Skip to main content

Stromatolites, Biosignatures, and Astrobiological Implications

  • Chapter
  • First Online:
Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth

Abstract

For millennia, humanity has looked to stars and wondered, “Are we alone in the universe?” Although this question was initially the purview of philosophers, now, with leaps in scientific and technological advances, we have changed the nature of this question from existential to empirical. Today, the question “Are we alone?” serves as a crux to the field of astrobiology. To search for life elsewhere in the universe, we must first understand how life originates and evolves on Earth but also how biology leaves behind residual signatures of its existence. To address these questions, many astrobiology researchers have targeted stromatolite-forming communities as model ecosystems to explore how microbe–mineral interactions, under a range of environmental conditions, can lead to the formation of biosignatures. Stromatolites are depositional structures formed by the activities and interactions of microbes and have a fossil record dating back billions of years. Due to their long evolutionary history and abundance on the modern Earth, research on the biological, chemical and geological processes of stromatolite formation have provided important insights into the field of astrobiology, including the diversity and preservation of biosignatures. In this chapter, we examine the range of biosignatures found in stromatolites and how these markers improve our understanding of the past, present, and future of life in the context of astrobiology. We also discuss whether stromatolite research can play a role in the future exploration of habitable worlds in our own solar system and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allwood AC, Rosing MT, Flannery DT, Hurowitz JA, and Heirwegh CM (2018) Reassessing evidence of life in 3,700-million-year-old rocks of Greenland. Nature 563:241–244

    Google Scholar 

  • Alleon J, Summons RE (2019) Organic geochemical approaches to understanding early life. Free Radic Biol Med 140:103–112

    Google Scholar 

  • Andres MS, Reid RP (2006) Growth morphologies of modern marine stromatolites: a case study from Highborne Cay, Bahamas. Sediment Geol 185(3–4):319–328

    Google Scholar 

  • Andres M, Sumner D, Reid RP, Swart PK (2006) Isotopic fingerprints of microbial respiration in aragonite from Bahamian stromatolites. Geology 34(11):973–976

    CAS  Google Scholar 

  • Aubrey A, Cleaves HJ, Chalmers JH, Skelley AM, Mathies RA, Grunthaner FJ, Ehrenfreund P, Bada JL (2006) Sulfate minerals and organic compounds on Mars. Geology 34(5):357–360

    CAS  Google Scholar 

  • Awramik SM, Margulis L, Barghoorn ES (1976) Evoulutionary processes in the formation of stromatolites. In: Walter MR (ed) Stromatolites. Elsevier, Amsterdam, pp 149–162

    Google Scholar 

  • Awramik SM (1991) Archaean and Proterozoic stromatolites. In: Calcareous algae and stromatolites, Springer, Berlin, Heidelberg, pp 289–304

    Google Scholar 

  • Babilonia J, Casaburi G, Louyakis AS, Conesa A, Reid RP, Foster JS (2018) Comparative metagenomics provides insight into the ecosystem functioning of the Shark Bay stromatolites, Western Australia. Front Microbiol 9:1359

    PubMed  PubMed Central  Google Scholar 

  • Blanchard GF, Paterson DM, Stal LJ, Richard P, Galois R, Huet V, Kelly J, Honeywill C, De Brouwer JFC, Dyer K, Christie M (2000) The effect of geomorphological structures on potential biostabilisation by microphytobenthos on intertidal mudflats. Cont Shelf Res 20(10):1243–1256

    Google Scholar 

  • Bontognali TRR, Sessions AL, Allwood AC, Fischer WW, Grotzinger JP, Summons RE, Eiler JM (2012) Sulfur isotopes of organic matter preserved in 3.45-billion-year-old stromatolites reveal microbial metabolism. Proc Natl Acad Sci U S A 109(38):15146–15151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowlin EM, Klaus J, Foster JS, Andres M, Custals L, Reid RP (2012) Environmental controls on microbial community cycling in modern marine stromatolites. Sediment Geol 263‑264:45–55

    Google Scholar 

  • Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5(4):401–411

    CAS  Google Scholar 

  • Breitbart M, Hoare A, Nitti A, Siefert J, Haynes M, Dinsdale E, Edwards R, Souza V, Rohwer F, Hollander D (2009) Metagenomic and stable isotopic analyses of modern freshwater microbialites in Cuatro Ciénegas, Mexico. Environ Microbiol 11(1):16–34

    CAS  PubMed  Google Scholar 

  • Budd DA, Hajek R, Purkis SJ (2016) Autogenic dynamics and self-organization in sedimentary systems. Soc Sediment Geol 106

    Google Scholar 

  • Camazine S, Deneubourg JL, Franks NR, Sneyd J, Bonabeau E, Theraula G (2003) Self-organization in biological systems. Princeton University Press, Princeton

    Google Scholar 

  • Casaburi G, Duscher AA, Reid RP, Foster JS (2016) Characterization of the stromatolite microbiome from Little Darby Island, The Bahamas using predictive and whole shotgun metagenomic analysis. Environ Microbiol 18:1452–1469

    CAS  PubMed  Google Scholar 

  • Cerqueda-Garcia D, Falcon LI (2016) Metabolic potential of microbial mats and microbialites: autotrophic capabilities described by an in silico stoichiometric approach from shared genomic resources. J Bioinforma Comput Biol 14(4):1650020

    CAS  Google Scholar 

  • Chaçon E (2010) Microbial mats as a source of biosignatures. In: Seckbach J, Oren A (eds) Microbial mats. Springer, Dordrecht, pp 149–181

    Google Scholar 

  • Chagas AAP, Webb GE, Burne RA, Southam G (2016) Modern lacustrine microbialites: towards a synthesis of aqueous and carbonate geochemistry and mineralogy. Earth Sci Rev 162:338–363

    CAS  Google Scholar 

  • Chan MA, Hinman NW, Potter-McIntyre SL, Schubert KE, Gillams RJ, Awramik SM, Boston PJ, Bower DM, Des Marais DJ, Farmer JD, Jia TZ, King PL, Hazen RM, Leveille RJ, Papineau D, Rempfert KR, Sanchez-Roman M, Spear JR, Southam G, Stern JC, Cleaves HJ (2019) Deciphering biosignatures in planetary contexts. Astrobiology 19(9):1075–1102

    PubMed  PubMed Central  Google Scholar 

  • Cornet T, Cordier D, Bahers TL, Bourgeois O, Fleurant C, Mouélic SL, Altobelli N (2015) Dissolution on Titan and on Earth: towards the age of Titan’s karstic landspaces. J Geophys Res Planets 120(6):1044–1074

    CAS  Google Scholar 

  • Desnues CG, Rodriguez-Brito B, Rayhawk S, Kelley S, Tran T, Haynes M, Lui H, Hall D, Angly FE, Edwards RA, Thurber RV, Reid RP, Siefert J, Souza V, Valentine D, Swan B, Breitbart M, Rohwer F (2008) Biodiversity and biogeography of phages in modern stromatolites and thrombolites. Nature 452:340–345

    CAS  PubMed  Google Scholar 

  • Dupraz C, Reid RP, Braissant O, Decho AW, Norman RS, Visscher PT (2009) Processes of carbonate precipitation in modern microbial mats. Earth Sci Rev 96(3):141–162

    CAS  Google Scholar 

  • Edgcomb VP, Bernhard JM, Beaudoin D, Pruss S, Welander PV, Schubotz F, Mehay S, Gillespie AL, Summons RE (2013) Molecular indicators of microbial diversity in oolitic sands of Highborne Cay, Bahamas. Geobiology 11(3):234–251

    CAS  PubMed  Google Scholar 

  • Edgcomb VP, Bernhard JM, Summons RE, Orsi W, Beaudoin D, Visscher PT (2014) Active eukaryotes in microbialites from Highborne Cay, Bahamas, and Hamelin Pool (Shark Bay), Australia. ISME J 8(2):418–429

    CAS  PubMed  Google Scholar 

  • Flood BE, Bailey JV, Biddle JF (2014) Horizontal gene transfer and the rock record: comparative genomics of phylogenetically distant bacteria that induce wrinkle structure formation in modern sediments. Geobiology 12(2):119–132

    CAS  PubMed  Google Scholar 

  • Frantz CM, Petryshyn VA, Corsetti FA (2015) Grain trapping by filamentous cyanobacterial and algal mats: implications for stromatolite microfabrics through time. Geobiology 13(5):409–423

    CAS  PubMed  Google Scholar 

  • Gomez-Acata ES, Centeno CM, Falcon LI (2019) Methods for extracting ’omes from microbialites. J Microbiol Methods 160:1–10

    CAS  PubMed  Google Scholar 

  • Gorgé O, Bennett EA, Massilani D, Daligault J, Pruvost M, Geigl EM, Grange T (2016) Analysis of ancient DNA in microbial ecology. In: Martin F, Uroz S (eds) Microbial environmental genomics. Methods in molecular biology, vol 1399. Humana Press, New York, pp 289–315

    Google Scholar 

  • Grotzinger JP, Knoll AH (1999) Stromatolites in Precambrian carbonates: evolutionary mileposts or environmental dipsticks? Annu Rev Earth Planet Sci 27:313–358

    CAS  PubMed  Google Scholar 

  • Hays LE, Graham HV, Des Marais DJ, Hausrath EM, Horgan B, McCollom TM, Parenteau MN, Potter-McIntyre SL, Williams AJ, and Lynch KL (2017) Biosignature Preservation and Detection in Mars Analog Environments. Astrobiology 17:363–400

    Google Scholar 

  • Hazen RM, Sverjensky DA (2010) Mineral surfaces, geochemical complexities, and the origins of life. Cold Spring Harb Perspect Biol 2(5):a002162

    PubMed  PubMed Central  Google Scholar 

  • Jahnert RJ, Collins LB (2012) Characteristics, distribution and morphogenesis of subtidal microbial systems in Shark Bay, Australia. Mar Geol 303‑306:115–136

    Google Scholar 

  • Jahnke LL, Embaye T, Hope JM, Turk KA, Van Zuilen M, Des Marais DJ, Farmer JD, Summons RE (2004) Lipid biomarker and carbon isotopic signatures for stromatolite-forming, microbial mat communities and Phormidium cultures from Yellowstone National Park. Geobiology 2(1):31–47

    CAS  Google Scholar 

  • Jahnke LL, Orphan VJ, Embaye T, Turk KA, Kubo MD, Summons RE, Des Marais DJ (2008) Lipid biomarker and phylogenetic analyses to reveal archaeal biodiversity and distribution in hypersaline microbial mat and underlying sediment. Geobiology 6(4):394–410

    CAS  PubMed  Google Scholar 

  • Kamber BS, Webb GE (2001) The geochemistry of late Archaean microbial carbonate: implications for ocean chemistry and continental erosion history. Geochimica et Cosmochimica Acta 65:2509–2525

    Google Scholar 

  • Khodadad CL, Foster JS (2012) Metagenomic and metabolic profiling of nonlithifying and lithifying stromatolitic mats of Highborne Cay, The Bahamas. PLoS One 7(5):e38229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kilburn MR, Wacey D (2011) Elemental and isotopic analysis by NanoSIMS: insights for the study of stromatolites and early life on Earth. In: Stromatolites: interaction of microbe with sediments. Springer, Dordrecht, pp 463–493

    Google Scholar 

  • Koonin EV, Wolf YI (2012) Evolution of microbes and viruses: a paradigm shift in evolutionary biology? Front Cell Infect Microbiol 2:119

    PubMed  PubMed Central  Google Scholar 

  • Liu QX, Weerman EJ, Herman PM, Olff H, van de Koppel J (2012) Alternative mechanisms alter the emergent properties of self-organization in mussel beds. Proc Biol Sci 279(1739):2744–2753

    PubMed  PubMed Central  Google Scholar 

  • Logan BW, Hoffman P, Gebelein CD (1974) Alga mats, cryptalgal fabrics and structures, Hamelin Pool, Western Australia. In: Logan BW (ed) Evolution and diagenesis of quaternary carbonate sequences, Shark Bay, Western Australia, vol 22. American Association of Petrology, Geology and Mineralogy, Tulsa, pp 140–194

    Google Scholar 

  • Lorenz RD, Mitchell KL, Kirk RL, Hayes AG, Aharonson O, Zebker HA, Pailou P, Radebaugh J, Lunine JI, Janssen MA, Wall SD (2008) Titan’s inventory of organic surface materials. Geophys Res Lett 35(2)

    Google Scholar 

  • Louyakis AS, Mobberley JM, Vitek BE, Visscher PT, Hagan PD, Reid RP, Kozdon R, Orland IJ, Valley JW, Planavsky NJ, Casaburi G, Foster JS (2017) A study of the microbial spatial heterogeneity of Bahamian thrombolites using molecular, biochemical, and stable isotope analyses. Astrobiology 17(5):413–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Louyakis AS, Gourle H, Casaburi G, Bonjawo RME, Duscher AA, Foster JS (2018) A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ Microbiol 20(2):842–861

    CAS  PubMed  Google Scholar 

  • Lowe DR (1980) Stromatolites 3,400-Myr old from the Archaean of Western Australia. Nature 284:441–443

    Google Scholar 

  • Lund S, Platzman E, Thouveny N, Camoin G, Corsetti F, Berelson W (2010) Biological control of paleomagnetic remanence acquisition in carbonate framework rocks of the Tahiti coral reef. Earth Planet Sci Lett 298(1–2):14–22

    CAS  Google Scholar 

  • Masse M, Bourgeois O, Le Mouelic S, Verpoorter C, Spiga A, Le Deit L (2012) Wide distribution and glacial origin of polar gypsum on Mars. Earth Planet Sci Lett 317:44–55

    Google Scholar 

  • McCord TB, Hansen GB, Matson DL, Johnson TV, Crowley JK, Fanale FP, Carlson RW, Smythe WD, Martin PD, Hibbitts CA, Granahan JC, Ocampo A (1999) Hydrated salt minerals on Europa’s surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation. J Geophys Res Planets 104(E5):11827–11851

    CAS  Google Scholar 

  • Mobberley JM, Ortega MC, Foster JS (2012) Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol 14:82–100

    CAS  PubMed  Google Scholar 

  • Mobberley JM, Khodadad CL, Visscher PT, Reid RP, Hagan P, Foster JS (2015) Inner workings of thrombolites: spatial gradients of metabolic activity as revealed by metatranscriptome profiling. Sci Rep 5:12601

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niles PB, Catling DC, Berger G, Chassefiere E, Ehlmann BL, Michalski JR, Morris R, Ruff SW, Sutter B (2013) Geochemistry of carbonates on Mars: implications for climate history and nature of aqueous environments. Space Sci Rev 174(1–4):301–328

    CAS  Google Scholar 

  • Noffke N, Christian D, Wacey D, Hazen RM (2013) Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia. Astrobiology 13(12):1103–1124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nutman AP, Bennett VC, Friend CR, Van Kranendonk MJ, Rothhacker L, Chivas AR (2019) Cross-examining Earth’s oldest stromatolites: seeing through the effects of heterogeneous deformation, metamorphism and metasomatism affecting Isua (Greenlad) ~ 3700 Ma sedimentary rocks. Precambrian Res 331:105347

    CAS  Google Scholar 

  • O’Reilly SS, Mariotti G, Winter AR, Newman SA, Matys ED, McDermott F, Pruss SB, Bosak T, Summons RE, Klepac-Ceraj V (2017) Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas. Geobiology 15(1):112–130

    PubMed  Google Scholar 

  • Olendzenski L, Gogarten JP (2009) Evolution of genes and organisms: the tree/web of life in light of horizontal gene transfer. Ann N Y Acad Sci 1178:137–145

    CAS  PubMed  Google Scholar 

  • Orlando TM, McCord TB, Grieves GA (2005) The chemical nature of Europa surface material and the relation to a subsurface ocean. Icarus 177(2):528–533

    Google Scholar 

  • Ourisson G, Albrecht P, Rohmer M (1982) Predictive microbial biochemistry - from molecular fossils to procaryotic membranes. Trends Biochem Sci 7(7):236–239

    CAS  Google Scholar 

  • Pace A, Bourillot R, Bouton A, Vennin E, Braissant O, Dupraz C, Duteil T, Bundeleva I, Patrier P, Galaup S, Yokoyama Y, Franceschi M, Virgone A, Visscher PT (2018) Formation of stromatolite lamina at the interface of oxygenic-anoxygenic photosynthesis. Geobiology 16:378–398

    Google Scholar 

  • Peimbert M, Alcaraz LD, Bonilla-Rosso G, Olmedo-Alvarez G, Garcia-Oliva F, Segovia L, Eguiarte LE, Souza V (2012) Comparative metagenomics of two microbial mats at Cuatro Ciénegas Basin I: ancient lessons on how to cope with an environment under severe nutrient stress. Astrobiology 12(7):648–658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Petryshyn VA, Corsetti FA, Frantz CM, Lund SP (2016) Magnetic susceptibility as a biosignature in stromatolites. Earth Planet Sci Lett 437:66–75

    CAS  Google Scholar 

  • Planavsky N, Reid RP, Andres M, Visscher PT, Myshrall KL, Lyons TW (2009) Formation and diagenesis of modern marine calcified cyanobacteria. Geobiology 7:566–576

    CAS  PubMed  Google Scholar 

  • Playford PE, Cockbain AE, Berry PF, Roberts AP, Haines PW, Brooke BP (2013) The geology of Shark Bay. Geol Surv West Aust 146:299

    Google Scholar 

  • Reid RP, Visscher PT, Decho AW, Stolz JF, Bebout BM, Dupraz C, Macintyre IG, Paerl HW, Pinckney JL, Prufert-Bebout L, Steppe TF, DesMarais DJ (2000) The role of microbes in accretion, lamination and early lithification of modern marine stromatolites. Nature 406(6799):989–992

    CAS  PubMed  Google Scholar 

  • Reid RP, James NP, Macintyre IG, Dupraz CP (2003) Shark Bay stromatolites: microfabrics and reinterpretation of origins. Facies 49:299–324

    Google Scholar 

  • Reid P, Foster JS, Radtke G, Golubic S (2011) Modern marine stromatolites of Little Darby Island, Exuma archipelago, Bahamas: environmental setting, accretion mechanisms and role of euendoliths. In: Reitner J, Thrauth MH, Stüwe K, Yuen D (eds) Advances in Stromatolite geology. Springer, Berlin, pp 77–90

    Google Scholar 

  • Reid RP (2011) Stromatolites. In: Hopelys D (ed) Encylopedia of modern coral reefs: structure, form and process. Springer, The Netherlands, pp 1045–1051

    Google Scholar 

  • Rietkerk M, van de Koppel J (2008) Regular pattern formation in real ecosystems. Trends Ecol Evol 23(3):169–175

    PubMed  Google Scholar 

  • Rietkerk M, Dekker SC, de Ruiter PC, van de Koppel J (2004) Self-organized patchiness and catastrophic shifts in ecosystems. Science 305(5692):1926–1929

    CAS  PubMed  Google Scholar 

  • Roling WF, Aerts JW, Patty CH, ten Kate IL, Ehrenfreund P, Direito SO (2015) The significance of microbe-mineral-biomarker interactions in the detection of life on Mars and beyond. Astrobiology 15(6):492–507

    PubMed  PubMed Central  Google Scholar 

  • Ruvindy R, White RA III, Neilan BA, Burns BP (2016) Unravelling core microbial metabolisms in the hypersaline microbial mats of Shark Bay using high-throughput metagenomics. ISME J 10:183–196

    CAS  PubMed  Google Scholar 

  • Saghaï A, Zivanovic Y, Zeyen N, Moreira D, Benzerara K, Deschamps P, Bertolino P, Ragon M, Tavera R, Lopez-Archilla AI, Lopez-Garcia P (2015) Metagenome-based diversity analyses suggest a significant contribution of non-cyanobacterial lineages to carbonate precipitation in modern microbialites. Front Microbiol 6:797

    PubMed  PubMed Central  Google Scholar 

  • Shapiro B, Hofreiter M (2014) A paleogenomic perspective on evolution and gene function: new insights from ancient DNA. Science 343(6169):1236573

    CAS  PubMed  Google Scholar 

  • Shen Y, Buick R, Canfield DE (2001) Isotopic evidence for microbial sulphate reduction in the early Archaean era. Nature 410(6824):77–81

    CAS  PubMed  Google Scholar 

  • Sumner D, and Bowring SA. (1996) U-Pb geochronologic constraints on deposition of the Cambrellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Research, 79:25–35

    Google Scholar 

  • Summons RE, Jahnke LL, Hope JM, Logan GA (1999) 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400(6744):554–557

    CAS  PubMed  Google Scholar 

  • Summons RE, Albrecht P, McDonald G, Moldowan JM (2008) Molecular biosignatures. In: Botta O, Bada JL, Gomez-Elvira J, Javaux E, Selsis F, Summons RE (eds) Strategies of life detection. Space sciences series of ISSI, vol 25. Springer, Boston, pp 133–159

    Google Scholar 

  • Summons RE, Bird LR, Gillespie AL, Pruss SB, Roberts M, Sessions AL (2013) Lipid biomarkers in ooids from different locations and ages: evidence for a common bacterial flora. Geobiology 11(5):420–436

    CAS  PubMed  Google Scholar 

  • Suosaari EP, Reid RP, Abreau TA, Playford PE, Holley DK, McNamara KJ, Eberl GP (2016a) Environmental pressures influencing living stromatolites in Hamelin Pool, Shark Bay, Western Australia. PALAIOS 31:483–496

    Google Scholar 

  • Suosaari EP, Reid RP, Playford PE, Foster JS, Stolz JF, Casaburi G, Hagan PD, Chirayath V, Macintyre IG, Planavsky NJ, Eberli GP (2016b) New multi-scale perspectives on the stromatolites of Shark Bay, Western Australia. Sci Rep 6:20557

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suosaari EP, Reid RP, Oehlert AM, Playford PE, Steffensen CK, Andres MS, Suosaari GV, Milano GR, Eberli GP (2019) Stromatolite provinces of Hamelin Pool: physiographical controls on stromatolites and associated lithofacies. J Sediment Res 89:207–226

    Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. R Soc Lond B Biol Sci 237(641):37–72

    Google Scholar 

  • van de Koppel J, Crain CM (2006) Scale-dependent inhibition drives regular tussock spacing in a freshwater marsh. Am Nat 168(5):E136–E147

    PubMed  Google Scholar 

  • Van Kranendonk MJ, Webb GE, and Kamber BS (2003) Geological and trace element evidence for a marine sedimentary environment of deposition and biogenicity of 3.45 Ga stromatolitic carbonates in the Pilbara Craton, and support for a reducing Archaean Ocean. Geobiology 1:91–108

    Google Scholar 

  • Visscher PT, Reid RP, Bebout BM, Hoeft SE, Macintyre IG, Thompson JA (1998) Formation of lithified micritic laminae in modern marine stromatolites (Bahamas): the role of sulfur cycling. Am Mineral 83:1482–1493

    CAS  Google Scholar 

  • Warden JG, Casaburi G, Omelon CR, Bennett PC, Breecker DO, Foster JS (2016) Characterization of microbial mat microbiomes in the modern thrombolite ecosystem of Lake Clifton, Western Australia using shotgun metagenomics. Front Microbiol 7:1064

    PubMed  PubMed Central  Google Scholar 

  • Walter MR, Buick R, and Dunlop JS (1980) Stromatolites 3,400 - 3,500 Myr old from the North Pole area, Western Australia. Nature 284:443–445

    Google Scholar 

  • Weber HS, Thamdrup B, Habicht KS (2016) High sulfur isotope fractionation associated with anaerobic oxidation of methane in a low-sulfate, iron-rich environment. Front Earth Sci 4:61

    Google Scholar 

  • White RA 3rd, Power IM, Dipple GM, Southam G, Suttle CA (2015) Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front Microbiol 6:966

    PubMed  PubMed Central  Google Scholar 

  • White RA 3rd, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF, Lim DS, Suttle CA (2016) Metagenomic analysis suggests modern freshwater microbialites harbor a distinct core microbial community. Front Microbiol 6:1531

    PubMed  PubMed Central  Google Scholar 

  • White RA 3rd, Wong HL, Ruvindy R, Neilan BA, Burns BP (2018) Viral communities of Shark Bay modern Stromatolites. Front Microbiol 9:1223

    PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Brooke Vitek for providing an aerial image of the Hamelin Pool. This work was supported in part by a NASA Exobiology and Evolutionary Biology award (NNX14AK14G) to JSF and RPR as well as a NASA NESSF fellowship (80NSSC17K0497) to JB.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie S. Foster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Foster, J.S., Babilonia, J., Parke-Suosaari, E., Reid, R.P. (2020). Stromatolites, Biosignatures, and Astrobiological Implications. In: Souza, V., Segura, A., Foster, J. (eds) Astrobiology and Cuatro Ciénegas Basin as an Analog of Early Earth. Cuatro Ciénegas Basin: An Endangered Hyperdiverse Oasis. Springer, Cham. https://doi.org/10.1007/978-3-030-46087-7_4

Download citation

Publish with us

Policies and ethics