Skip to main content

Abstract

Nanotechnology, a rapidly flourishing field has emerged as cutting-edge technology in the twenty-first century indicating a promising future. Over the past decades, explosive research efforts have resulted in the development and evaluation of a plethora of nanoparticles for potential applications such as diagnosis and therapy. Hence playing a crucial role in research and development (R and D) and driving a revolution. NPs have garnered the interest of researchers due to their controlled and sustained-release features, biocompatibility, and subcellular size as well as extensively studied in pharmaceutical and medical fields. Since, the mode of fabrication plays a pivotal role; therefore, several techniques have been employed to prepare the NPs of desired characteristics for a particular application, i.e. the properties of NPs can be optimized based on the preparation method. Thus, various techniques have been employed to formulate NPs over the past two decades.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sharma N, Madan P, Lin S. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: a co-surfactant study. Asian J Pharmaceut Sci. 2016;11(3):404–16.

    Google Scholar 

  2. Mohanraj V, Chen Y. Nanoparticles–a review. Trop J Pharm Res. 2006;5(1):561–73.

    Google Scholar 

  3. Hans M, Lowman A. Biodegradable nanoparticles for drug delivery and targeting. Curr. Opinion Solid State Mater. Sci. 2002;6(4):319–27.

    Article  CAS  Google Scholar 

  4. Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol. 2009;86(3):215–23.

    Article  CAS  Google Scholar 

  5. del Pozo-Rodríguez A, Delgado D, Gascón AR, Solinís MÁ. Lipid nanoparticles as drug/gene delivery systems to the retina. J Ocul Pharmacol Ther. 2013;29(2):173–88.

    Article  Google Scholar 

  6. Reyes-Ortega F, Rodríguez G, Aguilar MR, Lord M, Whitelock J, Stenzel MH, et al. Encapsulation of low molecular weight heparin (bemiparin) into polymeric nanoparticles obtained from cationic block copolymers: properties and cell activity. J Mater Chem B. 2013;1(6):850–60.

    Article  CAS  Google Scholar 

  7. Zhao J, Feng S-S. Effects of PEG tethering chain length of vitamin E TPGS with a Herceptin-functionalized nanoparticle formulation for targeted delivery of anticancer drugs. Biomaterials. 2014;35(10):3340–7.

    Article  CAS  Google Scholar 

  8. Zhang X, Chen G, Wen L, Yang F, Shao A-L, Li X, et al. Novel multiple agents loaded PLGA nanoparticles for brain delivery via inner ear administration: in vitro and in vivo evaluation. Eur J Pharm Sci. 2013;48(4):595–603.

    Article  Google Scholar 

  9. Seynhaeve AL, Hoving S, Schipper D, Vermeulen CE, aan de Wiel-Ambagtsheer G, van Tiel ST, et al. Tumor necrosis factor α mediates homogeneous distribution of liposomes in murine melanoma that contributes to a better tumor response. Cancer Res. 2007;67(19):9455–62.

    Article  CAS  Google Scholar 

  10. Tailor TD, Hanna G, Yarmolenko PS, Dreher MR, Betof AS, Nixon AB, et al. Effect of pazopanib on tumor microenvironment and liposome delivery. Mol Cancer Ther. 2010;9(6):1798–808.

    Article  CAS  Google Scholar 

  11. Graffignini MJ. Corporate strategies for nanotech companies and investors in new economic times. Nanotech L & Bus. 2009;6:251.

    Google Scholar 

  12. Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006;311(5761):622–7.

    Article  CAS  Google Scholar 

  13. Xia T, Kovochich M, Liong M, Mädler L, Gilbert B, Shi H, et al. Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano. 2008;2(10):2121–34.

    Article  CAS  Google Scholar 

  14. De Jong WH, Borm PJ. Drug delivery and nanoparticles: applications and hazards. Int J Nanomedicine. 2008;3(2):133.

    Article  Google Scholar 

  15. Jabir NR, Tabrez S, Ashraf GM, Shakil S, Damanhouri GA, Kamal MA. Nanotechnology-based approaches in anticancer research. Int J Nanomedicine. 2012;7:4391–408.

    CAS  Google Scholar 

  16. Mahapatro A, Singh DK. Biodegradable nanoparticles are excellent vehicle for site directed in-vivo delivery of drugs and vaccines. J Nanobiotechnol. 2011;9(55):1–11.

    Google Scholar 

  17. Anton N, Benoit J-P, Saulnier P. Design and production of nanoparticles formulated from nano-emulsion templates—a review. J Control Release. 2008;128(3):185–99.

    Article  CAS  Google Scholar 

  18. Musyanovych A, Schmitz-Wienke J, Mailänder V, Walther P, Landfester K. Preparation of biodegradable polymer nanoparticles by miniemulsion technique and their cell interactions. Macromol Biosci. 2008;8(2):127–39.

    Article  CAS  Google Scholar 

  19. Peres LB, Peres LB, de Araújo PHH, Sayer C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf B: Biointerfaces. 2016;140:317–23.

    Article  Google Scholar 

  20. Staff RH, Landfester K, Crespy D. Recent advances in the emulsion solvent evaporation technique for the preparation of nanoparticles and nanocapsules. In: Hierarchical Macromolecular Structures: 60 Years after the Staudinger Nobel Prize II. Berlin: Springer; 2013. p. 329–44.

    Chapter  Google Scholar 

  21. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36(7):887–913.

    Article  CAS  Google Scholar 

  22. Zhang X, Xia Q, Gu N. Preparation of all-trans retinoic acid nanosuspensions using a modified precipitation method. Drug Dev Ind Pharm. 2006;32(7):857–63.

    Article  CAS  Google Scholar 

  23. Minost A, Delaveau J, Bolzinger M-A, Fessi H, Elaissari A. Nanoparticles via nanoprecipitation process. Recent Pat Drug Deliv Formul. 2012;6(3):250–8.

    Article  CAS  Google Scholar 

  24. Lepeltier E, Bourgaux C, Couvreur P. Nanoprecipitation and the “ouzo effect”: application to drug delivery devices. Adv Drug Deliv Rev. 2014;71:86–97.

    Article  CAS  Google Scholar 

  25. Li B, Wang Q, Wang X, Wang C, Jiang X. Preparation, drug release and cellular uptake of doxorubicin-loaded dextran-b-poly (ɛ-caprolactone) nanoparticles. Carbohydr Polym. 2013;93(2):430–7.

    Article  CAS  Google Scholar 

  26. Pandey SK, Patel DK, Thakur R, Mishra DP, Maiti P, Haldar C. Anti-cancer evaluation of quercetin embedded PLA nanoparticles synthesized by emulsified nanoprecipitation. Int J Biol Macromol. 2015;75:521–9.

    Article  CAS  Google Scholar 

  27. Yadav KS, Sawant KK. Modified nanoprecipitation method for preparation of cytarabine-loaded PLGA nanoparticles. AAPS PharmSciTech. 2010;11(3):1456–65.

    Article  CAS  Google Scholar 

  28. Shi W, Zhang Z-J, Yuan Y, Xing E-M, Qin Y, Peng Z-J, et al. Optimization of parameters for preparation of docetaxel-loaded PLGA nanoparticles by nanoprecipitation method. J Huazhong Univ Sci Technolog Med Sci. 2013;33:754–8.

    Article  CAS  Google Scholar 

  29. Naik J, Lokhande A, Mishra S, Kulkarni R. Development of sustained release micro/nanoparticles using different solvent emulsification technique: a review. Int J Pharm Bio Sci. 2012;3(4):573–90.

    CAS  Google Scholar 

  30. Luo Y, Teng Z, Li Y, Wang Q. Solid lipid nanoparticles for oral drug delivery: chitosan coating improves stability, controlled delivery, mucoadhesion and cellular uptake. Carbohydr Polym. 2015;122:221–9.

    Article  CAS  Google Scholar 

  31. Qi J, Lu Y, Wu W. Absorption, disposition and pharmacokinetics of solid lipid nanoparticles. Curr Drug Metab. 2012;13(4):418–28.

    Article  CAS  Google Scholar 

  32. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26(5):1025–58.

    Article  CAS  Google Scholar 

  33. Jin Y. A physical model for the size-dependent cellular uptake of nanoparticles modified with cationic surfactants. Int J Nanomedicine. 2012;7:3547–54.

    Article  Google Scholar 

  34. Yang Z, Luo X, Zhang X, Liu J, Jiang Q. Targeted delivery of 10-hydroxycamptothecin to human breast cancers by cyclic RGD-modified lipid? Polymer hybrid nanoparticles. Biomed Mater. 2013;8(2):025012.

    Article  Google Scholar 

  35. Xiong S, Zhao X, Heng BC, Ng KW, Loo JSC. Cellular uptake of poly-(D, L-lactide-co-glycolide)(PLGA) nanoparticles synthesized through solvent emulsion evaporation and nanoprecipitation method. Biotechnol J. 2011;6(5):501–8.

    Article  CAS  Google Scholar 

  36. Ye Z, Squillante E. The development and scale-up of biodegradable polymeric nanoparticles loaded with ibuprofen. Colloids Surf A Physicochem Eng Asp. 2013;422:75–80.

    Article  CAS  Google Scholar 

  37. Mishra B, Patel BB, Tiwari S. Colloidal nanocarriers: a review on formulation technology, types and applications toward targeted drug delivery. Nanomedicine. 2010;6(1):9–24.

    Article  CAS  Google Scholar 

  38. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    Article  CAS  Google Scholar 

  39. Zweers ML, Engbers GH, Grijpma DW, Feijen J. Release of anti-restenosis drugs from poly (ethylene oxide)-poly (DL-lactic-co-glycolic acid) nanoparticles. J Control Release. 2006;114(3):317–24.

    Article  CAS  Google Scholar 

  40. Fan Y, Wang Y, Fan Y, Ma J. Preparation of insulin nanoparticles and their encapsulation with biodegradable polyelectrolytes via the layer-by-layer adsorption. Int J Pharm. 2006;324(2):158–67.

    Article  CAS  Google Scholar 

  41. Fong JW. Process for preparation of microspheres. Google Patents; 1983

    Google Scholar 

  42. Battaglia L, Gallarate M, Cavalli R, Trotta M. Solid lipid nanoparticles produced through a coacervation method. J Microencapsul. 2010;27(1):78–85.

    Article  CAS  Google Scholar 

  43. Gallarate M, Trotta M, Battaglia L, Chirio D. Cisplatin-loaded SLN produced by coacervation technique. J Drug Deliv Sci Technol. 2010;20(5):343–7.

    Article  CAS  Google Scholar 

  44. Battaglia L, D’Addino I, Peira E, Trotta M, Gallarate M. Solid lipid nanoparticles prepared by coacervation method as vehicles for ocular cyclosporine. J Drug Deliv Sci Technol. 2012;22(2):125–30.

    Article  CAS  Google Scholar 

  45. Bouchemal K, Briançon S, Fessi H, Chevalier Y, Bonnet I, Perrier E. Simultaneous emulsification and interfacial polycondensation for the preparation of colloidal suspensions of nanocapsules. Mater. Sci. Eng. C. 2006;26(2):472–80.

    Article  CAS  Google Scholar 

  46. Bouchemal K, Briançon S, Perrier E, Fessi H, Bonnet I, Zydowicz N. Synthesis and characterization of polyurethane and poly (ether urethane) nanocapsules using a new technique of interfacial polycondensation combined to spontaneous emulsification. Int J Pharm. 2004;269(1):89–100.

    Article  CAS  Google Scholar 

  47. Dhumal SS, Wagh SJ, Suresh A. Interfacial polycondensation—modeling of kinetics and film properties. J Membr Sci. 2008;325(2):758–71.

    Article  CAS  Google Scholar 

  48. Ziegler A, Landfester K, Musyanovych A. Synthesis of phosphonate-functionalized polystyrene and poly (methyl methacrylate) particles and their kinetic behavior in miniemulsion polymerization. Colloid Polym Sci. 2009;287(11):1261–71.

    Article  CAS  Google Scholar 

  49. Landfester K, Musyanovych A, Mailänder V. From polymeric particles to multifunctional nanocapsules for biomedical applications using the miniemulsion process. J Polym Sci A Polym Chem. 2010;48(3):493–515.

    Article  CAS  Google Scholar 

  50. Reung-U-Rai A, Prom-Jun A, Prissanaroon-Ouajai W, Ouajai S. Synthesis of highly conductive polypyrrole nanoparticles via microemulsion polymerization. J Metals Mater Miner. 2008;18(2):27–31.

    Google Scholar 

  51. Weiss CK, Ziener U, Landfester K. A route to nonfunctionalized and functionalized poly (n-butylcyanoacrylate) nanoparticles: preparation in miniemulsion. Macromolecules. 2007;40(4):928–38.

    Article  CAS  Google Scholar 

  52. Kim M-S, Baek I-H. Fabrication and evaluation of valsartan–polymer–surfactant composite nanoparticles by using the supercritical antisolvent process. Int. J. Nanomedicine. 2014;9:5167.

    Article  Google Scholar 

  53. Reverchon E, Adami R, Caputo G, De Marco I. Spherical microparticles production by supercritical antisolvent precipitation: interpretation of results. J Supercrit Fluids. 2008;47(1):70–84.

    Article  CAS  Google Scholar 

  54. Pasquali I, Bettini R. Are pharmaceutics really going supercritical? Int J Pharm. 2008;364(2):176–87.

    Article  CAS  Google Scholar 

  55. Meziani MJ, Pathak P, Sun Y-P. Supercritical fluid technology for nanotechnology in drug delivery. Nanotechnol Drug Deliv. 2009:69–104.

    Google Scholar 

  56. Spasic AM, Hsu J-P. Finely Dispersed Particles: Micro-, Nano-, and Atto-Engineering. Boca Raton: CRC Press; 2005.

    Book  Google Scholar 

  57. Girotra P, Singh SK, Nagpal K. Supercritical fluid technology: a promising approach in pharmaceutical research. Pharm. Dev. Technol. 2013;18(1):22–38.

    Article  CAS  Google Scholar 

  58. Yoshida V, Hanai IM, Balcão V, Vila MMDC, Júnior JMO, Aranha N, et al. Supercritical fluid and pharmaceutical applications. Part I: process classification. Afr J Pharm Pharmacol. 2016;10(9):132–44.

    CAS  Google Scholar 

  59. Kalani M, Yunus R. Application of supercritical antisolvent method in drug encapsulation: a review. Int J Nanomedicine. 2011;6(142):9–42.

    Google Scholar 

  60. Rantakylä M, Jäntti M, Aaltonen O, Hurme M. The effect of initial drop size on particle size in the supercritical antisolvent precipitation (SAS) technique. J Supercrit Fluids. 2002;24(3):251–63.

    Article  Google Scholar 

  61. Chen A-Z, Li Y, Chau F-T, Lau T-Y, Hu J-Y, Zhao Z, et al. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO 2 to prepare puerarin fine particles. J Supercrit Fluids. 2009;49(3):394–402.

    Article  CAS  Google Scholar 

  62. Byrappa K, Ohara S, Adschiri T. Nanoparticles synthesis using supercritical fluid technology–towards biomedical applications. Adv Drug Deliv Rev. 2008;60(3):299–327.

    Article  CAS  Google Scholar 

  63. Miguel F, Martin A, Gamse T, Cocero M. Supercritical anti solvent precipitation of lycopene: effect of the operating parameters. J Supercrit Fluids. 2006;36(3):225–35.

    Article  CAS  Google Scholar 

  64. Majerik V, Charbit G, Badens E, Horváth G, Szokonya L, Bosc N, et al. Bioavailability enhancement of an active substance by supercritical antisolvent precipitation. J Supercrit Fluids. 2007;40(1):101–10.

    Article  CAS  Google Scholar 

  65. Sacha GA, Schmitt WJ, Nail SL. Identification of physical-chemical variables affecting particle size following precipitation using a supercritical fluid. Pharm Dev Technol. 2006;11(2):195–205.

    Article  CAS  Google Scholar 

  66. Sane A, Thies MC. Effect of material properties and processing conditions on RESS of poly (l-lactide). J Supercrit Fluids. 2007;40(1):134–43.

    Article  CAS  Google Scholar 

  67. Kostag M, Köhler S, Liebert T, Heinze T. Pure cellulose nanoparticles from trimethylsilyl cellulose. In: Macromolecular Symposia. Hoboken: Wiley; 2010.

    Google Scholar 

  68. Betancourt T, Brown B, Brannon-Peppas L. Doxorubicin-loaded PLGA nanoparticles by nanoprecipitation: preparation, characterization and in vitro evaluation. Nanomedicne (Lond). 2007;2(2):219–32.

    Article  CAS  Google Scholar 

  69. Bisht S, Feldmann G, Soni S, Ravi R, Karikar C, Maitra A, et al. Polymeric nanoparticle-encapsulated curcumin (" nanocurcumin"): a novel strategy for human cancer therapy. J Nanobiotechnol. 2007;5(1):1.

    Article  Google Scholar 

  70. Lecaroz MC, Blanco-Prieto MJ, Campanero MA, Salman H, Gamazo C. Poly (D, L-lactide-coglycolide) particles containing gentamicin: pharmacokinetics and pharmacodynamics in Brucella melitensis-infected mice. Antimicrob Agents Chemother. 2007;51(4):1185–90.

    Article  CAS  Google Scholar 

  71. Errico C, Bartoli C, Chiellini F, Chiellini E. Poly (hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. Biomed Res Int. 2009;2009:571702.

    Google Scholar 

  72. Park J, Fong PM, Lu J, Russell KS, Booth CJ, Saltzman WM, et al. PEGylated PLGA nanoparticles for the improved delivery of doxorubicin. Nanomedicine. 2009;5(4):410–8.

    Article  CAS  Google Scholar 

  73. Shah N, Chaudhari K, Dantuluri P, Murthy R, Das S. Paclitaxel-loaded PLGA nanoparticles surface modified with transferrin and Pluronic® P85, an in vitro cell line and in vivo biodistribution studies on rat model. J Drug Target. 2009;17(7):533–42.

    Article  CAS  Google Scholar 

  74. Yang H, Li K, Liu Y, Liu Z, Miyoshi H. Poly (D, L-lactide-co-glycolide) nanoparticles encapsulated fluorescent isothiocyanate and paclitaxol: preparation, release kinetics and anticancer effect. J Nanosci Nanotechnol. 2009;9(1):282–7.

    Article  CAS  Google Scholar 

  75. Kim T-H, Jeong Y-I, Jin S-G, Pei J, Jung T-Y, Moon K-S, et al. Preparation of polylactide-co-glycolide nanoparticles incorporating celecoxib and their antitumor activity against brain tumor cells. Int J Nanomedicine. 2011;6:2621–31.

    Article  CAS  Google Scholar 

  76. Sundar S, Kundu J, Kundu SC. Biopolymeric nanoparticles. Sci Technol Adv Mater. 2010;11(1):014104.

    Article  Google Scholar 

  77. de Assis DN, Mosqueira VCF, Vilela JMC, Andrade MS, Cardoso VN. Release profiles and morphological characterization by atomic force microscopy and photon correlation spectroscopy of 99m technetium-fluconazole nanocapsules. Int J Pharm. 2008;349(1):152–60.

    Article  Google Scholar 

  78. Shi HG, Farber L, Michaels JN, Dickey A, Thompson KC, Shelukar SD, et al. Characterization of crystalline drug nanoparticles using atomic force microscopy and complementary techniques. Pharm Res. 2003;20(3):479–84.

    Article  CAS  Google Scholar 

  79. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Sparfloxacin-loaded PLGA nanoparticles for sustained ocular drug delivery. Nanomedicine. 2010;6(2):324–33.

    Article  CAS  Google Scholar 

  80. Zhao H, Lin ZY, Yildirimer L, Dhinakar A, Zhao X, Wu J. Polymer-based nanoparticles for protein delivery: design, strategies and applications. J Mater Chem B. 2016;4(23):4060–71.

    Article  CAS  Google Scholar 

  81. Naghsh N, Mashayekh AM, Khodadadi S. Effects of silver nanoparticle on lactate dehydrogenase activity and histological changes of heart tissue in male wistar rats. J Fasa Univ Med Sci. 2013;2(4):303–7.

    Google Scholar 

  82. Razavian M, Safarpour E, Roshanai K, Yazdian M, Heidarieh N. Study of some biochemical and hematological parameters changes of wistar rats blood parallel to oral nanosilver consumption. J Babol Univ Med Sci. 2011;13(1):22–7.

    Google Scholar 

  83. Alkaladi A, Abdelazim A, Afifi M. Antidiabetic activity of zinc oxide and silver nanoparticles on streptozotocin-induced diabetic rats. Int J Mol Sci. 2014;15(2):2015–23.

    Article  Google Scholar 

  84. Mousavi Z, Hassanpourezatti M, Najafizadeh P, Rezagholian S, Rhamanifar MS, Nosrati N. Effects of subcutaneous injection MnO2 micro-and nanoparticles on blood glucose level and lipid profile in rat. Iranian J Med Sci. 2016;41(6):518.

    Google Scholar 

  85. Kim SY, Shin IG, Lee YM. Preparation and characterization of biodegradable nanospheres composed of methoxy poly (ethylene glycol) and DL-lactide block copolymer as novel drug carriers. J Control Release. 1998;56(1–3):197–208.

    Article  CAS  Google Scholar 

  86. Sarmento B, Ribeiro A, Veiga F, Sampaio P, Neufeld R, Ferreira D. Alginate/chitosan nanoparticles are effective for oral insulin delivery. Pharm Res. 2007;24(12):2198–206.

    Article  CAS  Google Scholar 

  87. Ribeiro ME, Cavalcante IM, Ricardo NM, Mai SM, Attwood D, Yeates SG, et al. Solubilisation of griseofulvin in aqueous micellar solutions of diblock copolymers of ethylene oxide and 1,2-butylene oxide with lengthy B-blocks. Int J Pharm. 2009;369(1–2):196–8.. Epub 2008/12/02

    Article  CAS  Google Scholar 

  88. Mei L, Zhang Z, Zhao L, Huang L, Yang X-L, Tang J, et al. Pharmaceutical nanotechnology for oral delivery of anticancer drugs. Adv Drug Deliv Rev. 2013;65(6):880–90.

    Article  CAS  Google Scholar 

  89. Ravichandran R. Nanoparticles in drug delivery: potential green nanobiomedicine applications. Int J Green Nanotechnol Biomed. 2009;1(2):B108–B30.

    Google Scholar 

  90. Li X, Shang H, Wu W, Li S, Lin Z, Duan J, et al. Glucose-responsive micelles for controlled insulin release based on transformation from amphiphilic to double hydrophilic. J Nanosci Nanotechnol. 2016;16(6):5457–63.

    Article  CAS  Google Scholar 

  91. Agrawal AK, Harde H, Thanki K, Jain S. Improved stability and antidiabetic potential of insulin containing folic acid functionalized polymer stabilized multilayered liposomes following oral administration. Biomacromolecules. 2013;15(1):350–60.

    Article  Google Scholar 

  92. Haslam D, James W. Obesity. Lancet. 2005;366(9492):1.

    Article  Google Scholar 

  93. Ceriello A. Diabete e Cancro. Cancer Epidemiol Biomark Prev. 2005;14:138–47.

    Google Scholar 

  94. Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM. In vivo study of spherical gold nanoparticles: inflammatory effects and distribution in mice. PLoS One. 2013;8(2):e58208.. Epub 2013/02/28. eng

    Article  CAS  Google Scholar 

  95. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, et al. Size-dependent cytotoxicity of gold nanoparticles. Small. 2007;3(11):1941–9.

    Article  CAS  Google Scholar 

  96. Alam T, Khan S, Gaba B, Haider MF, Baboota S, Ali J. Nanocarriers as treatment modalities for hypertension. Drug Deliv. 2017;24(1):358–69.

    Article  CAS  Google Scholar 

  97. Thomas TP, Goonewardena SN, Majoros IJ, Kotlyar A, Cao Z, Leroueil PR, et al. Folate-targeted nanoparticles show efficacy in the treatment of inflammatory arthritis. Arthritis Rheum. 2011;63(9):2671–80.

    Article  CAS  Google Scholar 

  98. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 2012;161(2):505–22.

    Article  CAS  Google Scholar 

  99. Sethi V, Önyüksel H, Rubinstein I. Liposomal vasoactive intestinal peptide. Methods Enzymol. 2005;391:377–95.

    Article  CAS  Google Scholar 

  100. Deshpande PB, Gurram AK, Deshpande A, Shavi GV, Musmade P, Arumugam K, et al. A novel nanoproliposomes of lercanidipine: development, in vitro and preclinical studies to support its effectiveness in hypertension therapy. Life Sci. 2016;162:125–37.

    Article  CAS  Google Scholar 

  101. JIA H. CHANG C-y. establishment of the method for determination of copper and zinc in PC-SOD∗. Chinese J Pharmaceut Anal. 2016;36(5):821–5.

    Google Scholar 

  102. Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012;64(5):1020–37.

    Article  CAS  Google Scholar 

  103. Giacalone G, Tsapis N, Mousnier L, Chacun H, Fattal E. PLA-PEG nanoparticles improve the anti-inflammatory effect of rosiglitazone on macrophages by enhancing drug uptake compared to free rosiglitazone. Materials. 2018;11(10):1845.

    Article  Google Scholar 

  104. Santana R, Perrechil F, Cunha R. High-and low-energy emulsifications for food applications: a focus on process parameters. Food Eng Rev. 2013;5(2):107–22.

    Article  CAS  Google Scholar 

  105. Anderson CD, Daniels ES. Emulsion Polymerisation and Latex Applications. Shrewsbury: ISmithers Rapra Publishing; 2003.

    Google Scholar 

  106. Solans C, Izquierdo P, Nolla J, Azemar N, Garcia-Celma M. Nano-emulsions. Curr Opin Colloid Interface Sci. 2005;10(3):102–10.

    Article  CAS  Google Scholar 

  107. Kreilgaard M. Influence of microemulsions on cutaneous drug delivery. Adv Drug Deliv Rev. 2002;54:S77–98.

    Article  CAS  Google Scholar 

  108. Talegaonkar S, Azeem A, Ahmad FJ, Khar RK, Pathan SA, Khan ZI. Microemulsions: a novel approach to enhanced drug delivery. Recent Pat Drug Deliv Formul. 2008;2(3):238–57.

    Article  CAS  Google Scholar 

  109. Sisson AL, Papp I, Landfester K, Haag R. Functional nanoparticles from dendritic precursors: hierarchical assembly in miniemulsion. Macromolecules. 2008;42(2):556–9.

    Article  Google Scholar 

  110. Chaudhary H, Kumar V. Taguchi design for optimization and development of antibacterial drug-loaded PLGA nanoparticles. Int J Biol Macromol. 2014;64:99–105.

    Article  Google Scholar 

  111. Shah U, Joshi G, Sawant K. Improvement in antihypertensive and antianginal effects of felodipine by enhanced absorption from PLGA nanoparticles optimized by factorial design. Mater Sci Eng C. 2014;35:153–63.

    Article  CAS  Google Scholar 

  112. Tsai Y-M, Chien C-F, Lin L-C, Tsai T-H. Curcumin and its nano-formulation: the kinetics of tissue distribution and blood–brain barrier penetration. Int J Pharm. 2011;416(1):331–8.

    Article  CAS  Google Scholar 

  113. Loveymi BD, Jelvehgari M, Zakeri-Milani P, Valizadeh H. Statistical optimization of oral vancomycin-eudragit RS nanoparticles using response surface methodology. Iranian J Pharmaceut Res. 2012;11(4):1001–12.

    CAS  Google Scholar 

  114. Mazzarino L, Travelet C, Ortega-Murillo S, Otsuka I, Pignot-Paintrand I, Lemos-Senna E, et al. Elaboration of chitosan-coated nanoparticles loaded with curcumin for mucoadhesive applications. J. Colloid Interface Sci. 2012;370(1):58–66.

    Article  CAS  Google Scholar 

  115. Cascone MG, Lazzeri L, Carmignani C, Zhu Z. Gelatin nanoparticles produced by a simple W/O emulsion as delivery system for methotrexate. J Mater Sci Mater Med. 2002;13(5):523–6.

    Article  CAS  Google Scholar 

  116. Moradhaseli S, Mirakabadi AZ, Sarzaeem A, Dounighi NM, Soheily S, Borumand MR. Preparation and characterization of sodium alginate nanoparticles containing ICD-85 (venom derived peptides). Int J Innov Appl Stud. 2013;4(3):534–42.

    Google Scholar 

  117. Noorani L, Stenzel M, Liang R, Pourgholami MH, Morris DL. Albumin nanoparticles increase the anticancer efficacy of albendazole in ovarian cancer xenograft model. J Nanobiotechnol. 2015;13(1):1.

    Article  CAS  Google Scholar 

  118. Dubey N, Varshney R, Shukla J, Ganeshpurkar A, Hazari PP, Bandopadhaya GP, et al. Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv. 2012;19(3):132–42.

    Article  CAS  Google Scholar 

  119. Cheng J, Teply BA, Sherifi I, Sung J, Luther G, Gu FX, et al. Formulation of functionalized PLGA–PEG nanoparticles for in vivo targeted drug delivery. Biomaterials. 2007;28(5):869–76.

    Article  CAS  Google Scholar 

  120. Zou W, Liu C, Chen Z, Zhang N. Preparation and characterization of cationic PLA-PEG nanoparticles for delivery of plasmid DNA. Nanoscale Res Lett. 2009;4(9):982.

    Article  CAS  Google Scholar 

  121. Bathool A, Vishakante GD, Khan MS, Shivakumar H. Development and characterization of atorvastatin calcium loaded chitosan nanoparticles for sustain drug delivery. Adv Mater Lett. 2012;3(6):466–70.

    Article  CAS  Google Scholar 

  122. Xue Y, Xu X, Zhang X-Q, Farokhzad OC, Langer R. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proc Natl Acad Sci. 2016;113(20):5552–7.

    Article  CAS  Google Scholar 

  123. Chen H, Ng JP, Tan Y, McGrath K, Bishop DP, Oliver B, et al. Gold nanoparticles improve metabolic profile of mice fed a high-fat diet. J Nanobiotechnol. 2018;16(1):11.

    Article  Google Scholar 

  124. Chen C-C, Tsai T-H, Huang Z-R, Fang J-Y. Effects of lipophilic emulsifiers on the oral administration of lovastatin from nanostructured lipid carriers: physicochemical characterization and pharmacokinetics. Eur J Pharm Biopharm. 2010;74(3):474–82.

    Article  CAS  Google Scholar 

  125. Auwal S, Zarei M, Tan C, Basri M, Saari N. Improved in vivo efficacy of anti-hypertensive biopeptides encapsulated in chitosan nanoparticles fabricated by ionotropic gelation on spontaneously hypertensive rats. Nanomaterials. 2017;7(12):421.

    Article  Google Scholar 

  126. Auwal SM, Zarei M, Tan CP, Basri M, Saari N. Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE)-inhibitory biopeptides by chitosan nanoparticles optimized using box-Behnken design. Sci Rep. 2018;8(1):10411.

    Article  Google Scholar 

  127. Maximov V, Reukov V, Barry J, Cochrane C, Vertegel A. Protein–nanoparticle conjugates as potential therapeutic agents for the treatment of hyperlipidemia. Nanotechnology. 2010;21(26):265103.

    Article  CAS  Google Scholar 

Download references

Conflict of Interest

Nothing to declare.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iqbal, Z., Ibrahim, M., Murtaza, G. (2021). Role of Nanoparticles in the Management of Metabolic Disorders. In: Akash, M.S.H., Rehman, K., Hashmi, M.Z. (eds) Endocrine Disrupting Chemicals-induced Metabolic Disorders and Treatment Strategies. Emerging Contaminants and Associated Treatment Technologies. Springer, Cham. https://doi.org/10.1007/978-3-030-45923-9_25

Download citation

Publish with us

Policies and ethics