Skip to main content

Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11906))

Abstract

In this paper, we develop a novel Aligned-Spatial Graph Convolutional Network (ASGCN) model to learn effective features for graph classification. Our idea is to transform arbitrary-sized graphs into fixed-sized aligned grid structures, and define a new spatial graph convolution operation associated with the grid structures. We show that the proposed ASGCN model not only reduces the problems of information loss and imprecise information representation arising in existing spatially-based Graph Convolutional Network (GCN) models, but also bridges the theoretical gap between traditional Convolutional Neural Network (CNN) models and spatially-based GCN models. Moreover, the proposed ASGCN model can adaptively discriminate the importance between specified vertices during the process of spatial graph convolution, explaining the effectiveness of the proposed model. Experiments on standard graph datasets demonstrate the effectiveness of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Atwood, J., Towsley, D.: Diffusion-convolutional neural networks. In: Proceedings of NIPS, pp. 1993–2001 (2016)

    Google Scholar 

  2. Bai, L., Cui, L., Rossi, L., Xu, L., Hancock, E.: Local-global nested graph kernels using nested complexity traces. Pattern Recogn. Lett. (2019, to appear)

    Google Scholar 

  3. Bai, L., Hancock, E.R.: Depth-based complexity traces of graphs. Pattern Recogn. 47(3), 1172–1186 (2014)

    Article  Google Scholar 

  4. Bai, L., Rossi, L., Bunke, H., Hancock, E.R.: Attributed graph kernels using the jensen-tsallis q-differences. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 99–114. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_7

    Chapter  Google Scholar 

  5. Bai, L., Rossi, L., Cui, L., Cheng, J., Wang, Y., Hancock, E.R.: A quantum-inspired similarity measure for the analysis of complete weighted graphs. IEEE Trans. Cybern. (2019, to appear)

    Google Scholar 

  6. Bai, L., Rossi, L., Zhang, Z., Hancock, E.R.: An aligned subtree kernel for weighted graphs. In: Proceedings of ICML (2015)

    Google Scholar 

  7. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: Proceedings of the IEEE International Conference on Data Mining, pp. 74–81 (2005)

    Google Scholar 

  8. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs/1312.6203 (2013)

    Google Scholar 

  9. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Proceedings of NIPS, pp. 3837–3845 (2016)

    Google Scholar 

  10. Duvenaud, D.K., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: Proceedings of NIPS, pp. 2224–2232 (2015)

    Google Scholar 

  11. Gammerman, A., Azoury, K.S., Vapnik, V.: Learning by transduction. In: Proceedings of UAI, pp. 148–155 (1998)

    Google Scholar 

  12. Henaff, M., Bruna, J., LeCun, Y.: Deep convolutional networks on graph-structured data. CoRR abs/1506.05163 (2015). http://arxiv.org/abs/1506.05163

  13. Ivanov, S., Burnaev, E.: Anonymous walk embeddings. In: Proceedings of ICML, pp. 2191–2200 (2018)

    Google Scholar 

  14. Kashima, H., Tsuda, K., Inokuchi, A.: Marginalized kernels between labeled graphs. In: Proceedings of ICML, pp. 321–328 (2003)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. CoRR abs/1609.02907 (2016). http://arxiv.org/abs/1609.02907

  16. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  17. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. In: Proceedings of ICML, pp. 2014–2023 (2016)

    Google Scholar 

  18. Nikolentzos, G., Meladianos, P., Limnios, S., Vazirgiannis, M.: A degeneracy framework for graph similarity. In: Proceedings of IJCAI, pp. 2595–2601 (2018)

    Google Scholar 

  19. Rippel, O., Snoek, J., Adams, R.P.: Spectral representations for convolutional neural networks. In: Proceddings of NIPS, pp. 2449–2457 (2015)

    Google Scholar 

  20. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.M.: Efficient graphlet kernels for large graph comparison. J. Mach. Learn. Res. 5, 488–495 (2009)

    Google Scholar 

  21. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-lehman graph kernels. J. Mach. Learn. Res. 1, 1–48 (2010)

    MATH  Google Scholar 

  22. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of CVPR, pp. 29–38 (2017)

    Google Scholar 

  23. Verma, S., Zhang, Z.: Graph capsule convolutional neural networks. CoRR abs/1805.08090 (2018). http://arxiv.org/abs/1805.08090

  24. Vialatte, J., Gripon, V., Mercier, G.: Generalizing the convolution operator to extend CNNs to irregular domains. CoRR abs/1606.01166 (2016). http://arxiv.org/abs/1606.01166

  25. Witten, I.H., Frank, E., Hall, M.A.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, San Francisco (2011)

    Google Scholar 

  26. Yanardag, P., Vishwanathan, S.V.N.: Deep graph kernels. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Sydney, NSW, Australia, 10–13 August 2015, pp. 1365–1374 (2015)

    Google Scholar 

  27. Zambon, D., Alippi, C., Livi, L.: Concept drift and anomaly detection in graph streams. IEEE Trans. Neural Netw. Learning Syst. 29(11), 5592–5605 (2018)

    Article  MathSciNet  Google Scholar 

  28. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: Proceedings of AAAI (2018)

    Google Scholar 

  29. Zhang, S., Liu, C., Yao, K., Gong, Y.: Deep neural support vector machines for speech recognition. In: Proceedings of ICASSP, pp. 4275–4279 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant no. 61602535, 61976235 and 61503422), the Open Projects Program of National Laboratory of Pattern Recognition (NLPR), the program for innovation research in Central University of Finance and Economics, and the Youth Talent Development Support Program by Central University of Finance and Economics, No. QYP1908. Corresponding Author: Lixin Cui, Email: cuilixin@cufe.edu.cn. The data/code will be available at https://github.com/baiuoy/ASGCN_ECML-PKDD2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lixin Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bai, L., Jiao, Y., Cui, L., Hancock, E.R. (2020). Learning Aligned-Spatial Graph Convolutional Networks for Graph Classification. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11906. Springer, Cham. https://doi.org/10.1007/978-3-030-46150-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46150-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46149-2

  • Online ISBN: 978-3-030-46150-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics