23736/S0375-9393.17.12016-X.

    Article  PubMed  Google Scholar 

  57. Schlegel A, Muller X, Dutkowski P. Hypothermic liver perfusion. Curr Opin Organ Transplant. 2017;22:563.

    Article  PubMed  Google Scholar 

  58. Schlegel A, Muller X, Dutkowski P. Hypothermic machine preservation of the liver: state of the art. Current Transpl Rep. 2018;5:93. https://doi.org/10.1007/s40472-018-0183-z.

    Article  Google Scholar 

  59. Selten J, et al. Hypo- and normothermic perfusion of the liver: which way to go? Best Pract Res Clin Gastroenterol. 2017;31:171–9. https://doi.org/10.1016/j.bpg.2017.04.001.

    Article  PubMed  Google Scholar 

  60. Siebels I, Dröse S. Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim Biophys Acta Bioenerg. 2013;1827(10):1156–64. https://doi.org/10.1016/j.bbabio.2013.06.005.

    Article  CAS  Google Scholar 

  61. Stegemann J, Minor T. Energy charge restoration, mitochondrial protection and reversal of preservation induced liver injury by hypothermic oxygenation prior to reperfusion. Cryobiology. 2009;58(3):331–6. https://doi.org/10.1016/j.cryobiol.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  62. Stepanova A, et al. Redox-Dependent Loss of Flavin by Mitochondrial Complex I in Brain Ischemia/Reperfusion Injury. Antioxid Redox Signal. 2019;31(9):608–22. https://doi.org/10.1089/ars.2018.7693. Epub 2019 Jul 1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Takakuwa Y, et al. Properties and kinetics of membrane-bound enzymes when both the enzyme and substrate are components of the same microsomal membrane. Studies on lathosterol 5-desaturase. J Biol Chem. 1994;269(45):27889–93. https://doi.org/10.1074/jbc.270.8.4180.

    Article  CAS  PubMed  Google Scholar 

  64. de Vries Y, et al. Pretransplant sequential hypo- and normothermic machine perfusion of suboptimal livers donated after circulatory death using a hemoglobin-based oxygen carrier perfusion solution. Am J Transplant. 2019;19:1202. https://doi.org/10.1111/ajt.15228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Wang CH, et al. Oxidative stress response elicited by mitochondrial dysfunction: implication in the pathophysiology of aging. Exp Biol Med. 2013;238:450. https://doi.org/10.1177/1535370213493069.

    Article  CAS  Google Scholar 

  66. Watson C, et al. Normothermic regional perfusion (NRP) for DCD liver transplantation in the UK: better graft survival with no cholangiopathy. Portugal: ILTS Conference Lisbon; 2018.

    Google Scholar 

  67. Watson CJE, et al. Observations on the ex situ perfusion of livers for transplantation. Am J Transplant. 2018;18:2005. https://doi.org/10.1111/ajt.14687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Watson CJE, et al. Normothermic perfusion in the assessment and preservation of declined livers before transplantation: Hyperoxia and vasoplegia-important lessons from the first 12 cases. Transplantation. 2017;101:1084. https://doi.org/10.1097/TP.0000000000001661.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Watson CJE, Jochmans I. From “gut feeling” to objectivity: machine preservation of the liver as a tool to assess organ viability. Curr Transpl Rep. 2018;5:72. https://doi.org/10.1007/s40472-018-0178-9.

    Article  PubMed  Google Scholar 

  70. Westerkamp A, et al. Oxygenated hypothermic machine perfusion after static cold storage improves hepatobiliary function of extended criteria donor livers. Transplantation. 2016;100(4):825–35. https://doi.org/10.1097/TP.0000000000001081.

    Article  CAS  PubMed  Google Scholar 

  71. Westerkamp AC, et al. End-ischemic machine perfusion reduces bile duct injury in donation after circulatory death rat donor livers independent of the machine perfusion temperature. Liver Transpl. 2015;21(10):1300–11. https://doi.org/10.1002/lt.24200.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Dutkowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Schlegel, A., Mueller, M., Dutkowski, P. (2020). Hypothermic Machine Perfusion in Liver Transplantation Using Grafts From Donation After Circulatory Death Donors. In: Croome, K., Muiesan, P., Taner, C. (eds) Donation after Circulatory Death (DCD) Liver Transplantation. Springer, Cham. https://doi.org/10.1007/978-3-030-46470-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46470-7_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46469-1

  • Online ISBN: 978-3-030-46470-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics