Skip to main content

No-till Farming Systems for Sustainable Agriculture: An Overview

  • Chapter
  • First Online:
No-till Farming Systems for Sustainable Agriculture

Abstract

No-till (NT) farming systems have revolutionized agriculture by improving erosion control, soil water storage, soil quality and, in many instances, yield and net farm income. The adoption of NT systems has increased at an exponential rate since the 1990s and they are now used on 12.5% of global croplands. However, while the development of NT systems has seen much success, there can be significant agronomic, economic and/or social challenges associated with their use that limit large scale worldwide adoption. In addition, where NT is not implemented as part of an integrated system that incorporates stubble retention and appropriate crop rotations to help manage weeds, diseases, pests and soil fertility, decreases in yield can be observed. A combination of research, education and good policy development to remove economic/institutional and social barriers to uptake are required to ensure the continued success of NT. In particular, the tailoring of NT farming systems according to individual locations and the introduction of some flexibility in approach to tillage management can provide an opportunity to manage some of the challenges of NT farming systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulai AN (2016) Impact of conservation agriculture technology on household welfare in Zambia. Agric Econ 47(6):729–741. https://doi.org/10.1111/agec.12269

    Article  Google Scholar 

  • Adeux G, Munier-Jolain N, Meunier D, Farcy P, Carlesi S, Barberi P, Cordeau S (2019) Diversified grain-based cropping systems provide long-term weed control while limiting herbicide use and yield losses. Agron Sustain Dev 39(4):42. https://doi.org/10.1007/s13593-019-0587-x

    Article  CAS  Google Scholar 

  • Aguilera E, Lassaletta L, Gattinger A, Gimeno BS (2013) Managing soil carbon for climate change mitigation and adaptation in Mediterranean cropping systems: a meta-analysis. Agric Ecosyst Environ 168:25–36

    Google Scholar 

  • Alletto L, Coquet Y, Benoit P, Heddadj D, Barriuso E (2010) Tillage management effects on pesticide fate in soils. A review. Agron Sustain Dev 30(2):367–400. https://doi.org/10.1051/agro/2009018

    Article  CAS  Google Scholar 

  • Alvarez R (2005) A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag 21:38–52

    Google Scholar 

  • Andersson JA, D’Souza S (2014) From adoption claims to understanding farmers and contexts: a literature review of conservation agriculture (CA) adoption among smallholder farmers in southern Africa. Agric Ecosyst Environ 187:116–132. https://doi.org/10.1016/j.agee.2013.08.008

    Article  Google Scholar 

  • Ares A, Thierfelder C, Reyes M, Eash NS, Himmelstein J (2015) Global perspectives on conservation agriculture for small households. In: Chan C, Fantle-Lepczyk J (eds) Conservation agriculture in subsistence farming: 22 case studies from South Asia and beyond. CAB International, Oxfordshire

    Google Scholar 

  • Arslan A, McCarthy N, Lipper L, Asfaw S, Cattaneo A (2014) Adoption and intensity of adoption of conservation farming practices in Zambia. Agric Ecosyst Environ 187:72–86. https://doi.org/10.1016/j.agee.2013.08.017

    Article  Google Scholar 

  • Awada L, Lindwall CW, Sonntag B (2014) The development and adoption of conservation tillage systems on the Canadian Prairies. Int Soil Water Conserv Res 2(1):47–65. https://doi.org/10.1016/s2095-6339(15)30013-7

    Article  Google Scholar 

  • Bashour I, Al-Ouda A, Kassam A, Bachour R, Jouni K, Hansmann B, Estephan C (2016) An overview of conservation agriculture in the dry Mediterranean environments with a special focus on Syria and Lebanon. Aims Agric Food 1(1):67–84. https://doi.org/10.3934/agrfood.2016.1.67

    Article  Google Scholar 

  • Bellotti B, Rochecouste JF (2014) The development of conservation agriculture in Australia – farmers as innovators. Int Soil Water Conserv Res 2(1):21–34. https://doi.org/10.1016/S2095-6339(15)30011-3

    Article  Google Scholar 

  • Beuchelt TD, Villa CTC, Gohring L, Rodriguez VMH, Hellin J, Sonder K, Erenstein O (2015) Social and income trade-offs of conservation agriculture practices on crop residue use in Mexico’s central highlands. Agric Syst 134:61–75. https://doi.org/10.1016/j.agsy.2014.09.003

    Article  Google Scholar 

  • Bhan S, Behera UK (2014) Conservation agriculture in India – problems, prospects and policy issues. Int Soil Water Conserv Res 2(4):1–12. https://doi.org/10.1016/S2095-6339(15)30053-8

    Article  Google Scholar 

  • Bockus WW, Shroyer JP (1998) The impact of reduced tillage on soilborne plant pathogens. Annu Rev Phytopathol 36:485–500

    CAS  PubMed  Google Scholar 

  • Brouder SM, Gomez-Macpherson H (2014) The impact of conservation agriculture on smallholder agricultural yields: a scoping review of the evidence. Agric Ecosyst Environ 187:11–32. https://doi.org/10.1016/j.agee.2013.08.010

    Article  Google Scholar 

  • Brown B, Nuberg I, Llewellyn R (2017) Negative evaluation of conservation agriculture: perspectives from African smallholder farmers. Int J Agric Sustain 15(4):467–481. https://doi.org/10.1080/14735903.2017.1336051

    Article  Google Scholar 

  • Büchi L, Wendling M, Amossé C, Jeangros B, Sinaj S, Charles R (2017) Long and short term changes in crop yield and soil properties induced by the reduction of soil tillage in a long term experiment in Switzerland. Soil Tillage Res 174:120–129. https://doi.org/10.1016/j.still.2017.07.002

    Article  Google Scholar 

  • Carlisle L (2016) Factors influencing farmer adoption of soil health practices in the United States: a narrative review. Agroecol Sustian Food Syst 40(6):583–613. https://doi.org/10.1080/21683565.2016.1156596

    Article  Google Scholar 

  • Carvalho M, Lourenco E (2014) Conservation agriculture – a Portuguese case study. J Agron Crop Sci 200(5):317–324. https://doi.org/10.1111/jac.12065

    Article  Google Scholar 

  • Chan KY, Roberts WP, Heenan DP (1992) Organic carbon and associated properties of a red earth after 10 years rotation under different stubble and tillage practices. Aust J Soil Res 30:71–83

    Google Scholar 

  • Chan KY, Heenan DP, Oates A (2002) Soil carbon fractions and relationship to soil quality under different tillage and stubble management. Soil Tillage Res 63(3–4):133–139. https://doi.org/10.1016/s0167-1987(01)00239-2

    Article  Google Scholar 

  • Chauhan BS, Singh RG, Mahajan G (2012) Ecology and management of weeds under conservation agriculture: a review. Crop Prot 38:57–65. https://doi.org/10.1016/j.cropro.2012.03.010

    Article  Google Scholar 

  • Chinse E, Dougill N, Stringer L (2019) Why do smallholder farmers dis-adopt conservation agriculture? Insights from Malawi. Land Degrad Dev 30(5):533–543. https://doi.org/10.1002/ldr.3190

    Article  Google Scholar 

  • Conceição PC, Dieckow J, Bayer C (2013) Combined role of no-tillage and cropping systems in soil carbon stocks and stabilization. Soil Tillage Res 129:40–47

    Google Scholar 

  • Conyers M, van der Rijt V, Oates A, Poile G, Kirkegaard J, Kirkby C (2019) The strategic use of minimum tillage within conservation agriculture in southern New South Wales, Australia. Soil Tillage Res 193:17–26. https://doi.org/10.1016/j.still.2019.05.021

    Article  Google Scholar 

  • Corbeels M, de Graaff J, Ndah TH, Penot E, Baudron F, Naudin K, Andrieu N, Chirat G, Schuler J, Nyagumbo I, Rusinamhodzi L, Traore K, Mzoba HD, Adolwa IS (2014) Understanding the impact and adoption of conservation agriculture in Africa: a multi-scale analysis. Agric Ecosyst Environ 187:155–170. https://doi.org/10.1016/j.agee.2013.10.011

    Article  Google Scholar 

  • D’Souza A, Mishra AK (2018) Adoption and abandonment of partial conservation technologies in developing economies: the case of South Asia. Land Use Policy 70:212–223

    Google Scholar 

  • Dang YP, Moody PW, Bell MJ, Seymour NP, Dalal RC, Freebairn DM, Walker SR (2015a) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: II. Implications for agronomy, soil and environment. Soil Tillage Res 152:115–123

    Google Scholar 

  • Dang YP, Seymour NP, Walker SR, Bell MJ, Freebairn DM (2015b) Strategic tillage in no-till farming systems in Australia’s northern grains-growing regions: I. Drivers and implementation. Soil Tillage Res 152:104–114

    Google Scholar 

  • Dang YP, Balzer A, Crawford M, Rincon-Florez V, Liu H, Melland AR, Antille D, Kodur S, Bell MJ, Whish JPM, Lai Y, Seymour N, Carvalhais LC, Schenk P (2018) Strategic tillage in conservation agricultural systems of North-Eastern Australia: why, where, when and how? Environ Sci Pollut Res 25(2):1000–1015. https://doi.org/10.1007/s11356-017-8937-1

    Article  Google Scholar 

  • Dauphin F (2003) Investing in conservation agriculture. In: Garcia Torres L (ed) Conservation agriculture. environment, farmers experiences, innovations, socio-economy, policy. Kluwer Academic Publishers, Dordrecht, pp 445–456

    Google Scholar 

  • Day J, Sandretto CL, Hallahan CB, Lindamood WA (1999) Pesticide use in U.S. corn production: does conservation tillage make a difference? J Soil Water Conserv 54:477–484

    Google Scholar 

  • de Freitas PL, Landers JN (2014) The transformation of agriculture in Brazil through development and adoption of zero tillage conservation agriculture. Int Soil Water Conserv Res 2(1):35–46

    Google Scholar 

  • Derpsch R (2008) No-tillage and conservation agriculture: a progress report. No-till Farming Syst 3:7–39

    Google Scholar 

  • Derpsch R, Franzluebbers AJ, Duiker SW, Reicosky DC, Koeller K, Friedrich T, Sturny WG, Sa JCM, Weiss K (2014) Why do we need to standardize notillage research? Soil Tillage Res 137:16–22

    Google Scholar 

  • Dhar AR, Islam MM, Jannat A, Ahmed JU (2018) Adoption prospects and implication problems of practicing conservation agriculture in Bangladesh: a socioeconomic diagnosis. Soil Tillage Res 176:77–84

    Google Scholar 

  • Ding Y (2018) The role of government policies in the adoption of conservation tillage in China: a theoretical model. In: 2017 3rd international conference on environmental science and material application, vol 108. IOP conference series-earth and environmental science. https://doi.org/10.1088/1755-1315/108/4/042012

  • Elias D, Wang L, Jacinthe P-A (2018) A meta-analysis of pesticide loss in runoff under conventional tillage and no-till management. Environ Monit Assess 190(2):79. https://doi.org/10.1007/s10661-017-6441-1

    Article  CAS  PubMed  Google Scholar 

  • FAO (2019) Conservation agriculture. http://www.fao.org/conservation-agriculture/overview/what-is-conservation-agriculture/en/. Accessed June 2019

  • Farooq M, Siddique KHM (2015) Conservation agriculture: concepts, brief history, and impacts on agricultural systems. In: Farooq M, Siddique KHM (eds) Conservation agriculture. Springer, Cham, pp 3–17

    Google Scholar 

  • Francaviglia R, Di Bene C, Farina R, Salvati L (2017) Soil organic carbon sequestration and tillage systems in the Mediterranean Basin: a data mining approach. Nutr Cycl Agroecosyst 107(1):125–137

    CAS  Google Scholar 

  • Franzluebbers AJ (2010) Achieving soil organic carbon sequestration with conservation agricultural systems in the Southeastern United States. Soil Sci Soc Am J 74(2):347–357

    CAS  Google Scholar 

  • Friedrich T, Kassam A (2012) No-till farming and the environment: do no-till systems require more chemicals? Outlooks Pest Manag 23:153–157. https://doi.org/10.1564/23aug02

    Article  Google Scholar 

  • Fuglie KO (1999) Conservation tillage and pesticide use in the Cornbelt. J Agric Appl Econ 31(1):1–15

    Google Scholar 

  • Garcia JP, Wortmann CS, Mamo M, Drijber R, Tarkalson D (2007) One-time tillage of no-till: effects on nutrients, mycorrhizae, and phosphorus uptake. Agron J 99(4):1093–1103

    CAS  Google Scholar 

  • González-Chávez MCA, Aitkenhead-Peterson JA, Gentry TJ, Zuberer D, Hons F, Loeppert R (2010) Soil microbial community, C, N, and P responses to long-term tillage and crop rotation. Soil Tillage Res 106(2):285–293. https://doi.org/10.1016/j.still.2009.11.008

    Article  Google Scholar 

  • Gonzalez-Sanchez EJ, Kassam A, Basch G, Streit B, Holgado-Cabrera A, Trivino-Tarradas P (2016) Conservation agriculture and its contribution to the achievement of agri-environmental and economic challenges in Europe. Aims Agric Food 1(4):387–408. https://doi.org/10.3934/agrfood.2016.4.387

    Article  Google Scholar 

  • Gregorich EG, Rochette P, VandenBygaart AJ, Angers DA (2005) Greenhouse gas contributions of agricultural soils and potential mitigation practices in Eastern Canada. Soil Tillage Res 83(1):53–72

    Google Scholar 

  • Harper JK, Roth GW, Garalejic B, Skrbic N (2018) Programs to promote adoption of conservation tillage: a Serbian case study. Land Use Policy 78:295–302. https://doi.org/10.1016/j.landusepol.2018.06.028

    Article  Google Scholar 

  • Hatfield JL, Sauer TJ, Prueger JH (2001) Managing soils to achieve greater water use efficiency. Agron J 93(2):271–280. https://doi.org/10.2134/agronj2001.932271x

    Article  Google Scholar 

  • Heap I (2019) International survey of herbicide resistance weeds. www.weedscience.org. Accessed Oct 2019

  • Holland JM (2004) The environmental consequences of adopting conservation tillage in Europe: reviewing the evidence. Agric Ecosyst Environ 103:1–25

    Google Scholar 

  • Idol T (2015) A brief history of conservation agriculture. In: Conservation agriculture in subsistence farming: case studies from South Asia and beyond. CABI, Wallingford/Boston

    Google Scholar 

  • Kassam A, Friedrich T, Derpsch R (2019) Global spread of conservation agriculture. Int J Environ Stud 76(1):29–51. https://doi.org/10.1080/00207233.2018.1494927

    Article  CAS  Google Scholar 

  • Kern JS, Johnson MG (1993) Conservation tillage impacts on national soil and atmospheric carbon levels. Soil Sci Soc Am J 57(1):200–210

    Google Scholar 

  • Kettler TA, Lyon DJ, Doran JW, Powers WL, Stroup WW (2000) Soil quality assessment after weed-control tillage in a no-till wheat-fallow cropping system. Soil Sci Soc Am J 64(1):339–346

    CAS  Google Scholar 

  • Kirkegaard JA, Conyers MK, Hunt JR, Kirkby CA, Watt M, Rebetzke GJ (2014) Sense and nonsense in conservation agriculture: principles, pragmatism and productivity in Australian mixed farming systems. Agric Ecosyst Environ 187:133–145. https://doi.org/10.1016/j.agee.2013.08.011

    Article  Google Scholar 

  • Li H, Gao H, Wu H, Li W, Wang X, He J (2007) Effects of 15 years of conservation tillage on soil structure and productivity of wheat cultivation in northern China. Aust J Soil Res 45:344–350

    Google Scholar 

  • Llewellyn RS, D’Emden FH, Kuehne G (2012) Extensive use of no-tillage in grain growing regions of Australia. Field Crop Res 132:204–212. https://doi.org/10.1016/j.fcr.2012.03.013

    Article  Google Scholar 

  • Lundy ME, Pittelkow CM, Linquist BA, Liang X, van Groenigen KJ, Lee J, Six J, Venterea RT, van Kessel C (2015) Nitrogen fertilization reduces yield declines following no-till adoption. Field Crop Res 183:204–210. https://doi.org/10.1016/j.fcr.2015.07.023

    Article  Google Scholar 

  • Lyon DJ, Stroup WW, Brown RE (1998) Crop production and soil water storage in long-term winter wheat–fallow tillage experiments. Soil Tillage Res 49(1–2):19–27. https://doi.org/10.1016/s0167-1987(98)00151-2

    Article  Google Scholar 

  • Lyon D, Bruce S, Vyn T, Peterson G (2004) Achievements and future challenges in conservation tillage. Paper presented at the “new directions for a diverse planet”. Proceedings of the 4th international crop science congress, 26 September–1 October, Brisbane, Australia

    Google Scholar 

  • Malone M, Foster E (2019) A mixed-methods approach to determine how conservation management programs and techniques have affected herbicide use and distribution in the environment over time. Sci Total Environ 660:145–157. https://doi.org/10.1016/j.scitotenv.2018.12.266

    Article  CAS  PubMed  Google Scholar 

  • Mangalassery S, SjÖGersten S, Sparkes DL, Mooney SJ (2015) Examining the potential for climate change mitigation from zero tillage. J Agric Sci 153(7):1151–1173

    CAS  Google Scholar 

  • McGarry D, Bridge BJ, Radford BJ (2000) Contrasting soil physical properties after zero and traditional tillage of an alluvial soil in the semi-arid subtropics. Soil Tillage Res 53:105–115

    Google Scholar 

  • Mensah RK, Gregg PC, Del Socorro AP, Moore CJ, Hawes AJ, Watts N (2013) Integrated pest management in cotton: exploiting behaviour-modifying (semiochemical) compounds for managing cotton pests. Crop Pasture Sci 64(8):763–773. https://doi.org/10.1071/CP13060

    Article  CAS  Google Scholar 

  • Moreno F, Pelegrín F, Fernández JE, Murillo JM (1997) Soil physical properties, water depletion and crop development under traditional and conservation tillage in southern Spain. Soil Tillage Res 41(1–2):25–42

    Google Scholar 

  • O’Leary GJ, Connor DJ (1997) Stubble retention and tillage in a semi-arid environment: 2. Soil mineral nitrogen accumulation during fallow. Field Crop Res 52:221–229

    Google Scholar 

  • Page KL, Dang Y, Dalal RC (2013) Impacts of conservation tillage on soil quality, including soil-borne crop diseases, with a focus on semi-arid grain cropping systems. Australas Plant Pathol 42:363–377

    Google Scholar 

  • Page KL, Dang YP, Dalal RC, Reeves S, Thomas G, Wang W, Thompson JP (2019) Changes in soil water storage with no-tillage and crop residue retention on a Vertisol: impact on productivity and profitability over a 50 year period. Soil Tillage Res 194:104319. https://doi.org/10.1016/j.still.2019.104319

    Article  Google Scholar 

  • Palm C, Blanco-Canqui H, DeClerck F, Gatere L, Grace P (2014) Conservation agriculture and ecosystem services: an overview. Agric Ecosyst Environ 187:87–105. https://doi.org/10.1016/j.agee.2013.10.010

    Article  Google Scholar 

  • Perego A, Rocca A, Cattivelli V, Tabaglio V, Fiorini A, Barbieri S, Schillaci C, Chiodini ME, Brenna S, Acutis M (2019) Agro-environmental aspects of conservation agriculture compared to conventional systems: a 3-year experience on 20 farms in the Po valley (Northern Italy). Agric Syst 168:73–87. https://doi.org/10.1016/j.agsy.2018.10.008

    Article  Google Scholar 

  • Pierce FJ, Fortin MC, Staton MJ (1994) Periodic plowing effects on soil properties in a no-till farming system. Soil Sci Soc Am J 58(6):1782–1787

    CAS  Google Scholar 

  • Pittelkow CM, Liang X, Linquist BA, van Groenigen KJ, Lee J, Lundy ME, van Gestel N, Six J, Venterea RT, van Kessel C (2015a) Productivity limits and potentials of the principles of conservation agriculture. Nature 517:365–368. https://doi.org/10.1038/nature13809. https://www.nature.com/articles/nature13809#supplementary-information

    Article  CAS  PubMed  Google Scholar 

  • Pittelkow CM, Linquist BA, Lundy ME, Liang X, Groenigen VKJLJ, van Gestel N, Six J, Venterea RT, van Kessel C (2015b) When does no-till yield more? A global meta-analysis. Field Crop Res 183:156–168

    Google Scholar 

  • Redel YD, Rubio R, Rouanet JL, Borie F (2007) Phosphorus bioavailability affected by tillage and crop rotation on a Chilean volcanic derived Ultisol. Geoderma 139(3–4):388–396. https://doi.org/10.1016/j.geoderma.2007.02.018

    Article  CAS  Google Scholar 

  • Rochette P (2008) No-till only increases N2O emissions in poorly-aerated soils. Soil Tillage Res 101(1):97–100

    Google Scholar 

  • Roper MM, Gupta VVSR (1995) Management practices and soil biota. Aust J Soil Res 33:321–339

    Google Scholar 

  • Scopel E, Triomphe B, Affholder F, Da Silva FAM, Corbeels M, Xavier JHV, Lahmar R, Recous S, Bernoux M, Blanchart E, Mendes ID, De Tourdonnet S (2013) Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron Sustain Dev 33(1):113–130. https://doi.org/10.1007/s13593-012-0106-9

    Article  Google Scholar 

  • Somasundaram J, Reeves S, Wang WJ, Heenan M, Dalal RC (2017) Impact of 47 years of no tillage and stubble retention on soil aggregation and carbon distribution in a vertisol. Land Degrad Dev 28:1589–1602

    Google Scholar 

  • Steinbach HS, Alvarez R (2006) Changes in soil organic carbon contents and nitrous oxide emissions after introduction of no-till in Pampean agroecosystems. J Environ Qual 35:3–13

    CAS  PubMed  Google Scholar 

  • Tekle AT (2016) Adaptation and constraints of conservation agriculture. J Biol Agric Healthc 6(1):1–14

    Google Scholar 

  • Thierfelder C, Matemba-Mutasa R, Rusinamhodzi L (2015) Yield response of maize (Zea mays L.) to conservation agriculture cropping system in Southern Africa. Soil Tillage Res 146:230–242

    Google Scholar 

  • Thompson JP (1992) Soil biotic and biochemical factors in a long-term tillage and stubble management experiment on a vertisol. 2. Nitrogen deficiency with zero tillage and stubble retention. Soil Tillage Res 22:339–361

    Google Scholar 

  • Triplett GB, Dick WA (2008) No-tillage crop production: a revolution in agriculture! Agron J 100(Suppl 3):S153–S165. https://doi.org/10.2134/agronj2007.0005c

    Article  Google Scholar 

  • Turpin JE, Thompson JP, Waring SA, MacKenzie J (1998) Nitrate and chloride leaching in Vertosols for different tillage and stubble practices in fallow-grain cropping. Soil Res 36(1):31–44. https://doi.org/10.1071/S97037

    Article  Google Scholar 

  • Verhulst N, Govaerts B, Verachtert E, Castellanos-Navarrete A, Mezzalama M, Wall P, Chocobar A, Deckers J, Sayre K (2010) Conservation agriculture, improving soil quality for sustainable production systems. In: Lal R, Stewart BA (eds) Advances in soil science: food security and soil quality. CRC Press, Boca Raton, pp 137–208

    Google Scholar 

  • Wang XB, Cai DX, Hoogmoed WB, Oenema O, Perdok UD (2007) Developments in conservation tillage in rainfed regions of North China. Soil Tillage Res 93:239–250

    Google Scholar 

  • Wang Y, Xu J, Shen JH, Luo YM, Scheu S, Ke X (2010) Tillage, residue burning and crop rotation alter soil fungal community and water-stable aggregation in arable fields. Soil Tillage Res 107(2):71–79. https://doi.org/10.1016/j.still.2010.02.008

    Article  Google Scholar 

  • Wilson L, Downes S, Khan M, Whitehouse M, Baker G, Grundy P, Maas S (2013) IPM in the transgenic era: a review of the challenges from emerging pests in Australian cotton systems. Crop Pasture Sci 64:737–749

    Google Scholar 

  • Zarea MJ (2010) Conservation tillage and sustainable agriculture in semi-arid dryland farming. In: Biodiversity, biofuels, agroforestry and conservation agriculture, vol 5. Springer, New York. https://doi.org/10.1007/978-90-481-9513-8_7

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yash P. Dang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dang, Y.P., Page, K.L., Dalal, R.C., Menzies, N.W. (2020). No-till Farming Systems for Sustainable Agriculture: An Overview. In: Dang, Y., Dalal, R., Menzies, N. (eds) No-till Farming Systems for Sustainable Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-46409-7_1

Download citation

Publish with us

Policies and ethics