Skip to main content

Raw Material and Regionalization in Stone Age Eastern Africa

  • Chapter
  • First Online:
Culture History and Convergent Evolution

Abstract

Stone tools are the dominant artifact type at Paleolithic sites, and the kinds of stone tools used and their methods of manufacture form some of the richest datasets to assess temporal and geographic patterning in hominin behavior. Using these datasets to compare different lithic assemblages requires comprehensive analytical frameworks that be applied across multiple sites, but this is complicated by the varied nature of the different rock types used in the past. The bedrock lithology of eastern Africa is particularly varied, and we show for a range of Early Pleistocene-to-Holocene-aged archaeological sites that the type and frequency of raw material used, particularly quartz, has significant impacts on a number of typological, technological, and metric variables used to measure variation across time and space, severely weakening our abilities to assess the extent to which past geographic variation in the archaeological record in particular can be attributed to hominin behavior or bedrock geology. Convergence (homoplasy) in particular may be difficult to discern, as even similar behaviors resulting from shared cultural traditions (homology) may result in very different looking artifact types because of the nature of the rock types used.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ambrose, S. H. (1984). Holocene environments and human adaptations in the Central Rift Valley, Kenya. Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Ambrose, S. H. (2012). Obsidian dating and source exploitation studies in Africa: Implications for the evolution of human behavior. In I. Liritzis & C. M. Stevenson (Eds.), Obsidian and ancient manufactured glasses (pp. 56–72). Albuquerque, NM: University of New Mexico Press.

    Google Scholar 

  • Ambrose, S. H., & Lorenz, K. G. (1990). Social and ecological models for the Middle Stone Age in southern Africa. In P. Mellars (Ed.), The emergence of modern humans: An archaeological perspective (pp. 3–33). Edinburgh: Edinburgh University Press.

    Google Scholar 

  • Andrefsky, W., Jr. (1994). Raw material availability and the organization of technology. American Antiquity, 59, 21–34.

    Google Scholar 

  • Barut, S. (1997). Later Stone Age lithic raw material use at Lukenya Hill, Kenya. Ph.D. dissertation, University of Illinois.

    Google Scholar 

  • Bisson, M. S. (1990). Lithic reduction sequences as an aid to the analysis of Late Stone Age quartz assemblages from Luano Spring, Chingola, Zambia. African Archaeological Review, 8, 103–138.

    Google Scholar 

  • Bordes, F. (1961). Typologie du Paléolithique Ancien et Moyen. Bordeaux: Publication de l’Institut de Préhistoire de l’Univesité de Bordeaux Mémoire 1.

    Google Scholar 

  • Brantingham, P. J., Olsen, J. W., Rech, J. A., & Krivoshapkin, A. I. (2000). Raw material quality and prepared core technologies in Northeast Asia. Journal of Archaeological Science, 27, 255–271.

    Google Scholar 

  • Braun, D. R., Plummer, T., Ditchfield, P., Ferraro, J. V., Maina, D., Bishop, L. C., et al. (2008). Oldowan behavior and raw material transport: Perspectives from the Kanjera Formation. Journal of Archaeological Science, 35, 2329–2345.

    Google Scholar 

  • Braun, D. R., Plummer, T., Ferraro, J. V., Ditchfield, P., & Bishop, L. C. (2009). Raw material quality and Oldowan hominin toolstone preferences: Evidence from Kanjera South, Kenya. Journal of Archaeological Science, 36, 1605–1614.

    Google Scholar 

  • Brown, K. S. (2011). The Sword in the Stone: Lithic raw material exploitation in the Middle Stone Age at Pinnacle Point Site 5–6, Southern Cape, South Africa. Ph.D. thesis, University of Cape Town.

    Google Scholar 

  • Brown, F. H., Nash, B. P., Fernandez, D. P., Merrick, H. V., & Thomas, R. J. (2013). Geochemical composition of source obsidians from Kenya. Journal of Archaeological Science, 40, 3233–3251.

    Google Scholar 

  • Callahan, E. (1987). An evaluation of the lithic technology in Middle Sweden during the Mesolithic and Neolithic. Uppsala: Societas Archaeologica Upsaliensis.

