Skip to main content

Deep Convolutional Gaussian Processes

  • Conference paper
  • First Online:
Machine Learning and Knowledge Discovery in Databases (ECML PKDD 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11907))

Abstract

We propose deep convolutional Gaussian processes, a deep Gaussian process architecture with convolutional structure. The model is a principled Bayesian framework for detecting hierarchical combinations of local features for image classification. We demonstrate greatly improved image classification performance compared to current convolutional Gaussian process approaches on the MNIST and CIFAR-10 datasets. In particular, we improve state-of-the-art CIFAR-10 accuracy by over 10% points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    We note that after placing our current manuscript in arXiv in October 2018, a subsequent arXiv manuscript has already extended the proposed deep convolution model by introducing location-dependent kernel [6].

  2. 2.

    https://github.com/kekeblom/DeepCGP.

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI, vol. 16, pp. 265–283 (2016)

    Google Scholar 

  2. Blei, D.M., Kucukelbir, A., McAuliffe, J.D.: Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112(518), 859–877 (2017)

    Article  MathSciNet  Google Scholar 

  3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. In: International Conference on Machine Learning, pp. 1613–1622 (2015)

    Google Scholar 

  4. Chen, T., Fox, E., Guestrin, C.: Stochastic gradient Hamiltonian Monte Carlo. In: International Conference on Machine Learning, pp. 1683–1691 (2014)

    Google Scholar 

  5. Damianou, A., Lawrence, N.: Deep Gaussian processes. In: AISTATS. PMLR, vol. 31, pp. 207–215 (2013)

    Google Scholar 

  6. Dutordoir, V., van der Wilk, M., Artemev, A., Tomczak, M., Hensman, J.: Translation insensitivity for deep convolutional Gaussian processes. arXiv:1902.05888 (2019)

  7. Duvenaud, D., Rippel, O., Adams, R., Ghahramani, Z.: Avoiding pathologies in very deep networks. In: AISTATS. PMLR, vol. 33, pp. 202–210 (2014)

    Google Scholar 

  8. Duvenaud, D.K., Nickisch, H., Rasmussen, C.E.: Additive Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 226–234 (2011)

    Google Scholar 

  9. Evans, T.W., Nair, P.B.: Scalable Gaussian processes with grid-structured eigenfunctions (GP-GRIEF). In: International Conference on Machine Learning (2018)

    Google Scholar 

  10. Garriga-Alonso, A., Aitchison, L., Rasmussen, C.E.: Deep convolutional networks as shallow Gaussian processes. In: ICLR (2019)

    Google Scholar 

  11. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  12. Havasi, M., Lobato, J.M.H., Fuentes, J.J.M.: Inference in deep Gaussian processes using stochastic gradient Hamiltonian Monte Carlo. In: NIPS (2018)

    Google Scholar 

  13. Hensman, J., Matthews, A., Ghahramani, Z.: Scalable variational Gaussian process classification. In: AISTATS. PMLR, vol. 38, pp. 351–360 (2015)

    Google Scholar 

  14. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, vol. 1, p. 3 (2017)

    Google Scholar 

  15. Kingma, D.P., Ba, J.L.: Adam: a method for stochastic optimization. In: ICLR (2014)

    Google Scholar 

  16. Krauth, K., Bonilla, E.V., Cutajar, K., Filippone, M.: AutoGP: exploring the capabilities and limitations of Gaussian process models. In: Uncertainty in Artificial Intelligence (2017)

    Google Scholar 

  17. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  18. Kumar, V., Singh, V., Srijith, P., Damianou, A.: Deep Gaussian processes with convolutional kernels. arXiv preprint arXiv:1806.01655 (2018)

  19. Lee, J., Bahri, Y., Novak, R., Schoenholz, S.S., Pennington, J., Sohl-Dickstein, J.: Deep neural networks as Gaussian processes. In: ICLR (2018)

    Google Scholar 

  20. MacKay, D.J.: A practical Bayesian framework for backpropagation networks. Neural Comput. 4, 448–472 (1992)

    Article  Google Scholar 

  21. Mallat, S.: Understanding deep convolutional networks. Phil. Trans. R. Soc. A 374(2065), 20150203 (2016)

    Article  Google Scholar 

  22. Matthews, A.G.d.G., et al.: GPflow: a Gaussian process library using TensorFlow. J. Mach. Learn. Res. 18, 1–6 (2017)

    Google Scholar 

  23. McInnes, L., Healy, J.: UMAP: uniform manifold approximation and projection for dimension reduction. ArXiv e-prints, February 2018

    Google Scholar 

  24. Rasmussen, C.E.: Gaussian processes in machine learning. In: Bousquet, O., von Luxburg, U., Rätsch, G. (eds.) ML -2003. LNCS (LNAI), vol. 3176, pp. 63–71. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28650-9_4

    Chapter  Google Scholar 

  25. Rasmussen, C.E., Williams, C.K.: Gaussian Process for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  26. Remes, S., Heinonen, M., Kaski, S.: Non-stationary spectral kernels. In: Advances in Neural Information Processing Systems, pp. 4642–4651 (2017)

    Google Scholar 

  27. Salimbeni, H., Deisenroth, M.: Doubly stochastic variational inference for deep Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 4588–4599 (2017)

    Google Scholar 

  28. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: Advances in Neural Information Processing Systems, pp. 1257–1264 (2006)

    Google Scholar 

  29. Springerberg, J., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with robust Bayesian neural networks. In: Advances in Neural Information Processing Systems, pp. 4134–4142 (2016)

    Google Scholar 

  30. Sun, S., Zhang, G., Wang, C., Zeng, W., Li, J., Grosse, R.: Differentiable compositional kernel learning for Gaussian processes. In: ICML. PMLR, vol. 80 (2018)

    Google Scholar 

  31. Tran, G.L., Bonilla, E.V., Cunningham, J.P., Michiardi, P., Filippone, M.: Calibrating deep convolutional Gaussian processes. In: AISTATS. PMLR, vol. 89, pp. 1554–1563 (2019)

    Google Scholar 

  32. Wei, G., Tanner, M.: A Monte Carlo implementation of the EM algorithm and the poor mans data augmentation algorithms. J. Am. Stat. Assoc. 85, 699–704 (1990)

    Article  Google Scholar 

  33. Van der Wilk, M., Rasmussen, C.E., Hensman, J.: Convolutional Gaussian processes. In: Advances in Neural Information Processing Systems, pp. 2849–2858 (2017)

    Google Scholar 

  34. Williams, C.K.: Computing with infinite networks. In: Advances in Neural Information Processing Systems, pp. 295–301 (1997)

    Google Scholar 

  35. Wilson, A., Gilboa, E., Nehorai, A., Cunningham, J.: Fast multidimensional pattern extrapolation with Gaussian processes. In: AISTATS. PMLR, vol. 31 (2013)

    Google Scholar 

  36. Wilson, A., Nickisch, H.: Kernel interpolation for scalable structured Gaussian processes (KISS-GP). In: International Conference on Machine Learning. PMLR, vol. 37, pp. 1775–1784 (2015)

    Google Scholar 

  37. Wilson, A.G., Hu, Z., Salakhutdinov, R.R., Xing, E.P.: Stochastic variational deep kernel learning. In: Advances in Neural Information Processing Systems, pp. 2586–2594 (2016)

    Google Scholar 

  38. Wilson, A.G., Hu, Z., Salakhutdinov, R., Xing, E.P.: Deep kernel learning. In: AISTATS. PMLR, vol. 51, pp. 370–378 (2016)

    Google Scholar 

Download references

Acknowledgements

We thank Michael Riis Andersen for his invaluable comments and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Heinonen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blomqvist, K., Kaski, S., Heinonen, M. (2020). Deep Convolutional Gaussian Processes. In: Brefeld, U., Fromont, E., Hotho, A., Knobbe, A., Maathuis, M., Robardet, C. (eds) Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2019. Lecture Notes in Computer Science(), vol 11907. Springer, Cham. https://doi.org/10.1007/978-3-030-46147-8_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-46147-8_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-46146-1

  • Online ISBN: 978-3-030-46147-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics