Skip to main content

Dynamic Contrast-Enhanced Imaging

  • Chapter
  • First Online:
Prostate MRI Essentials

Abstract

DCE-MRI involves the acquisition of serial T1-weighted images of the prostate before and after the bolus injection of a gadolinium-based contrast agent. Prostate cancers (PCa) show early enhancement due to increased vascularity or angiogenesis. Increased capillary permeability leads to higher uptake of contrast agent that shortens T1 relaxation time, and therefore cancers show up as hyperintense relative to surrounding tissue. PI-RADS v2 recommends imaging with an in-plane resolution ≤2 × 2 mm with 3 mm slice thickness without any gaps between slices that match diffusion-weighted images. The use of temporal resolution of <15 s (<7 s preferred) without any gaps in acquisition for over 2 min is recommended. In addition to qualitative analysis, semiquantitative (curve type, EMM) and quantitative analysis (Tofts pharmacokinetic model) can be used for PCa diagnosis. Prostate cancers are characterized by increased contrast media transfer coefficient (Ktrans) and typically a type 3 signal curve with increased wash-in and washout rate compared to benign tissue. Currently, DCE is still an essential component of the mpMRI prostate examination; however, its role in determination of PI-RADS v2.1 assessment category is secondary to T2W and DWI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin. 2019;69(1):7–34.

    Article  Google Scholar 

  2. Moldovan PC, Van den Broeck T, Sylvester R, Marconi L, Bellmunt J, van den Bergh RCN, et al. What is the negative predictive value of multiparametric magnetic resonance imaging in excluding prostate Cancer at biopsy? A systematic review and meta-analysis from the European Association of Urology prostate Cancer guidelines panel. Eur Urol. 2017;72(2):250–66.

    Article  PubMed  Google Scholar 

  3. Baur AD, Maxeiner A, Franiel T, Kilic E, Huppertz A, Schwenke C, et al. Evaluation of the prostate imaging reporting and data system for the detection of prostate cancer by the results of targeted biopsy of the prostate. Investig Radiol. 2014;49(6):411–20.

    Article  Google Scholar 

  4. Weinreb JC, Barentsz JO, Choyke PL, Cornud F, Haider MA, Macura KJ, et al. PI-RADS prostate imaging – reporting and data system: 2015, version 2. Eur Urol. 2016;69(1):16–40.

    Article  Google Scholar 

  5. Tofts PS, Brix G, Buckley DL, Evelhoch JL, Henderson E, Knopp MV, et al. Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: standardized quantities and symbols. J Magn Reson Imaging. 1999;10(3):223–32.

    Article  CAS  PubMed  Google Scholar 

  6. Fan X, Medved M, River JN, Zamora M, Corot C, Robert P, et al. New model for analysis of dynamic contrast-enhanced MRI data distinguishes metastatic from nonmetastatic transplanted rodent prostate tumors. Magn Reson Med. 2004;51(3):487–94.

    Article  CAS  PubMed  Google Scholar 

  7. Kayhan A, Fan X, Oto A. Dynamic contrast-enhanced magnetic resonance imaging in prostate cancer. Top Magn Reson Imaging. 2009;20(2):105–12.

    Article  PubMed  Google Scholar 

  8. Franiel T, Hamm B, Hricak H. Dynamic contrast-enhanced magnetic resonance imaging and pharmacokinetic models in prostate cancer. Eur Radiol. 2011;21(3):616–26.

    Article  PubMed  Google Scholar 

  9. Othman AE, Falkner F, Weiss J, Kruck S, Grimm R, Martirosian P, et al. Effect of temporal resolution on diagnostic performance of dynamic contrast-enhanced magnetic resonance imaging of the prostate. Investig Radiol. 2016;51(5):290–6.

    Article  Google Scholar 

  10. de Rooij M, Hamoen EH, Fütterer JJ, Barentsz JO, Rovers MM. Accuracy of multiparametric MRI for prostate cancer detection: a meta-analysis. Am J Roentgenol. 2014;202(2):343–51.

    Article  Google Scholar 

  11. Kozlowski P, Chang SD, Jones EC, Berean KW, Chen H, Goldenberg SL. Combined diffusion-weighted and dynamic contrast-enhanced MRI for prostate cancer diagnosis—correlation with biopsy and histopathology. J Magn Reson Imaging. 2006;24(1):108–13.

    Article  PubMed  Google Scholar 

  12. Hagberg GE, Scheffler K. Effect of r1 and r2 relaxivity of gadolinium-based contrast agents on the T1-weighted MR signal at increasing magnetic field strengths. Contrast Media Mol Imaging. 2013;8(6):456–65.

    Article  CAS  PubMed  Google Scholar 

  13. Chatterjee A, He D, Fan X, Wang S, Szasz T, Yousuf A, et al. Performance of ultrafast DCE-MRI for diagnosis of prostate cancer. Acad Radiol. 2018;25(3):349–58.

    Article  PubMed  Google Scholar 

  14. Gawlitza J, Reiss-Zimmermann M, Thörmer G, Schaudinn A, Linder N, Garnov N, et al. Impact of the use of an endorectal coil for 3 T prostate MRI on image quality and cancer detection rate. Sci Rep. 2017;7:40640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Heijmink SWTPJ, Fütterer JJ, Hambrock T, Takahashi S, Scheenen TWJ, Huisman HJ, et al. Prostate cancer: body-array versus endorectal coil MR imaging at 3 T—comparison of image quality, localization, and staging performance. Radiology. 2007;244(1):184–95.

    Article  PubMed  Google Scholar 

  16. Turkbey B, Merino MJ, Gallardo EC, Shah V, Aras O, Bernardo M, et al. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology. J Magn Reson Imaging. 2014;39(6):1443–8.

    Article  PubMed  Google Scholar 

  17. Chatterjee A, Devaraj A, Matthew M, Szasz T, Antic T, Karczmar G, et al. Performance of T2 maps in the detection of prostate cancer. Acad Radiol. 2019;26(1):15–21.

    Article  PubMed  Google Scholar 

  18. Kanda T, Ishii K, Kawaguchi H, Kitajima K, Takenaka D. High signal intensity in the dentate nucleus and Globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology. 2014;270(3):834–41.

    Article  PubMed  Google Scholar 

  19. McDonald JS, Hunt CH, Kolbe AB, Schmitz JJ, Hartman RP, Maddox DE, et al. Acute adverse events following Gadolinium-based contrast agent administration: a single-center retrospective study of 281 945 injections. Radiology. 2019;292(3):620–7.

    Google Scholar 

  20. Port RE, Knopp MV, Hoffmann U, Milker-Zabel S, Brix G. Multicompartment analysis of gadolinium chelate kinetics: blood-tissue exchange in mammary tumors as monitored by dynamic MR imaging. J Magn Reson Imaging. 1999;10(3):233–41.

    Article  CAS  PubMed  Google Scholar 

  21. Kety SS. The theory and applications of the exchange of inert gas at the lungs and tissues. Pharmacol Rev. 1951;3(1):1–41.

    CAS  PubMed  Google Scholar 

  22. Yang C, Karczmar GS, Medved M, Stadler WM. Multiple reference tissue method for contrast agent arterial input function estimation. Magn Reson Med. 2007;58(6):1266–75.

    Article  PubMed  Google Scholar 

  23. Lavini C, Verhoeff JJC. Reproducibility of the gadolinium concentration measurements and of the fitting parameters of the vascular input function in the superior sagittal sinus in a patient population. Magn Reson Imaging. 2010;28(10):1420–30.

    Article  PubMed  Google Scholar 

  24. Fan X, Haney CR, Mustafi D, Yang C, Zamora M, Markiewicz EJ, et al. Use of a reference tissue and blood vessel to measure the arterial input function in DCEMRI. Magn Reson Med. 2010;64(6):1821–6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ocak I, Bernardo M, Metzger G, Barrett T, Pinto P, Albert PS, et al. Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters. Am J Roentgenol. 2007;189(4):W192–201.

    Article  Google Scholar 

  26. Tamada T, Sone T, Jo Y, Yamamoto A, Yamashita T, Egashira N, et al. Prostate cancer: relationships between Postbiopsy hemorrhage and tumor detectability at MR diagnosis. Radiology. 2008;248(2):531–9.

    Article  PubMed  Google Scholar 

  27. Villers A, Puech P, Mouton D, Leroy X, Ballereau C, Lemaitre L. Dynamic contrast enhanced, pelvic phased array magnetic resonance imaging of localized prostate cancer for predicting tumor volume: correlation with radical prostatectomy findings. J Urol. 2006;176(6):2432–7.

    Article  PubMed  Google Scholar 

  28. Turkbey B, Pinto PA, Mani H, Bernardo M, Pang Y, McKinney YL, et al. Prostate cancer: value of multiparametric MR imaging at 3 T for detection—histopathologic correlation. Radiology. 2010;255(1):89–99.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Rosenkrantz AB, Sabach A, Babb JS, Matza BW, Taneja SS, Deng F-M. Prostate cancer: comparison of dynamic contrast-enhanced MRI techniques for localization of peripheral zone tumor. Am J Roentgenol. 2013;201(3):W471–W8.

    Article  Google Scholar 

  30. Turkbey B, McKinney YL, Trivedi H, Chua C, Bratslavsky G, Shih JH, et al. Multiparametric 3T prostate magnetic resonance imaging to detect cancer: histopathological correlation using prostatectomy specimens processed in customized magnetic resonance imaging based molds. J Urol. 2011;186(5):1818–24.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tan CH, Paul Hobbs B, Wei W, Kundra V. Dynamic contrast-enhanced MRI for the detection of prostate cancer: meta-analysis. Am J Roentgenol. 2015;204(4):W439–W48.

    Article  Google Scholar 

  32. Isebaert S, Van den Bergh L, Haustermans K, Joniau S, Lerut E, De Wever L, et al. Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging. 2013;37(6):1392–401.

    Article  PubMed  Google Scholar 

  33. Kim JK, Hong SS, Choi YJ, Park SH, Ahn H, Kim C-S, et al. Wash-in rate on the basis of dynamic contrast-enhanced MRI: usefulness for prostate cancer detection and localization. J Magn Reson Imaging. 2005;22(5):639–46.

    Article  CAS  PubMed  Google Scholar 

  34. Isebaert S, De Keyzer F, Haustermans K, Lerut E, Roskams T, Roebben I, et al. Evaluation of semi-quantitative dynamic contrast-enhanced MRI parameters for prostate cancer in correlation to whole-mount histopathology. Eur J Radiol. 2012;81(3):e217–e22.

    Article  PubMed  Google Scholar 

  35. Ren J, Huan Y, Wang H, Chang YJ, Zhao HT, Ge YL, et al. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol. 2008;63(2):153–9.

    Article  CAS  PubMed  Google Scholar 

  36. Hansford BG, Peng Y, Jiang Y, Vannier MW, Antic T, Thomas S, et al. Dynamic contrast-enhanced MR imaging curve-type analysis: is it helpful in the differentiation of prostate cancer from healthy peripheral zone? Radiology. 2015;275(2):448–57.

    Article  PubMed  Google Scholar 

  37. Tamada T, Sone T, Higashi H, Jo Y, Yamamoto A, Kanki A, et al. Prostate cancer detection in patients with Total serum prostate-specific antigen levels of 4–10 ng/mL: diagnostic efficacy of diffusion-weighted imaging, dynamic contrast-enhanced MRI, and T2-weighted imaging. Am J Roentgenol. 2011;197(3):664–70.

    Article  Google Scholar 

  38. Bloch BN, Furman-Haran E, Helbich TH, Lenkinski RE, Degani H, Kratzik C, et al. Prostate cancer: accurate determination of extracapsular extension with high-spatial-resolution dynamic contrast-enhanced and T2-weighted MR imaging—initial results. Radiology. 2007;245(1):176–85.

    Article  PubMed  Google Scholar 

  39. Padhani AR, Gapinski CJ, Macvicar DA, Parker GJ, Suckling J, Revell PB, et al. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol. 2000;55(2):99–109.

    Article  CAS  PubMed  Google Scholar 

  40. Schlemmer H-P, Merkle J, Grobholz R, Jaeger T, Michel MS, Werner A, et al. Can pre-operative contrast-enhanced dynamic MR imaging for prostate cancer predict microvessel density in prostatectomy specimens? Eur Radiol. 2004;14(2):309–17.

    Article  PubMed  Google Scholar 

  41. Franiel T, Lüdemann L, Taupitz M, Rost J, Asbach P, Beyersdorff D. Pharmacokinetic MRI of the prostate: parameters for differentiating low-grade and high-grade prostate cancer. Rofo. 2009;181(6):536–42.

    Article  CAS  PubMed  Google Scholar 

  42. Chen Y-J, Chu W-C, Pu Y-S, Chueh S-C, Shun C-T, Tseng W-YI. Washout gradient in dynamic contrast-enhanced MRI is associated with tumor aggressiveness of prostate cancer. J Magn Reson Imaging. 2012;36(4):912–9.

    Article  PubMed  Google Scholar 

  43. Vos EK, Litjens GJS, Kobus T, Hambrock T, Kaa CAH-VD, Barentsz JO, et al. Assessment of prostate cancer aggressiveness using dynamic contrast-enhanced magnetic resonance imaging at 3 T. Eur Urol. 2013;64(3):448–55.

    Article  PubMed  Google Scholar 

  44. Hötker AM, Mazaheri Y, Aras Ö, Zheng J, Moskowitz CS, Gondo T, et al. Assessment of prostate cancer aggressiveness by use of the combination of quantitative DWI and dynamic contrast-enhanced MRI. AJR Am J Roentgenol. 2016;206(4):756–63.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Low RN, Fuller DB, Muradyan N. Dynamic gadolinium-enhanced perfusion MRI of prostate cancer: assessment of response to hypofractionated robotic stereotactic body radiation therapy. Am J Roentgenol. 2011;197(4):907–15.

    Article  Google Scholar 

  46. Oto A, Yang C, Kayhan A, Tretiakova M, Antic T, Schmid-Tannwald C, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. Am J Roentgenol. 2011;197(6):1382–90.

    Article  Google Scholar 

  47. Chatterjee A, Gallan AJ, He D, Fan X, Mustafi D, Yousuf A, et al. Revisiting quantitative multi-parametric MRI of benign prostatic hyperplasia and its differentiation from transition zone cancer. Abdom Radiol. 2019;44(6):2233–43.

    Article  Google Scholar 

  48. Turkbey B, Rosenkrantz AB, Haider MA, Padhani AR, Villeirs G, Macura KJ, et al. Prostate imaging reporting and data system version 2.1: 2019 update of prostate imaging reporting and data system version 2. Eur Urol. 2019;76(3):340–51.

    Article  Google Scholar 

  49. Robert P, Frenzel T, Factor C, Jost G, Rasschaert M, Schuetz G, et al. Methodological aspects for preclinical evaluation of gadolinium presence in brain tissue: critical appraisal and suggestions for harmonization—a joint initiative. Investig Radiol. 2018;53(9):499–517.

    Article  CAS  Google Scholar 

  50. He D, Chatterjee A, Fan X, Wang S, Eggener S, Yousuf A, et al. Feasibility of dynamic contrast-enhanced magnetic resonance imaging using low-dose gadolinium: comparative performance with standard dose in prostate cancer diagnosis. Investig Radiol. 2018;53(10):609–15.

    Article  Google Scholar 

  51. Huang B, Liang CH, Liu HJ, Wang GY, Zhang SX. Low-dose contrast-enhanced magnetic resonance imaging of brain metastases at 3.0 T using high-relaxivity contrast agents. Acta Radiol. 2010;51(1):78–84.

    Article  PubMed  Google Scholar 

  52. Boehm-Sturm P, Haeckel A, Hauptmann R, Mueller S, Kuhl CK, Schellenberger EA. Low-molecular-weight Iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging. Radiology. 2018;286(2):537–46.

    Google Scholar 

  53. Mustafi D, Ward J, Dougherty U, Bissonnette M, Hart J, Vogt S, et al. X-ray fluorescence microscopy demonstrates preferential accumulation of a vanadium-based magnetic resonance imaging contrast agent in murine colonic tumors. Mol Imaging. 2015;14:14.

    Article  CAS  Google Scholar 

  54. Boesen L, Norgaard N, Logager V, Balslev I, Bisbjerg R, Thestrup KC, et al. Assessment of the diagnostic accuracy of Biparametric magnetic resonance imaging for prostate Cancer in biopsy-naive men: the Biparametric MRI for detection of prostate Cancer (BIDOC) study. JAMA Netw Open. 2018;1(2):e180219.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Jambor I, Bostrom PJ, Taimen P, Syvanen K, Kahkonen E, Kallajoki M, et al. Novel biparametric MRI and targeted biopsy improves risk stratification in men with a clinical suspicion of prostate cancer (IMPROD trial). J Magn Reson Imaging. 2017;46(4):1089–95.

    Article  PubMed  Google Scholar 

  56. Krishna S, McInnes M, Lim C, Lim R, Hakim SW, Flood TA, et al. Comparison of prostate imaging reporting and data system versions 1 and 2 for the detection of peripheral zone Gleason score 3 + 4 = 7 cancers. AJR Am J Roentgenol. 2017;209(6):W365–W73.

    Article  PubMed  Google Scholar 

Download references

Disclosures

Dr Aritrick Chatterjee, Dr Federico Pineda and Dr Gregory Karczmar have no disclosures.

Dr Aytekin Oto has the following disclosures. Research Grant, Koninklijke Philips NV Research Grant, Guerbet SA Research Grant, Profound Medical Inc. Medical Advisory Board, Profound Medical Inc Speaker, Bracco Group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aytekin Oto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chatterjee, A., Pineda, F., Karczmar, G.S., Oto, A. (2020). Dynamic Contrast-Enhanced Imaging. In: Tirkes, T. (eds) Prostate MRI Essentials. Springer, Cham. https://doi.org/10.1007/978-3-030-45935-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45935-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45934-5

  • Online ISBN: 978-3-030-45935-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics