Skip to main content

Abstract

Apocarotenoids are organic compounds which are derived from carotenoids by oxidative cleavage, catalyzed by carotenoid oxygenases i.e. abscisic acid, retinol, retinoids, retinal and retinoic acid. They have significant role in nutrition as a source of vitamin A, and lend protection against chronic diseases such as, arthritis, cardiovascular disorders and cancer etc. Major dietary source of provitamin A are β-carotene. This chapter describe recent developments in 4 areas: (1): Biosynthesis of apocarotenoids, (2) apocarotenoids in mammals and foods (3) biological functions of apocarotenoids and (4) health benefits of apocarotenoids. Apocarotenoids are responsible for flavor, taste, aroma and fragrance of flowers and foods. Important component of the apocarotenoids is saffron (Crocus sativus L.) stigmas. The saffron apocarotenoids are responsible for the biological activities, so this chapter illustrates its health promoting attributes and applications of saffron, as an antioxidant and an effective chemotherapeutic agent for the prevention and management of various disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alejandro FB, Pinoa MMHD, Arteagab JF, Delgadob JAG (2017) Occurrence and chemical synthesis of Apocarotenoids from mucorales: a review. Nat Prod Commun 7(5):733–741

    Google Scholar 

  2. Walter MH, Floss DS, Strack D (2010) Apocarotenoids: hormones, mycorrhizalmetabolitesand aroma volatiles. Planta 232:1–17

    CAS  PubMed  Google Scholar 

  3. Lalko J, Lapczynski A, McGinty D, Bhatia S, Letizia CS, Api AM (2007) Fragrance material review on beta-ionone. Food Chem Toxicol 45(Suppl 1):S241–S247. https://doi.org/10.1016/j.fct.2007.09.052

    Article  PubMed  Google Scholar 

  4. Larsen M, Poll L (1990) Odour thresholds of some important aroma compounds in raspberries. Z Lebensm Unters Forsch 191:129–131. https://doi.org/10.1007/bf01202638

    Article  CAS  Google Scholar 

  5. McQuate GT, Peck SL (2001) Enhancement of attraction of alpha-ionol to male Bactrocera latifrons (Diptera: Tephritidae) by addition of a synergist, cade oil. J Econ Entomol 94:39–46

    CAS  PubMed  Google Scholar 

  6. Bernstein PS, Li B, Vachali PP, Gorusupudi A, Shyam R, Henriksen BS, Nolan JM (2016) Lutein, zeaxanthin, and meso-zeaxanthin: the basic and clinical science underlying carotenoid based nutritional interventions against ocular disease. Prog Retin Eye Res 50:34–66

    CAS  PubMed  Google Scholar 

  7. Akhtar S, Ahmed A, Randhawa MA, Atukorala S, Arlappa N, Ismail TT (2013) Prevalenceof vitamin A deficiency in South Asia: causes, outcomes, and possible remedies. J Health Popul Nutr 31:413–423

    PubMed  PubMed Central  Google Scholar 

  8. Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617. https://doi.org/10.1146/annurev-cellbio-101512-122413

    Article  CAS  PubMed  Google Scholar 

  9. Kidd P (2011) Astaxanthin, cell membrane nutrient with diverse clinical benefits and antiaging potential. Altern Med Rev 16:355–364

    PubMed  Google Scholar 

  10. Curtis T, Williams DG (1994) Introduction to perfumery. Ellis Horwood Limited, Hemel Hemstead

    Google Scholar 

  11. Yabuzaki J (2017) Carotenoids database: structures, chemical fingerprints and distribution among organisms. Database 2017:bax004. https://doi.org/10.1093/database/bax004

    Article  PubMed Central  Google Scholar 

  12. Huang FC, Molnar P, Schwab W (2009) Cloning and functional characterization of carotenoid cleavage dioxygenase 4 genes. J Exp Bot 60:3011–3022

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Mendes-Pinto MM (2009) Carotenoid breakdown products the—norisoprenoids—in wine aroma. Arch Biochem Biophys 483:236–245

    CAS  PubMed  Google Scholar 

  14. Bouvier F, Isner JC, Dogbo O, Camara B (2005) Oxidative tailoring of carotenoids: a prospect towards novel functions in plants. Trends Plant Sci 10:187–194

    CAS  PubMed  Google Scholar 

  15. Azuma H, Toyota M, Asakawa Y, Takaso T, Tobe H (2002) Floral scent chemistry of mangroveplants. J Plant Res 115:0047–0053

    CAS  Google Scholar 

  16. Schwartz SH, Qin X, Zeevaart JA (2001) Characterization of a novel carotenoid cleavage dioxygenase from plants. J Biol Chem 276:25208–25211

    CAS  PubMed  Google Scholar 

  17. Caballero OH, Miranda PR, Abdullaev FI (2005) HPLC quantification of major activecomponents from 11 different saffron (Crocus sativus L.) sources. Food Chem 100:1126–1131

    Google Scholar 

  18. Bouvier F, Dogbo O, Camara B (2003) Biosynthesis of the food and cosmetic plant pigment bixin (annatto). Science 300:2089–2091

    CAS  PubMed  Google Scholar 

  19. Grilli-Caiola MG, Canini A (2004) Ultrastructure of chromoplasts and other plastids in Crocus sativus L. (Iridaceae). Plant Biosyst 138:9. https://doi.org/10.1080/11263500410001684116

    Article  Google Scholar 

  20. Ahrazem O, Moraga RA, Picazo AJ, Castillo R, Gómez LG (2016) Intronretention and rhythmic diel pattern regulation of carotenoid cleavage dioxygenase 2 duringcrocetin biosynthesis in saffron. Plant Mol Biol 91:355–374

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Schwartz SH, Tan BC, McCarty DR, Welch W, Zeevaart JA (2003) Substrate specificity and kinetics for VP14, a carotenoid cleavage dioxygenase in the ABA biosynthetic pathway. Biochim Biophys Acta 1619:9–14

    CAS  PubMed  Google Scholar 

  22. Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of maize. Science 276:1872–1874

    CAS  PubMed  Google Scholar 

  23. Rook F, Corke F, Card R, Munz G, Smith C, Bevan MW (2001) Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J Cell Mol Biol 26:421–433

    CAS  Google Scholar 

  24. Cheng WH, Endo A, Zhou L, Penney J, Chen HC, Arroyo A, Leon P, Nambara E, Asami T, Seo M, Koshiba T, Sheen J (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14:2723–2743

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Gonzalez-Guzman M, Apostolova N, Belles JM, Barrero JM, Piqueras P, Ponce MR, Micol JL, Serrano R, Rodriguez PL (2002) The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde. Plant Cell 14:1833–1846

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Brewer PB, Koltai H, Beveridge CA (2013) Diverse roles of strigolactones in plant development. Mol Plant 6:18–28

    CAS  PubMed  Google Scholar 

  27. Rasmussen A, Depuydt S, Goormachtig S, Geelen D (2013) Strigolactones fine-tune the root system. Planta 238:615–626

    CAS  PubMed  Google Scholar 

  28. Ruyter-Spira C, Al-Babili S, vanderKrol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    CAS  PubMed  Google Scholar 

  29. Maier W, Peipp H, Schmidt J, Wray V, Strack D (1995) Levels of a terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas. Plant Physiol 109:465–470

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Klingner A, Hundeshagen B, Kernebeck H, Bothe H (1995) Localization of the yellow pigment formed in roots of gramineous plants colonized by arbuscular fungi. Protoplasma 185:50–57

    CAS  Google Scholar 

  31. Fester T, Hause B, Schmidt D, Halfmann K, Schmidt J, Wray V, Hause G, Strack D (2002) Occurrence and localization of apocarotenoids in arbuscular mycorrhizal plantroots. Plant Cell Physiol 43:256–265

    CAS  PubMed  Google Scholar 

  32. O’Byrne SM, Blaner WS (2013) Retinol and retinyl esters: biochemistry and physiology. J Lipid Res 54:1731–1743

    PubMed  PubMed Central  Google Scholar 

  33. Handelman GJ, van Kuijk FJ, Chatterjee A, Krinsky NI (1991) Characterization of products formed during the autoxidation of β-carotene. Free Radic Biol Med 10:427–437

    CAS  PubMed  Google Scholar 

  34. Ouyang JM, Daun H, Chang SS, Ho C-T (1980) Formation of carbonyl compounds from P-carotene during palm oil deodorization. J Food Sci 45:1214–1217

    CAS  Google Scholar 

  35. Marty C, Berset C (1990) Factors affecting the thermal degradation of all-trans-β-carotene. J Agric Food Chem 38:1063–1067

    CAS  Google Scholar 

  36. Rodriguez EB, Rodriguez-Amaya DB (2007) Formation of apocarotenals and epoxycarotenoids from β-carotene by chemical reactions and by autoxidationin modelsystems and processedfoods. Food Chem 101:563–572

    CAS  Google Scholar 

  37. Fleshman MK, Lester GE, Riedl KM, Kopec RE, Narayanasamy S et al (2011) Carotene and novel apocarotenoid concentrations in orange-fleshed Cucumis melo melons: determinations of β-carotene bioaccessibility and bioavailability. J Agric Food Chem 59:4448–4454

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Rios ADO, Borsarelli CD, Mercadante AZ (2005) J Agric Food Chem 53:2307

    Google Scholar 

  39. Rivera-Madrid R, Godoy-Hernandez G, Aguilar-Espinosa M, Cardenas-Conejo Y, Garza-Caligaris LE, Lugo-Cervantes EC (2017) Carotenoides En Agroalimentacion y Salud (Melendez Martınez AJ, ed). Editorial Terracota, Ciudad de Mexico, pp 260–279

    Google Scholar 

  40. Britton G, Liaaen-Jensen S, Fander HP (2017) Carotenoids: a colourful history, 1st edn. Carote Nature, Lupsingen

    Google Scholar 

  41. Kopec RE, Riedl KM, Harrison EH, Curley RW, Hruszkewycz DP, Clinton SK, Schwartz SJ (2010) J Agric Food Chem 58:3290

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Schaub P, Wust F, Koschmieder J, Yu Q, Virk P, Tohme J, Beyer P (2017) J Agric Food Chem 65:6588

    CAS  PubMed  Google Scholar 

  43. Alvarez R, Vaz B, Gronemeyer H, Lera ARA, Rosana A, Gronemeyer H, De Lera AR (2014) Chem Rev 114(1)

    Google Scholar 

  44. Sommer A (2008) Vitamin A deficiency and clinical disease: an historical overview. J Nutr 138:1835–1839

    CAS  PubMed  Google Scholar 

  45. Britton G (2009) Carotenoids, vol 5: Nutrition. healing (Britton G, Liaaen-Jensen S, Pfander H, eds). Birkhauser, Basel, pp 173–190

    Google Scholar 

  46. von Lintig J (2012) Provitamin A metabolism and functions in mammalian biology. Am J Clin Nutr 96:1234S–1244S

    Google Scholar 

  47. Iskakova M, Karbyshev M, Piskunov A, Rochette-Egly C (2015) Nuclearandextranucleareffectsofvitamin A. Can J Physiol Pharmacol 93:1065–1075

    CAS  PubMed  Google Scholar 

  48. Blaner WS, Li Y, Brun PJ, Yuen JJ, Lee SA, Clugston RD (2016) Vitamin A absorption, storage and mobilization. Subcell Biochem 81:95–125

    CAS  PubMed  Google Scholar 

  49. Sharma RV, Mathur SN, Dmitrovskii AA, Das RC, Ganguly J (1976) Studies on the metabolism ofβ-carotene and apo-β-carotenoids in rats and chickens. Biochim Biophys Acta 486:183–194

    CAS  PubMed  Google Scholar 

  50. Al-Hasani SM, Parrish DB (1972) Forms of vitamin A and of carotenoids in tissues, blood serum and yolkof eggs from Coturnix coturnix japonica fed β-apo-carotenals. J Nutr 102:1437–1440

    CAS  PubMed  Google Scholar 

  51. Kiefer C, Sumser E, Wernet MF, von Linter J (2002) A class B scavenger receptor mediates the cellularuptake of carotenoids in Drosophila. PNAS 99:10581–10586

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Dela SC, Sun J, Narayanasamy S, Riedl KM, Yuan Y et al (2016) Substrate specificity of purifiedrecombinant chicken β-carotene 9_,10_-oxygenase (BCO2). J Biol Chem 291:14609–14619

    Google Scholar 

  53. Wang XD, Russell RM, Liu C, Stickel F, Smith DE, Krinsky NI (1996) b-Oxidation in rabbit liver in vitro and in the perfused ferret liver contributes to retinoic acid biosynthesis from b-apocarotenoic acids. J Biol Chem 271:26490–26498

    CAS  PubMed  Google Scholar 

  54. Hessel S, Eichinger A, Isken A, Amengual J, Hunzelmann S et al (2007) CMO1 deficiency abolishesvitamin A production from β-carotene and alters lipid metabolism in mice. J Biol Chem 282:33553–33561

    CAS  PubMed  Google Scholar 

  55. Amengual J, Lobo GP, Golczak M, Li HN, Klimova T et al (2011) A mitochondrial enzyme degrades carotenoids and protects against oxidative stress. FASEB J 25:948–959

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Lobo GP, Isken A, Hoff S, Babino D, von Linter J (2012) BCDO2 acts as a carotenoid scavenger andgatekeeper for the mitochondrial apoptotic pathway. Development 139:2966–2977

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Amengual J, Widjaja-Adhi MA, Rodriguez-Santiago S, Hessel S, Golczak M et al (2013) Two carotenoidoxygenases contribute to mammalian provitamin A metabolism. J Biol Chem 288:34081–34096

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Palczewski G, Amengual J, Hoppel CL, von Linter J (2014) Evidence for compartmentalization of mammaliancarotenoid metabolism. FASEB J 28:4457–4469

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Babino D, Palczewski G, Widjaja-Adhi MA, Kiser PD, Golczak M, Von Linter J (2015) Characterization ofthe role of beta-carotene 9,10-dioxygenase in macular pigment metabolism. J Biol Chem 290:24844–24857

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Guo X, Wu L, Lyu Y, Chowanadisai W, Clarke SL et al (2017) Ablation ofβ-carotene-9_,10_-oxygenase2 remodels the hypothalamic metabolome leading to metabolic disorders inmice. J Nutr Biochem 46:74–82

    PubMed  Google Scholar 

  61. Ip BC, Liu C, Ausman LM, Von Linter J, Wang XD (2014) Lycopene attenuated hepatic tumorigenesis viadifferential mechanisms depending on carotenoid cleavage enzyme in mice. Cancer Prev Res 7:1219–1227

    CAS  Google Scholar 

  62. Li B, Vachali PP, Shen Z, Gorusupudi A, Nelson K et al (2017) Retinal accumulation of zeaxanthin,lutein, and beta-carotene in mice deficient in carotenoid cleavage enzymes. Exp Eye Res 159:123–131

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Tan HL, Thomas-Ahner JM, Moran NE, Cooperstone JL, Erdman JWJ et al (2017) β-Carotene 9_,10_oxygenase modulates the anticancer activity of dietary tomato or lycopene on prostate carcinogenesis inthe TRAMP model. Cancer Prev Res 10:161–169

    CAS  Google Scholar 

  64. Wu L, Guo X, Hartson SD, Davis MA, He H et al (2017) Lack ofβ,β-carotene-9_,10_-oxygenase 2 leads tohepaticmitochondrial dysfunction and cellular oxidative stress inmice. Mol Nutr Food Res 61(5):1600576

    Google Scholar 

  65. Sun J, Narayanasamy S, Curley RWJ, Harrison EH (2014) β-Apo-13-carotenone regulates retinoid Xreceptor transcriptional activity through tetramerization of the receptor. J Biol Chem 289:33118–33124

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Eroglu A, Hruszkewycz DP, Dela SC, Narayanasamy S, Riedl KM et al (2012) Naturally occurringeccentric cleavage products of provitamin A β-carotene function as antagonists of retinoic acid receptors. J Biol Chem 287:15886–15895

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Russell RM (2004) The enigma of beta-carotene in carcinogenesis: what can be learned from animal studies. J Nutr 134:262S–268S

    CAS  PubMed  Google Scholar 

  68. Wang XD, Russell RM (1999) Procarcinogenic and anticarcinogenic effects of beta-carotene. Nutr Rev 57:263–272

    CAS  PubMed  Google Scholar 

  69. Costabile BK, Kim YK, Iqbal J, Zuccaro MV, Wassef L et al (2016) β-Apo-10_-carotenoids modulateplacental microsomal triglyceride transfer protein expression and function to optimize transport of intactβ-carotene to the embryo. J Biol Chem 291:18525–18535

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Hussain MM (2014) Intestinal lipid absorption and lipoprotein formation. Curr Opin Lipidol 25:200–206

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Cooperstone JL, Riedl K, Cichon MJ, Francis DM, Curley RWJ et al (2017) Carotenoids and apocarotenoidsin human plasma after continued consumption of high β-carotene or high lycopene tomatojuice. FASEB J 31:635.13

    Google Scholar 

  72. Negbi M (1999) Saffron cultivation: past, present and future prospects. In: Negbi M (ed) Saffron: medicinal and aromatic plants—industrial profiles, vol 8: Crocus sativus. Harwood Academic Publishers, Australia, pp 1–18

    Google Scholar 

  73. Fernández JA (2004) Biology, biotechnology and biomedicine of saffron. Recent Res Dev Plant Sci 2:127–159

    Google Scholar 

  74. Alonso GL, Salinas MR, Garijo J, Sanchez-Fernandez MA (2001) Composition ofcrocins and picrocrocin from Spanish saffron (Crocus sativus L.). J Food Qual 24:219–233. https://doi.org/10.1111/j.1745-4557.2001.tb00604.x

    Article  CAS  Google Scholar 

  75. Tarantilis PA, Tsoupras G, Polissiou M (1995) Determination of saffron (Crocus sativusL.) components in crude plant extract using high-performance liquid chromatography-UV-visible photodiode-array detection-mass spectrometry. J Chromatogr A 699:107–118. https://doi.org/10.1016/0021-9673(95)00044-N

    Article  CAS  PubMed  Google Scholar 

  76. Pfander HP, Schurtenberger H (1982) Biosynthesis of C20-carotenoids in Crocus sativus. Phytochemistry 21:1039–1042. https://doi.org/10.1016/S0031-9422(00)82412-7

    Article  CAS  Google Scholar 

  77. Alonso GL, Salinas MR, Esteban-Infantes FJ, Sánchez-Fernández MA (1996) Determination of safranal from saffron (Crocus sativus L.) by thermal desorption−gas chromatography. J Agric Food Chem 44:185–188. https://doi.org/10.1021/jf940665i

    Article  CAS  Google Scholar 

  78. Rezaee R, Hosseinzadeh H (2013) Safranal: from an aroermatic natural product to a rewardingpharmacological agent, Iran. J Basic Med Sci 16:12–26

    Google Scholar 

  79. Gresta F, Lombardo GM, Siracusa L, Ruberto G (2008a) Saffron, an alternative crop for sustainable agricultural systems. A review. Agron Sustain Dev 28:95–112

    CAS  Google Scholar 

  80. Skrubis B (1990) The cultivation in Greece of Crocus sativus L. In: Tammaro F, Marra L (eds) Proceedings of the international conference on saffron (Crocus sativus L.). L’Aquila, pp 171–182

    Google Scholar 

  81. Ehsanzadeh P, Yadollahi AA, Maibodi AMM (2004) Productivity, growth and quality attributes of 10 Iranian saffron accession under climatic conditions of Chahar-Mahal Bakhtiari, central Iran. Acta Hortic 650:83–188

    Google Scholar 

  82. International Trade Centre (2006) UNCTAD/WTO world markets in the spice trade 2000–2004. ITC, Geneva, p 111

    Google Scholar 

  83. Siracusa L, Gresta F, Ruberto G (2011) Saffron (Crocus sativus L.) Apocarotenoids: a review of their biomolecular features and biological activity perspectives. In: Yamaguchi M (ed) Carotenoids: properties, effects and diseases. Nova Science Publishers, Inc. ISBN 978-1-61209-713-8

    Google Scholar 

  84. Ait-Oubahou A, El-Otmani M (1999) Saffron cultivation in Morocco. In: Negbi M (ed) Saffron: medicinal and aromatic plants—industrial profiles, vol. 8: Crocus sativus. Harwood Academic Publishers, Amsterdam, pp 87–94

    Google Scholar 

  85. Thiercelin J-M (2004) Room table: industrial perspectives for saffron. Acta Hortic 650:399–404

    Google Scholar 

  86. Girard N, Navarrete M (2005) Quelles synergies entre connaissances scientifiques et empiriques? L’exemple des cultures du safran et de la truffe. Natures Sciences Sociétés 13:33–44

    Google Scholar 

  87. Azizbekova NSH, Milyaeva EL (1999) Saffron in cultivation in Azerbaijan. In: Negbi M (ed) Saffron: medicinal and aromatic plants—industrial profiles, vol 8: Crocus sativus. Harwood Academic Publishers, Amsterdam, pp 63–71

    Google Scholar 

  88. Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology andclinical uses. Wien Med Wochenschr 157:315–319. https://doi.org/10.1007/s10354-007-0428-4

    Article  PubMed  Google Scholar 

  89. Hosseinzadeh H, Noraei NB (2009) Anxiolytic and hypnotic effect of Crocus sativusaqueous extract and its constituents, crocin and safranal, in mice. Phyther Res 23:768–774. https://doi.org/10.1002/ptr.2597

    Article  CAS  Google Scholar 

  90. Soeda S, Aritake K, Urade Y, Sato H, Shoyama Y (2016) Neuroprotective activities of saffron and crocin. Springer, Cham. https://doi.org/10.1007/978-3-319-28383-8_14

    Book  Google Scholar 

  91. Cerutti PA (1994) Oxy-radicals and cancer. Lancet 344:862–863

    CAS  PubMed  Google Scholar 

  92. Martínez-Tomé M, Jiménez AM, Ruggieri S, Frega N, Strabbioli R, Murcia MA (2001) Antioxidant properties of Mediterranean spices compared withcommon food additives. J Food Prot 64:1412–1419. https://doi.org/10.4315/0362-028X-64.9.1412

    Article  PubMed  Google Scholar 

  93. Ghadrdoost B, Vafaei AA, Rashidy-Pour A, Hajisoltani R, Bandegi AR, Motamedi F, Haghighi S, Sameni HR, Pahlvan S (2011) Protective effects of saffronextract and its active constituent crocin against oxidative stress and spatiallearning and memory deficits induced by chronic stress in rats. Eur J Pharmacol 667:222–229. https://doi.org/10.1016/j.ejphar.2011.05.012

    Article  CAS  PubMed  Google Scholar 

  94. Karimi E, Oskoueian E, Hendra R, Jaafar HZE (2010) Evaluation of Crocus sativus L.stigma phenolic and flavonoid compounds and its antioxidant activity. Molecules 15:6244–6256. https://doi.org/10.3390/molecules15096244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tamaddonfard E, Hamzeh-Gooshchi N (2010) Effect of crocin on the morphine-induced antinociception in the formalin test in rats. Phytother Res 24:410–413

    CAS  PubMed  Google Scholar 

  96. Zhu Y, Han T, Zhang QY, Qin LP (2008) The comparative studies on the analgesic and antiinflammatory activities of different parts from Crocus sativus. J Pharm Pract 4:269–271

    Google Scholar 

  97. Hosseinzadeh H, Younesi HM (2002) Antinociceptive and anti-inflammatory effects of Crocus sativus L. stigma and petal extracts in mice. BMC Pharmacol 2:7. www.biomedcentral.com/1471-2210/2/7

  98. Magesh V, Singh JPV, Selvendiran K, Ekambaram G, Sakthisekaran D (2006) Antitumour activity of crocetin in accordance to tumour incidence, antioxidant status, drug metabolizing enzymes and histopathological studies. Mol Cell Biochem 287:127–135

    CAS  PubMed  Google Scholar 

  99. Das I, Das S, Saha T (2010) Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: a histopathological study. Acta Histochem 112:317–327

    PubMed  Google Scholar 

  100. Premkumar K, Thirunavuk karasu C, Abraham SK, Santhiya ST, Ramesh A (2006) Protective effect of saffron (Crocus sativus L.) aqueous extract against genetic damage induced by anti-tumor agents in mice. Hum Exp Toxicol 25:79–84

    CAS  PubMed  Google Scholar 

  101. Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P (2007) Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 27:357–362

    CAS  PubMed  Google Scholar 

  102. Verma SK, Bordia A (1998) Antioxidant property of Saffron in man. Indian J Med Sci 52:205–207

    CAS  PubMed  Google Scholar 

  103. Ochiai T, Ohno S, Soeda S, Tanaka H, Shoyama Y, Shimeno H (2004) Crocin prevents the death of rat pheochromyctoma (PC-12) cells by its antioxidant effects stronger than those of α-tocopherol. Neurosci Lett 362(1):61–64

    CAS  PubMed  Google Scholar 

  104. Mousavi SH, Tayarami NZ, Parsaee H (2010) Protective effect of saffron extract and crocin on reactive oxygen species-mediated high glucose-induced toxicity in PC12 cells. Cell Mol Neurobiol 30:185–191

    CAS  PubMed  Google Scholar 

  105. Akhondzadeh S, Fallah-Pour H, Afkham K, Jamshidi AH, Khalighi-Cigaroudi F, Miller LG (2005a) A comparative trial of Crocus sativus L. (saffron) and imipramine in mild to moderate depression. Focus Altern Complement Ther 10(1):22–23

    Google Scholar 

  106. Akhondzadeh S, Tahmacebi-Pour N, Noorbala AA, Amini H, Fallah-Pour H, Jamshidi AH, Khani M (2005b) Crocus sativus L. in the treatment of mild to moderate depression: a double-blind, randomized and placebo-controlled trial. Phytother Res 19:148–151

    PubMed  Google Scholar 

  107. Karimi G, Hosseinzadeh H, Khaleghpanah P (2001) Study of antidepressant effect of aqueous and ethanolic extract of Crocus sativus in mice. Irn J Basic Med Sci 4:11–15

    Google Scholar 

  108. Hosseinzadeh H, Karimi G, Niapoor M (2004) Antidepressant effect of Crocus sativus L. stigma extracts and their constituents, crocin and safranal, in mice. Acta Hortic 650:435–445

    CAS  Google Scholar 

  109. Wang Y, Han T, Zhu Y, Zheng C-J, Ming Q-L, Rahman K, Qin L-P (2010) Antidepressant properties of bioactive fractions from the extract of Crocus sativus L. J Nat Med 64:24–30

    CAS  PubMed  Google Scholar 

  110. Akhondzadeh S, Abbasi SH (2006) Herbal medicine in the treatment of Alzheimer’s disease. Am J Alzheimers Dis Other Dement 21:113–118

    Google Scholar 

  111. Akhondzadeh S, Sabet MS, Harirchian MH, Togha M, Cheraghmakani H, Razeghi S, Hejazi SS, Yousefi MH, Alimardani R, Jamshidi AH, Zare F, Moradi A (2010) Saffron in the treatment of patients with mild to moderate Alzheimer’s disease: a 16-week, randomized and placebo-controlled trial. J Clin Pharm Ther 35:581–588

    CAS  PubMed  Google Scholar 

  112. Ebrahim-Habibi M-B, Amininasab M, Ebrahim-Habibi A, Sabbaghian M, Nemat-Gorgani S (2010) Fibrillation of α-lactalbumin: effect of crocin and safranal, two natural small molecules from Crocus sativus. Biopolymers 93(10):854–865

    CAS  PubMed  Google Scholar 

  113. Pathan SA, Alam S, Jain GK, Zaidi SMA, Akhter S, Vohora D, Khar RK, Ahmad FJ (2010) Quantitative analysis of safranal in saffron extract and nanoparticle formulation by a validated high-performance thin layer chromatographic method. Phytochem Anal 21:219–223

    CAS  PubMed  Google Scholar 

  114. Pitsikas N, Zisopoulou S, Tarantilis PA, Kankis CD, Polissiou MG, Sakellaridis N (2007) Effects of active constituents of Crocus sativus L., crocins on recognition and spatial rats’ memory. Behav Brain Res 183:141–146

    CAS  PubMed  Google Scholar 

  115. Hosseinzadeh H, Khosravan V (2002) Anticonvulsant effects of aqueous and ethanolic extracts of Crocus sativus L. stigmas in mice. Arch Intern Med 81:44–47

    Google Scholar 

  116. Giaccio M (2004) Crocetin from saffron: an active component of an ancient spice. Crit Rev Food Sci Nutr 44:155–172

    CAS  PubMed  Google Scholar 

  117. Xu GL, Yu SQ, Gong ZN, Zhang SQ (2005) Study of the effect of crocin on rat experimental hyperlipemia and the underlying mechanisms. Zhongguo Zhong Yao Za Zhi 30:369–372

    CAS  PubMed  Google Scholar 

  118. Imenshahidi M, Hosseinzadeh H, Javadpour Y (2010) Hypotensive effect of aqueous saffron extract (Crocus sativus L.) and its constituents, safranal and crocin, in normotensive and hypertensive rats. Phytother Res 24:990–994

    CAS  PubMed  Google Scholar 

  119. He SY, Qian ZY, Tang FT, Wen N, Xu GL, Sheng L (2005) Effect of crocin on experimental atherosclerosis in quails and its mechanism. Life Sci 77:907–921

    CAS  PubMed  Google Scholar 

  120. Boskabady MH, Shafei MN, Shakiba A, Sang SH (2008) Effect of aqueous-ethanol extract from Crocus sativus (Saffron) on Guinea-pig isolated heart. Phytother Res 22:330–334

    CAS  PubMed  Google Scholar 

  121. Uttara B, Singh AV, Zamboni P, Mahajan RT (2009) Oxidative stress and neurodegenerativediseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuro Pharmacol 7:65–74. https://doi.org/10.2174/157015909787602823

    Article  CAS  Google Scholar 

  122. Saleem S, Ahmad M, Ahmad AS, Yousuf S, Ansari MA, Khan MB, Ishrat T, Islam F (2006) Effect of saffron (Crocus sativus) on neurobehavioral and neurochemical changes in cerebral ischemia in rats. J Med Food 9:246–253. https://doi.org/10.1089/jmf.2006.9.246

    Article  PubMed  Google Scholar 

  123. Vakili A, Einali MR, Bandegi AR (2014) Protective effect of crocin against cerebral ischemia in a dose-dependent manner in a rat model of ischemic stroke. J Stroke Cerebrovasc Dis 23:106–113. https://doi.org/10.1016/j.jstrokecerebrovasdis.2012

    Article  PubMed  Google Scholar 

  124. Lindahl T, Karran P, Wood RD (1997) DNA excision repair pathways. Curr Opin Genet Dev 7:158–169. https://doi.org/10.1016/S0959-437X(97)80124-4

    Article  CAS  PubMed  Google Scholar 

  125. Debatin K-M, Poncet D, Kroemer G (2002) Chemotherapy: targeting the mitochondrial cell death pathway. Oncogene 21:8786–8803. https://doi.org/10.1038/sj.onc.1206039

    Article  CAS  PubMed  Google Scholar 

  126. Hosseinzadeh H, Sadeghnia HR, Ziaee T, Danaee A (2005) Protective effect of aqueous saffron extract (Crocus sativus L.) and crocin, its active constituent, on renal ischemia-reperfusion-induced oxidative damage in rats. J Pharm Pharm Sci 8:387–393

    CAS  PubMed  Google Scholar 

  127. Hosseinzadeh H, Sadeghnia HR (2005) Safranal, a constituent of Crocus sativus (saffron), attenuated cerebral ischemia induced oxidative damage in rat hippocampus. J Pharm Pharm Sci 8:394–399

    CAS  PubMed  Google Scholar 

  128. Ghazavi A, Mosayebi G, Salehi H, Abtahi H (2009) Effect of ethanol extract of saffron(Crocus sativus L.) on the inhibition of experimental autoimmune encephalomyelitisin C57bl/6 mice. Pak J Biol Sci 12:690–695. http://www.ncbi.nlm.nih.gov/pubmed/19634472

    CAS  PubMed  Google Scholar 

  129. Urrutia EC, Riverón-Negrete L, Abdullaev F, Del-Angel DS, Martínez NLH, Cruz MEG, Cruz VPD, Silva-Adaya D, González-Cortés C, Santamaría A (2007) Saffron extract ameliorates oxidative damage and mitochondrial dysfunction inthe rat brain. Acta Hortic:359–366

    Google Scholar 

  130. Zheng YQ, Liu JX, Wang JN, Xu L (2007) Effects of crocin on reperfusion-inducedoxidative/nitrative injury to cerebral microvessels after global cerebral ischemia. Brain Res 1138:86–94. https://doi.org/10.1016/j.brainres.2006.12.064

    Article  CAS  PubMed  Google Scholar 

  131. Linardaki ZI, Orkoula MG, Kokkosis AG, Lamari FN, Margarity M (2013) Investigation of the neuroprotective action of saffron (Crocus sativus L.) in aluminum-exposed adult mice through behavioral and neurobiochemical assessment. Food Chem Toxicol 52:163–170. https://doi.org/10.1016/j.fct.2012.11.016

    Article  CAS  PubMed  Google Scholar 

  132. Yang R, Vernon K, Thomas A, Morrison D, Qureshi N, Van Way CW 3rd. (2011) Crocetin reduces activation of hepatic apoptotic pathways and improves survivalin experimental hemorrhagic shock. JPEN J Parenter Enteral Nutr 35:107–113. https://doi.org/10.1177/0148607110374058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Ebrahim-Habibi MB, Amininasab M, Ebrahim-Habibi A, Sabbaghian M, Nemat-Gorgani N (2010) Fibrillation of α-lactalbumin: effect of crocin and safranal, twonatural small molecules from Crocus sativus. Biopolymers 93:854–865. https://doi.org/10.1002/bip.21477

    Article  CAS  PubMed  Google Scholar 

  134. Alavizadeh SH, Hosseinzadeh H (2014) Bioactivity assessment and toxicity of crocin: acomprehensive review. Food Chem Toxicol 64:65–80. https://doi.org/10.1016/j.fct.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  135. Ahmad AS, Ansari MA, Ahmad M, Saleem S, Yousuf S, Hoda MN, Islam F (2005) Neuroprotection by crocetin in a hemi-parkinsonian rat model. Pharmacol Biochem Behav 81:805–813. https://doi.org/10.1016/j.pbb.2005.06.007

    Article  CAS  PubMed  Google Scholar 

  136. Yoshino F, Yoshida A, Umigai N, Kubo K, Lee MC (2011) Crocetin reduces the oxidativestress induced reactive oxygen species in the stroke-prone spontaneouslyhypertensive rats (SHRSPs) brain. J Clin Biochem Nutr 49:182–187. https://doi.org/10.3164/jcbn.11-01

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hosseinzadeh H, Khosravan V (2002) Anticonvulsant effects of aqueous and ethanolicextracts of Crocus sativus L. Stigmas in mice. Arch Iran Med 5:44–50

    Google Scholar 

  138. Hosseinzadeh H, Talebzadeh F (2005) Anticonvulsant evaluation of safranal and crocinfrom Crocus sativus in mice. Fitoterapia 76:722–724. https://doi.org/10.1016/j.fitote.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  139. Khazdair MR, Boskabady MH, Hosseini M, Rezaee R, Tsatsakis AM (2015) The effectsof Crocus sativus (saffron) and its constituents on nervous system: a review. Avicenna J Phytomed 5:376–391

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ilyas, M., Rana, F.A., Riaz, M. (2021). Apocarotenoids. In: Zia-Ul-Haq, M., Dewanjee, S., Riaz, M. (eds) Carotenoids: Structure and Function in the Human Body. Springer, Cham. https://doi.org/10.1007/978-3-030-46459-2_4

Download citation

Publish with us

Policies and ethics