Skip to main content

Is a Transformed Low Discrepancy Design Also Low Discrepancy?

  • Chapter
  • First Online:
Contemporary Experimental Design, Multivariate Analysis and Data Mining

Abstract

Experimental designs intended to match arbitrary target distributions are typically constructed via a variable transformation of a uniform experimental design. The inverse distribution function is one such transformation. The discrepancy is a measure of how well the empirical distribution of any design matches its target distribution. This chapter addresses the question of whether a variable transformation of a low discrepancy uniform design yields a low discrepancy design for the desired target distribution. The answer depends on the two kernel functions used to define the respective discrepancies. If these kernels satisfy certain conditions, then the answer is yes. However, these conditions may be undesirable for practical reasons. In such a case, the transformation of a low discrepancy uniform design may yield a design with a large discrepancy. We illustrate how this may occur. We also suggest some remedies. One remedy is to ensure that the original uniform design has optimal one-dimensional projections, but this remedy works best if the design is dense, or in other words, the ratio of sample size divided by the dimension of the random variable is relatively large. Another remedy is to use the transformed design as the input to a coordinate-exchange algorithm that optimizes the desired discrepancy, and this works for both dense or sparse designs. The effectiveness of these two remedies is illustrated via simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aronszajn, N.: Theory of reproducing kernels. Trans. Amer. Math. Soc. 68, 337–404 (1950)

    Article  MathSciNet  Google Scholar 

  2. Devroye, L.: Nonuniform Random Variate Generation. Handbooks in Operations Research and Management Science, pp. 83–121 (2006)

    Google Scholar 

  3. Dick, J., Kuo, F., Sloan, I.H.: High dimensional integration—the Quasi- Monte Carlo way. Acta Numer. 22, 133–288 (2013)

    Article  MathSciNet  Google Scholar 

  4. Fang, K.T., Hickernell, F.J.: Uniform experimental design. Encyclopedia Stat. Qual. Reliab., 2037–2040 (2008)

    Google Scholar 

  5. Fang, K.T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Computer Science and Data Analysis. Chapman & Hall, New York (2006)

    Google Scholar 

  6. Fang, K.T., Liu, M.-Q., Qin, H., Zhou, Y.-D.: Theory and Application of Uniform Experimental Designs. Springer Nature (Singapore) and Science Press (Bejing), Mathematics Monograph Series (2018)

    Google Scholar 

  7. Fang, K.T., Ma, C.X.: Wrap-around l2-discrepancy of random sampling, latin hypercube and uniform designs. J. Complexity 17, 608–624 (2001)

    Article  MathSciNet  Google Scholar 

  8. Fang, K.T. , Ma, C.X.: Relationships Between Uniformity, Aberration and Correlation in Regular Fractions 3s-1. Monte Carlo and quasi-Monte Carlo methods 2000, pp. 213–231 (2002)

    Chapter  Google Scholar 

  9. Fang, K.T., Ma, C.X., Winker, P.: Centered l2-discrepancy of random sampling and latin hypercube design, and construction of uniform designs. Math. Comp. 71, 275–296 (2002)

    Article  MathSciNet  Google Scholar 

  10. Fang, K.T., Mukerjee, R.: A connection between uniformity and aberration in regular fractions of two-level factorials. Biometrika 87, 193–198 (2000)

    Article  MathSciNet  Google Scholar 

  11. Fang, K.T., Wang, Y.: Number-Theoretic Methods in Statistics. Chapman and Hall, New York (1994)

    Book  Google Scholar 

  12. Fang, K.T., Lu, X., Winker, P.: Lower bounds for centered and wrap- around l2-discrepancies and construction of uniform designs by threshold accepting. J. Complex. 19(5), 692–711 (2003)

    Article  MathSciNet  Google Scholar 

  13. Hickernell, F.J.: A generalized discrepancy and quadrature error bound. Math. Comp. 67, 299–322 (1998)

    Article  MathSciNet  Google Scholar 

  14. Hickernell, F.J.: Goodness-of-fit statistics, discrepancies and robust designs. Statist. Probab. Lett. 44, 73–78 (1999)

    Article  MathSciNet  Google Scholar 

  15. Hickernell, F.J.: The trio identity for Quasi-Monte Carlo error. In: MCQMC: International conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, pp. 3–27 (2016)

    Google Scholar 

  16. Kang, L.: Stochastic coordinate-exchange optimal designs with complex constraints. Qual. Eng. 31(3), 401–416 (2019). https://doi.org/10.1080/08982112.2018.1508695

    Article  Google Scholar 

  17. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  18. Meyer, R.K., Nachtsheim, C.J.: The coordinate-exchange algorithm for constructing exact optimal experimental designs. Technometrics 37(1), 60–69 (1995)

    Article  MathSciNet  Google Scholar 

  19. Overstall, A.M., Woods, D.C.: Bayesian design of experiments using approximate coordinate exchange. Technometrics 59(4), 458–470 (2017)

    Article  MathSciNet  Google Scholar 

  20. Sall, J., Lehman, A., Stephens, M.L., Creighton, L.: JMP Start Statistics: a Guide to Statistics and Data Analysis Using JMP, 6th edn. SAS Institute (2017)

    Google Scholar 

  21. Sambo, F., Borrotti, M., Mylona, K.: A coordinate-exchange two-phase local search algorithm for the \(D\)-and \(I\)-optimal designs of split-plot experiments. Comput. Statist. Data Anal. 71, 1193–1207 (2014)

    Article  MathSciNet  Google Scholar 

  22. Winker, P., Fang, K.T.: Application of threshold-accepting to the evaluation of the discrepancy of a set of points. SIAM J. Numer. Anal. 34(5), 2028–2042 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred J. Hickernell .

Editor information

Editors and Affiliations

Appendix

Appendix

We derive the formula in (5.18) for the discrepancy with respect to the standard normal distribution, \(\varPhi \), using the kernel defined in (5.9). We first consider the case \(d=1\). We integrate the kernel once:

$$\begin{aligned} {\int _{-\infty }^\infty K(t,x) \, \mathrm {d}\varPhi (t)}\\ =&\int _{-\infty }^{\infty } \left( 1+\frac{1}{2}|x|+\frac{1}{2}|t|-\frac{1}{2}|x-t|\right) \phi (t) \, \mathrm {d}t\\ =&1+ \frac{1}{\sqrt{2\pi }} + \frac{1}{2}|x| -\frac{1}{2}\left[ \int _{-\infty }^{x}(x - t)\phi (t) \, \mathrm {d}t +\int _{x}^{\infty } (t - x)\phi (t) \, \mathrm {d}t\right] \\ =&1+ \frac{1}{\sqrt{2\pi }} + \frac{1}{2}|x| - x [\varPhi (x)-1/2] - \phi (x) . \end{aligned}$$

Then we integrate once more:

$$\begin{aligned} {\int _{-\infty }^\infty \int _{-\infty }^\infty K(t,x) \, \mathrm {d}\varPhi (t) \mathrm {d}\varPhi (x)}\\&= \int _{-\infty }^{\infty } \left( 1+ \frac{1}{\sqrt{2\pi }} + \frac{1}{2}|x| - x [\varPhi (x)-1/2] - \phi (x) \right) \phi (x) \, \mathrm {d}x\\&= 1+ \sqrt{\frac{2}{\pi }} + \int _{-\infty }^{\infty } \{ - x \varPhi (x)\phi (x) + [\phi (x)]^2 \} \, \mathrm {d}x\\&= 1+\sqrt{\frac{2}{\pi }}-\frac{1}{\sqrt{4\pi }}+\int _{-\infty }^{\infty }\frac{1}{2\pi }\mathrm {e}^{-x^2}\mathrm {d}x =1+\sqrt{\frac{2}{\pi }}. \end{aligned}$$

Generalizing this to the d-dimensional case yields

$$\begin{aligned}\begin{gathered} \int _{\mathbb {R}^d\times \mathbb {R}^d} K(\varvec{x},\varvec{t}) \, \mathrm {d}\varPhi (\varvec{x})\mathrm {d}\varPhi (\varvec{t}) = \left( 1+\sqrt{\frac{2}{\pi }}\right) ^d, \\ \int _{\mathbb {R}^d}K(\varvec{x},\varvec{x}_n) \, \mathrm {d}\varPhi (\varvec{x}) = \prod \limits _{j=1}^d \left[ 1+\frac{1}{\sqrt{2\pi }}+\frac{1}{2}|x_j|-x_j[\varPhi (x_j)-1/2]-\phi (x_j)\right] . \end{gathered}\end{aligned}$$

Thus, the discrepancy for the normal distribution is

$$\begin{aligned}&D^2(\mathscr {X}, \varPhi , K)\\= & {} \left( 1+\sqrt{\frac{2}{\pi }}\right) ^d - \frac{2}{N}\sum \limits _{\varvec{x}\in P} \prod \limits _{j=1}^d\left[ 1+\frac{1}{\sqrt{2\pi }}+\frac{1}{2}|x_j|-x_j[\varPhi _1(x_j)-1/2]-\phi (x_j)\right] \\&+\frac{1}{N^2}\sum _{\varvec{x},\varvec{t}\in P}\prod _{j=1}^d \left[ 1+\frac{1}{2}|x_j|+\frac{1}{2}|t_j|-\frac{1}{2}|x_j-t_j|\right] . \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, Y., Kang, L., Hickernell, F.J. (2020). Is a Transformed Low Discrepancy Design Also Low Discrepancy?. In: Fan, J., Pan, J. (eds) Contemporary Experimental Design, Multivariate Analysis and Data Mining. Springer, Cham. https://doi.org/10.1007/978-3-030-46161-4_5

Download citation

Publish with us

Policies and ethics