    Google Scholar 

  • Callow, P. (1994). The Olduvai bifaces: Technology and raw materials. In M. D. Leakey & D. A. Roe (Eds.), Olduvai Gorge, Volume 5: Excavations in Beds III, IV, and the Masek Beds, 1968–1971 (pp. 235–253). Cambridge: Cambridge University Press.

    Google Scholar 

  • Choubert, G., & Faure-Muret, A. (1985). 1:5,000,000 international geological map of Africa. Paris: Commission for the Geological Map of the World/UNESCO.

    Google Scholar 

  • Clark, J. D. (1988). The Middle Stone Age of East Africa and the beginnings of regional identity. Journal of World Prehistory, 2, 235–305.

    Google Scholar 

  • Clark, J. D. (1993). African and Asian perspectives on the origins of modern humans. In M. J. Aitken, C. B. Stringer, & P. A. Mellars (Eds.), The origin of modern humans and the impact of chronometric dating (pp. 148–178). Princeton: Princeton University Press.

    Google Scholar 

  • Clark, P. U., Dyke, A. S., Shakun, J. D., Carlson, A. E., Clark, J., Wohlfarth, B., et al. (2009). The last glacial maximum. Science, 325, 710–714.

    Google Scholar 

  • Cole, G. H. (1967). The Later Acheulian and Sangoan of southern Uganda. In W. W. Bishop & J. D. Clark (Eds.), Background to evolution in Africa (pp. 481–528). Chicago: Chicago University Press.

    Google Scholar 

  • Cornelissen, E. (2003). On microlithic quartz industries at the end of the Pleistocene in Central Africa: The evidence from Shum Laka (NW Cameroon). African Archaeological Review, 20, 1–24.

    Google Scholar 

  • David, N., Harvey, P., & Goudie, C. J. (1981). Excavations in the southern Sudan 1979. Azania, 16, 7–54.

    Google Scholar 

  • Diez-Martin, F., Domínguez-Rodrigo, M., Sanchez, P., Mabulla, A. Z. P., Tarriño, A., Barba, R., et al. (2009). The Middle to Later Stone Age technological transition in East Africa. New data from Mumba rockshelter Bed V (Tanzania) and their implications for the origin of modern human behavior. Journal of African Archaeology, 7, 147–173.

    Google Scholar 

  • Driscoll, K. (2011). Identifying and classifying vein quartz artefacts: An experiment conducted at the World Archaeological Congress, 2008. Archaeometry, 53, 1280–1296.

    Google Scholar 

  • Eren, M. I., Durant, A. J., Prendergast, M., & Mabulla, A. Z. P. (2013). Middle Stone Age archaeology at Olduvai Gorge, Tanzania. Quaternary International, 322–323, 292–313.

    Google Scholar 

  • Faith, J. T., Tryon, C. A., Peppe, D. J., Beverly, E. J., Blegen, N., Blumenthal, S., et al. (2015). Paleoenvironmental context of the Middle Stone Age record from Karungu, Lake Victoria Basin, Kenya, and its implications for human and faunal dispersals in East Africa. Journal of Human Evolution, 83, 28–45.

    Google Scholar 

  • Feblot-Augustins, J. (1990). Exploitation des matières premières dans l’Acheuléen d’Afrique: Perspectives comportementales. Paléo, 2, 27–42.

    Google Scholar 

  • Frahm, E., Goldstein, S. T., & Tryon, C. A. (2017). Late Holocene forager-fisher and pastoralist interactions along the Lake Victoria shores, Kenya: Perspectives from portable XRF of obsidian artifacts. Journal of Archaeological Science Reports, 11, 717–742.

    Google Scholar 

  • Frahm, E., & Tryon, C. A. (2018). Later Stone Age toolstone acquisition in the Central Rift Valley of Kenya: Portable XRF of Eburran obsidian artifacts from Leakey’s excavations at Gamble’s Cave II. Journal of Archaeological Science: Reports, 18, 475–486.

    Google Scholar 

  • Goldstein, S. T., & Munyiri, J. M. (2017). The Elmenteitan obsidian quarry (GsJj50): New perspectives on obsidian access and exchange during the Pastoral Neolithic in Southern Kenya. African Archaeological Review, 34, 43–73.

    Google Scholar 

  • Gramly, R. M. (1975). Pastoralists and hunters: Recent prehistory in Southern Kenya and Northern Tanzania. Ph.D. thesis, Harvard University.

    Google Scholar 

  • Gramly, R. M. (1976). Upper Pleistocene archaeological occurrences at site GvJm/22, Lukenya Hill, Kenya. Man, 11, 319–344.

    Google Scholar 

  • Grayson, D. K., & Cole, S. C. (1998). Stone tool assemblage richness during the Middle and Early Upper Paleolithic in France. Journal of Archaeological Science, 25, 927–938.

    Google Scholar 

  • Groucutt, H. S. (2020). Culture and convergence: The curious case of the Nubian Complex. In H. Groucutt (Ed.), Culture history and convergent evolution: Can we detect populations in prehistory? (pp. 55–86). Cham, Switzerland: Springer.

    Google Scholar 

  • Gurtov, A. N., Buchanan, B., & Eren, M. I. (2015). Dissecting quartzite and basalt bipolar flake shape: A morphometric comparison of experimental replications from Olduvai Gorge, Tanzania. Lithic Technology, 40, 332–341.

    Google Scholar 

  • Harmand, S. (2007). Economic behaviors and cognitive capacities of early hominins between 2.34 Ma and 0.7 Ma in West Turkana, Kenya. Mitteilungen der Gesellschaft für Urgeschichte, 16, 11–23.

    Google Scholar 

  • Harris, J. W. K., & Isaac, G. (1976). The Karari Industry: Early Pleistocene archaeological evidence from the terrain east of Lake Turkana, Kenya. Nature, 262, 102–107.

    Google Scholar 

  • Hay, R. L. (1968). Chert and its sodium-silicate precursors in sodium-carbonate lakes of East Africa. Contributions to Mineralogy and Petrology, 17, 255–274.

    Google Scholar 

  • Hay, R. L. (1976). Geology of the Olduvai Gorge. Berkeley: University of California Press.

    Google Scholar 

  • Hiscock, P. (2006). Blunt and to the point: Changing technological strategies in Holocene Australia. In I. Lilley (Ed.), Archaeology of Oceania: Australia and the Pacific Islands (pp. 69–95). Malden, MA: Blackwell Publishing.

    Google Scholar 

  • Howell, F. C., Cole, G. H., & Kleindienst, M. R. (1962). Isimila: An Acheulian occupation site in the Iringa highlands, Southern Highlands Province, Tanganyika. In G. Mortlemans & J. Nenquin (Eds.), Actes du IVe Congrès Panafricain de Préhistoire et de l’Étude du Quarternaire (pp. 45–60). Tervuren: Annales Musée Royal de l’Afrique Central, Serie in 8, Sciences Humaines 40.

    Google Scholar 

  • Isaac, G. L. (Ed.). (1997). Koobi Fora Research Project Volume 5: Plio-Pleistocene Archaeology. Cambridge: Cambridge University Press.

    Google Scholar 

  • Isaac, G. L., Harris, J. W. K., & Kroll, E. M. (1997). The stone artefact assemblages: A comparative study. In G. Isaac & B. Isaac (Eds.), The Koobi Fora Research Project, Volume: 5: Plio-Pleistocene Archaeology (pp. 262–306). Oxford: Clarendon Press.

    Google Scholar 

  • Jones, P. R. (1979). Effects of raw materials on biface manufacture. Science, 204, 835–836.

    Google Scholar 

  • Jones, P. R. (1980). Experimental butchery with modern stone tools and its relevance for Palaeolithic archaeology. World Archaeology, 12, 153–165.

    Google Scholar 

  • Jones, P. R. (1994). Results of experimental work in relation to the stone industries of Olduvai Gorge. In M. D. Leakey & D. A. Roe (Eds.), Olduvai Gorge, Volume 5: Excavations in Beds III, IV and the Masek Beds, 1968–1971 (pp. 254–296). Cambridge: Cambridge University Press.

    Google Scholar 

  • Jones, S. (2006). Quartz tool technology in the Northeast Georgia Piedmont. The Society for Georgia Archaeology, 34, 27–88.

    Google Scholar 

  • Jones, S. C., & Stewart, B. A. (Eds.). (2016). Africa from MIS 6-2: Population dynamics and paleoenvironments. New York: Springer.

    Google Scholar 

  • Kelly, A. J. (1996). Intra-regional and Inter-regional Variability in the East Turkana (Kenya) and Kenyan Middle Stone Age. Ph.D. thesis, Rutgers University.

    Google Scholar 

  • Leakey, M. D. (1971). Olduvai Gorge Volume 3: Excavations in Beds I and II, 1960–1963. Cambridge: Cambridge University Press.

    Google Scholar 

  • Leplongeon, A. (2014). Microliths in the Middle and Later Stone Age of eastern Africa: New data from Porc-Epic and Goda Buticha cave sites, Ethiopia. Quaternary International, 343, 100–116.

    Google Scholar 

  • Mackay, A., Stewart, B. A., & Chase, B. M. (2014). Coalescence and fragmentation in the late Pleistocene archaeology of southernmost Africa. Journal of Human Evolution, 72, 26–51.

    Google Scholar 

  • Magnani, M. (2014). Three-dimensional alternatives to lithic illustration. Advances in Archaeological Practice, 2, 285–297.

    Google Scholar 

  • Marean, C. W. (1992). Implications of late Quaternary mammalian fauna from Lukenya Hill (south-central Kenya) for paleoenvironmental change and faunal extinctions. Quaternary Research, 37, 239–255.

    Google Scholar 

  • McBrearty, S., & Brooks, A. S. (2000). The revolution that wasn’t: A new interpretation of the origin of modern human behavior. Journal of Human Evolution, 39, 453–563.

    Google Scholar 

  • McPherron, S. P. (2009). Tools versus cores: Alternative approaches to stone tool analysis. Cambridge: Cambridge Scholars Publishing.

    Google Scholar 

  • Mehlman, M. J. (1977). Excavations at Nasera Rock, Tanzania. Azania, 12, 111–118.

    Google Scholar 

  • Mehlman, M. J. (1989). Late quaternary archaeological sequences in Northern Tanzania. Ph.D. thesis, University of Illinois.

    Google Scholar 

  • Mellars, P. (2006). Why did modern human populations disperse from Africa ca. 60,000 years ago? A new model. Proceedings of the National Academy of Sciences USA, 103, 9381–9386.

    Google Scholar 

  • Mellars, P., Gori, K. C., Carr, M., Soares, P. A., & Richards, M. B. (2013). Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences, 110, 10699–10704.

    Google Scholar 

  • Mercader, J., & Brooks, A. S. (2001). Across forests and savannas: Later Stone Age assemblages from Ituri and Semliki, Democratic Republic of Congo. Journal of Anthropological Research, 57, 197–217.

    Google Scholar 

  • Merrick, H. V. (1975). Change in Later Pleistocene Lithic Industries in Eastern Africa. Ph.D. dissertation, University of California.

    Google Scholar 

  • Merrick, H. V., & Brown, F. H. (1984). Obsidian sources and patterns of source utilization in Kenya and northern Tanzania: Some initial findings. African Archaeological Review, 2, 129–152.

    Google Scholar 

  • Merrick, H. V., Brown, F. H., & Nash, W. P. (1994). Use and movement of obsidian in the Early and Middle Stone Ages of Kenya and northern Tanzania. In S. T. Childs (Ed.), Society, culture, and technology in Africa (pp. 29–44). Philadelphia: MASCA.

    Google Scholar 

  • Muya wa Bitanko, K. (1985–1986). Préhistoire du Zaïre Oriental: Essai de synthèse des âges de la pierre taillé. Ph.D. dissertation, Catholic University of Louvain.

    Google Scholar 

  • Newman, J. R. (1994). The effects of distance on lithic material reduction technology. Journal of Field Archaeology, 21, 491–501.

    Google Scholar 

  • Noll, M. P. (2000). Components of Acheulian lithic assemblage variability at Olorgesailie, Kenya. Ph.D. dissertation, University of Illinois.

    Google Scholar 

  • O’Brien, M. J., & Bentley, R. A. (2020). Learning strategies and population dynamics during the Pleistocene colonization of North America. In H. Groucutt (Ed.), Culture history and convergent evolution: Can we detect populations in prehistory? (pp. 261–281). Cham, Switzerland: Springer.

    Google Scholar 

  • Oestmo, S. (2017). A formal modeling approach to understanding stone tool raw material selection in the African Middle Stone Age: A case study from Pinnacle Point, South Africa. Ph.D., Arizona State University

    Google Scholar 

  • Omi, G. (Ed.). (1984). Mtongwe: An Interim Report of the East and Northeast African Prehistory Project 1982. Matsumoto, Japan: Shinshu University.

    Google Scholar 

  • Pargeter, J., & de la Peña, P. (2017). Milky quartz bipolar reduction and lithic miniaturization: Experimental results and archaeological implications. Journal of Field Archaeology, 42, 551–565.

    Google Scholar 

  • Pargeter, J., & Hampson, J. (2019). Quartz crystal materiality in Terminal Pleistocene Lesotho. Antiquity, 367, 11–27.

    Google Scholar 

  • Pelcin, A. W. (1997a). The effect of core surface morphology on flake attributes: Evidence from a controlled experiment. Journal of Archaeological Science, 24, 749–756.

    Google Scholar 

  • Pelcin, A. W. (1997b). The effect of indentor type on flake attributes: Evidence from a controlled experiment. Journal of Archaeological Science, 24, 613–621.

    Google Scholar 

  • Pelcin, A. W. (1997c). The formation of flakes: The role of platform thickness and exterior platform angle in the production of flake initiations and terminations. Journal of Archaeological Science, 24, 1107–1113.

    Google Scholar 

  • Potts, R., Behrensmeyer, A. K., Faith, J. T., Tryon, C. A., Brooks, A. S., Yellen, J., et al. (2018). Environmental dynamics during the onset of the Middle Stone Age in eastern Africa. Science, 360, 86–90.

    Google Scholar 

  • Proffitt, T., & de la Torre, I. (2014). The effect of raw material on inter-analyst variation and analyst accuracy for lithic analysis: A case study from Olduvai Gorge. Journal of Archaeological Science, 45, 270–283.

    Google Scholar 

  • Ranhorn, K. L. (2017). Cultural transmission and lithic technology in Middle Stone Age Eastern Africa. Ph.D., The George Washington University.

    Google Scholar 

  • Ranhorn, K., & Tryon, C. A. (2018). New radiocarbon dates from Nasera Rockshelter (Tanzania): Implications for studying spatial patterns in Late Pleistocene technology. Journal of African Archaeology, 16, 211–222.

    Google Scholar 

  • Reynolds, N. (2020). Threading the weft, testing the warp: Population concepts and the European Upper Palaeolithic chronocultural framework. In H. Groucutt (Ed.), Culture history and convergent evolution: Can we detect populations in prehistory? (pp. 187–212). Cham, Switzerland: Springer.

    Google Scholar 

  • Roe, D. A. (1994). A metrical analysis of selected sets of handaxes and cleavers from Olduvai Gorge. In M. D. Leakey & D. A. Roe (Eds.), Olduvai Gorge, Volume 5: Excavations in Beds III, IV and the Masek Beds, 1968–1971 (pp. 146–234). Cambridge: Cambridge University Press.

    Google Scholar 

  • Rolland, N., & Dibble, H. L. (1990). A new synthesis of Middle Paleolithic variability. American Antiquity, 55, 480–499.

    Google Scholar 

  • Scerri, E. M. L. (2017). The North African Middle Stone Age and its place in recent human evolution. Evolutionary Anthropology, 26, 119–135.

    Google Scholar 

  • Scerri, E. M. L., Blinkhorn, J., Gravina, B., & Delagnes, A. (2016). Can lithic attribute analyses identify discrete reduction trajectories? A quantitative study using refitted lithic constellations. Journal of Archaeological Method and Theory, 23, 669–691.

    Google Scholar 

  • Scerri, E. M. L., Drake, N. A., Jennings, R., & Groucutt, H. S. (2014). Earliest evidence for the structure of Homo sapiens populations in Africa. Quaternary Science Reviews, 101, 207–216.

    Google Scholar 

  • Scerri, E. M. L., Thomas, M. G., Manica, A., Gunz, P., Stock, J. T., Stringer, C., et al. (2018). Did our species evolve in subdivided populations across Africa, and why does it matter? Trends in Ecology & Evolution, 33, 582–594.

    Google Scholar 

  • Seitsonen, O. (2010). Lithics use at Kansyore sites in East Africa: Technological organization at four recently excavated sites in Nyanza Province, Kenya. Azania: Archaeological Research in Africa, 45, 49–82.

    Google Scholar 

  • Shea, J. J. (2014). Sink the Mousterian? Named stone tool industries (NASTIES) as obstacles to investigating hominin evolutionary relationships in the Later Middle Paleolithic Levant. Quaternary International, 350, 169–179.

    Google Scholar 

  • Spinapolice, E. E. (2020). Lithic variability and cultures in the East African Middle Stone Age. In H. Groucutt (Ed.), Culture history and convergent evolution: Can we detect populations in prehistory? (pp. 87–102).Cham, Switzerland: Springer.

    Google Scholar 

  • Stiles, D. N., Hay, R. L., & O’Neil, J. R. (1974). The MNK Chert Factory Site, Olduvai Gorge, Tanzania. World Archaeology, 5, 285–308.

    Google Scholar 

  • Tostevin, G. (2012). Seeing lithics: A middle-range theory for testing for cultural transmission in the Pleistocene. Cambridge: American School of Prehistoric Research Monograph Series, Peabody Museum, Harvard University, & Oxbow Books.

    Google Scholar 

  • Tryon, C. A., Crevecoeur, I., Faith, J. T., Ekshtain, R., Nivens, J., Patterson, D., et al. (2015). Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya). Proceedings of the National Academy of Sciences, 112, 2682–2687.

    Google Scholar 

  • Tryon, C. A., & Faith, J. T. (2013). Variability in the Middle Stone Age of Eastern Africa. Current Anthropology, 54, S234–S254.

    Google Scholar 

  • Tryon, C. A., & Faith, J. T. (2016). A demographic perspective on the Middle to Later Stone Age transition from Nasera rockshelter, Tanzania. Philosphical Transactions of the Royal Society B, 371, 20150238.

    Google Scholar 

  • Tryon, C. A., Faith, J. T., Peppe, D. J., Keegan, W. F., Keegan, K. N., Jenkins, K. H., et al. (2014). Sites on the landscape: Paleoenvironmental context of late Pleistocene archaeological sites from the Lake Victoria basin, equatorial East Africa. Quaternary International, 331, 20–30.

    Google Scholar 

  • Tryon, C. A., Lewis, J. E., Ranhorn, K. L., Kwekason, A., Alex, B., Laird, M. F., et al. (2018). Middle and Later Stone Age chronology of Kisese II rockshelter (UNESCO World Heritage Kondoa Rock-Art Sites), Tanzania. PLoS ONE, 13, e0192029.

    Google Scholar 

  • Tryon, C. A., McBrearty, S., & Texier, P.-J. (2005). Levallois lithic technology from the Kapthurin Formation, Kenya: Acheulian origin and Middle Stone Age diversity. African Archaeological Review, 22, 199–229.

    Google Scholar 

  • Tryon, C. A., Roach, N. T., & Logan, M. A. V. (2008). The Middle Stone Age of the northern Kenyan Rift: Age and context of new archaeological sites from the Kapedo Tuffs. Journal of Human Evolution, 55, 652–664.

    Google Scholar 

  • Valcke, J. (1974). De Late Steentijd van de Munyamagrot op het eiland Buvuma in het Victorianyanzameer (Uganda). Licentiaatsverhandeling: University of Ghent.

    Google Scholar 

  • Van Noten, F. (1971). Excavations at Munyama Cave. Antiquity, 45, 56–58.

    Google Scholar 

  • Van Noten, F. (1977). Excavations at Matupi Cave. Antiquity, 51, 35–40.

    Google Scholar 

  • Van Noten, F. (1982). The archaeology of Central Africa. Graz, Austria: Akademische Druck-u. Verlagsanstalt.

    Google Scholar 

  • Villa, P., Soriano, S., Tsanova, T., Degano, I., Higham, T. F. G., d’Errico, F., et al. (2012). Border Cave and the beginning of the Later Stone Age in South Africa. Proceedings of the National Academy of Sciences of the United States of America, 13208–13213.

    Google Scholar 

  • White, M. J. (1998). On the significance of Acheulean biface variability in southern Britain. Proceedings of the Prehistoric Society, 15–44.

    Google Scholar 

  • Wilkins, J., Brown, K. S., Oestmo, S., Pereira, T., Ranhorn, K. L., Schoville, B. J., et al. (2017). Lithic technological responses to Late Pleistocene glacial cycling at Pinnacle Point Site 5–6, South Africa. PLoS ONE, 12, e0174051.

    Google Scholar 

  • Will, M., Bader, G. D., & Conard, N. J. (2014). Characterizing the Late Pleistocene MSA lithic technology of Sibudu, KwaZulu-Natal, South Africa. PLoS ONE, 9, e98359.

    Google Scholar 

  • Will, M., & Mackay, A. (2020). A matter of space and time: How frequent is convergence in lithic technology in the African archaeological record over the last 300 kyr? In H. Groucutt (Ed.), Culture history and convergent evolution: Can we detect populations in prehistory? (pp. 103–126). Cham, Switzerland: Springer.

    Google Scholar 

  • Will, M., Tryon, C. A., Shaw, M., Scerri, E. M. L., Ranhorn, K. L., Pargeter, J., et al. (2019). Comparative analysis of Middle Stone Age artifacts (CoMSAfrica). Evolutionary Anthropology, 28, 57–59.

    Google Scholar 

  • Wilshaw, A. (2012). An investigation into the LSA of the Nakuru-Naivasha Basin and Surround, Central Rift Valley, Kenya: Technological classifications and population considerations. Ph.D. dissertation, Cambridge University.

    Google Scholar 

  • Wilshaw, A. (2016). The current status of the Kenya Capsian. African Archaeological Review, 33, 13–27.

    Google Scholar 

Download references

Acknowledgements

We thank Huw Groucutt for the opportunity to contribute to this volume, Jess McNeil for the crescent measurements from Occurrence D from the R. M. Gramly excavations at site GvJm22, Lukenya Hill, Tyler Faith, who helped clarify some of our thinking about the relationship between quartz and backed microlithic crescents, and Manuel Will for some of the inspiration to write it. We thank the reviewers’ comments for improving the quality of this manuscript. Research that contributed to this paper was conducted in Kenya by Tryon under research permits MOEST/13/001/30C229, NCST/5/002/R/576 and by Ranhorn in Tanzania under research permits COSTECH 2015-120-NA-2015-24, Antiquities 03/2015/2016 ERV3896941, Ngorongoro Conservation Area Authority NCAA/D/157/Vol. V/101. Funding for the field and laboratory research presented here was provided by the Leakey Foundation, the National Geographic Society (7994-06 and 8762-10), the US National Science Foundation (BCS-0841530 and BCS-0852609), the American School of Prehistoric Research, and by Harvard University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tryon, C.A., Ranhorn, K.L. (2020). Raw Material and Regionalization in Stone Age Eastern Africa. In: Groucutt, H. (eds) Culture History and Convergent Evolution. Vertebrate Paleobiology and Paleoanthropology. Springer, Cham. https://doi.org/10.1007/978-3-030-46126-3_8

Download citation

Publish with us

Policies and ethics