Skip to main content

Ligand-Free Sub-Nanometer Metal Clusters in Catalysis

  • Chapter
  • First Online:
Recent Advances in Nanoparticle Catalysis

Part of the book series: Molecular Catalysis ((MOLCAT,volume 1))

  • 1068 Accesses

Abstract

Recent advances in the synthesis and characterization of ligand-free sub-nanometer metal clusters, either in solution or supported on solids, have enabled their rational use as catalysts in new reactions. These clusters expose all their metal atoms to outer molecules without the potential steric/electronic interferences of ligands, while, at the same time, show defined molecular orbitals to ultimately control the catalytic reaction. Therefore, these clusters somehow combine the advantages of single atom and metal nanoparticles for molecular activation and catalysis. This chapter aims at describing how to prepare, better characterize and apply, on a realistic scale, ligand-free sub-nanometer metal clusters for catalytic processes (many of them of industrial interest) during the last ten years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anciaux AJ, Demonceau A, Noels AF et al (1981) Transition-metal-catalyzed reactions of diazo compounds. 2. Addition to aromatic molecules: catalysis of Buchner’s synthesis of cycloheptatrienes. J Org Chem 46:873–876. https://doi.org/10.1021/jo00318a010

    Article  CAS  Google Scholar 

  2. Bayram E, Linehan JC, Fulton JL et al (2011) Is It Homogeneous or Heterogeneous Catalysis Derived from [RhCp*Cl2]2? In Operando XAFS, Kinetic, and Crucial Kinetic Poisoning Evidence for Subnanometer Rh4 Cluster-Based Benzene Hydrogenation Catalysis. J Am Chem Soc 133:18889–18902. https://doi.org/10.1021/ja2073438

    Article  CAS  PubMed  Google Scholar 

  3. Bittner AM, Wu XC, Balci S, et al (2005) Bottom-up synthesis and top-down organisation of semiconductor and metal clusters on surfaces. Eur. J. Inorg. Chem. 3717–3728. https://doi.org/10.1002/ejic.200500388

  4. Bogdanović B, Spliethoff B, Wilke G (1980) Dimerization of propylene with catalysts exhibiting activities like highly-active enzymes. Angew Chemie Int Ed English 19:622–623. https://doi.org/10.1002/anie.198006221

    Article  Google Scholar 

  5. Boronat M, Laursen S, Leyva-Perez A et al (2014) Partially oxidized gold nanoparticles: a catalytic base-free system for the aerobic homocoupling of alkynes. J Catal 315:6–14. https://doi.org/10.1016/j.jcat.2014.04.003

    Article  CAS  Google Scholar 

  6. Boronat M, Leyva-Perez A, Corma A (2014) Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold. Acc Chem Res 47:834–844. https://doi.org/10.1021/ar400068w

    Article  CAS  PubMed  Google Scholar 

  7. Buceta D, Busto N, Barone G et al (2015) Ag2 and Ag3 Clusters: synthesis, characterization, and interaction with DNA. Angew Chemie Int Ed 54:7612–7616. https://doi.org/10.1002/anie.201502917

    Article  CAS  Google Scholar 

  8. Calabrese JC, Dahl LF, Chini P et al (1974) Synthesis and structural characterization of platinum carbonyl cluster dianions bis, tris, tetrakis, or pentakis(tri-μ2-carbonyl-tricarbonyltriplatinum)(2-). New series of inorganic oligomers. J Am Chem Soc 96:2614–2616. https://doi.org/10.1021/ja00815a050

    Article  CAS  Google Scholar 

  9. Carenco S, Leyva-Perez A, Concepcion P et al (2012) Nickel phosphide nanocatalysts for the chemoselective hydrogenation of alkynes. Nano Today 7:21–28. https://doi.org/10.1016/j.nantod.2011.12.003

    Article  CAS  Google Scholar 

  10. Corma A, Concepción P, Boronat M et al (2013) Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat Chem 5:775

    Article  CAS  PubMed  Google Scholar 

  11. Daniel M-C, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104:293–346. https://doi.org/10.1021/cr030698+

    Article  CAS  PubMed  Google Scholar 

  12. Ding K, Gulec A, Johnson AM (2015) Identification of active sites in CO oxidation and water-gas shift over supported Pt catalysts. Science (80);350:189 LP–192. https://doi.org/10.1126/science.aac6368

  13. Durand J, Teuma E, Gómez M (2008) An overview of palladium nanocatalysts: Surface and molecular reactivity. Eur. J. Inorg. Chem. 3577–3586. https://doi.org/10.1002/ejic.200800569

  14. Dyson PJ (2004) Catalysis by low oxidation state transition metal (carbonyl) clusters. Coord Chem Rev 248:2443–2458. https://doi.org/10.1016/j.ccr.2004.04.002

    Article  CAS  Google Scholar 

  15. Eglinton G, Galbraith AR (1959) 182. Macrocyclic acetylenic compounds. Part I. Cyclotetradeca-1 :3-diyne and related compounds. J. Chem. Soc. 889–896. https://doi.org/10.1039/jr9590000889

  16. Faraday M (1857) Experimental relations of gold {and other Metals) to Light. B y. Philos Trans 147:145

    Google Scholar 

  17. Fernandez E, Rivero-Crespo MA, Dominguez I et al (2019) Base-controlled heck, suzuki, and sonogashira reactions catalyzed by ligand-free platinum or palladium single atom and sub-nanometer clusters. J Am Chem Soc 141:1928–1940. https://doi.org/10.1021/jacs.8b07884

    Article  CAS  PubMed  Google Scholar 

  18. Ferrando R, Jellinek J, Johnston RL (2008) Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem Rev 108:845–910. https://doi.org/10.1021/cr040090g

    Article  CAS  PubMed  Google Scholar 

  19. Flytzani-Stephanopoulos M, Gates BC (2012) Atomically dispersed supported metal catalysts. Annu Rev Chem Biomol Eng 3:545–574. https://doi.org/10.1146/annurev-chembioeng-062011-080939

    Article  CAS  PubMed  Google Scholar 

  20. Fortea-Perez FR, Mon M, Ferrando-Soria J et al (2017) The MOF-driven synthesis of supported palladium clusters with catalytic activity for carbene-mediated chemistry. Nat Mater 16:760–766. https://doi.org/10.1038/nmat4910

    Article  CAS  PubMed  Google Scholar 

  21. Frogneux X, Pesesse A, Delacroix S et al (2019) Radical-initiated dismutation of hydrosiloxanes by catalytic potassium-graphite. ChemCatChem. https://doi.org/10.1002/cctc.201900172

    Article  Google Scholar 

  22. Fu Q, Saltsburg H, Flytzani-Stephanopoulos M (2003) Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science (80);301:935 LP–938. https://doi.org/10.1126/science.1085721

  23. Ghaib K, Nitz K, Ben-Fares F-Z (2016) Chemical methanation of CO2: a review. Chem Bio Eng Rev 3:266–275. https://doi.org/10.1002/cben.201600022

    Article  CAS  Google Scholar 

  24. Glaser C (1870) Untersuchungen über einige derivate der zimmtsäure. Justus Liebigs Ann Chem 154:137–171. https://doi.org/10.1002/jlac.18701540202

    Article  Google Scholar 

  25. Grancha T, Ferrando-Soria J, Zhou H-C et al (2015) Postsynthetic improvement of the physical properties in a metal-organic framework through a single crystal to single crystal transmetalation. Angew Chemie, Int Ed 54:6521–6525. https://doi.org/10.1002/anie.201501691

    Article  CAS  Google Scholar 

  26. Hashmi ASK, Frost TM, Bats JW (2000) Highly selective gold-catalyzed arene synthesis. J Am Chem Soc 122:11553–11554. https://doi.org/10.1021/ja005570d

    Article  CAS  Google Scholar 

  27. Hay AS (1962) Oxidative coupling of acetylenes. ii1. J Org Chem 27:3320–3321. https://doi.org/10.1021/jo01056a511

    Article  CAS  Google Scholar 

  28. Hernández E, Bertin V, Soto J et al (2018) Catalytic reduction of nitrous oxide by the low-symmetry pt8 cluster. J Phys Chem A 122:2209–2220. https://doi.org/10.1021/acs.jpca.7b11055

    Article  CAS  PubMed  Google Scholar 

  29. Herzing AA, Kiely CJ, Carley AF, et al (2008) Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science (80) 321:1331 LP–1335. https://doi.org/10.1126/science.1159639

  30. Ikuno T, Zheng J, Vjunov A et al (2017) Methane oxidation to methanol catalyzed by cu-oxo clusters stabilized in nu-1000 metal-organic framework. J Am Chem Soc 139:10294–10301. https://doi.org/10.1021/jacs.7b02936

    Article  CAS  PubMed  Google Scholar 

  31. Imaoka T, Akanuma Y, Haruta N et al (2017) Platinum clusters with precise numbers of atoms for preparative-scale catalysis. Nat Commun 8:688. https://doi.org/10.1038/s41467-017-00800-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Imaoka T, Yamamoto K (2019) Wet-chemical strategy for atom-precise metal cluster catalysts. Bull Chem Soc Jpn 92:941–948. https://doi.org/10.1246/bcsj.20190008

    Article  CAS  Google Scholar 

  33. Kennedy-Smith JJ, Staben ST, Toste FD (2004) Gold(I)-catalyzed conia-ene reaction of β-ketoesters with alkynes. J Am Chem Soc 126:4526–4527. https://doi.org/10.1021/ja049487s

    Article  CAS  PubMed  Google Scholar 

  34. Leyva-Perez A (2017) Sub-nanometre metal clusters for catalytic carbon-carbon and carbon-heteroatom cross-coupling reactions. Dalt Trans 46:15987–15990. https://doi.org/10.1039/C7DT03203J

    Article  CAS  Google Scholar 

  35. Leyva-Perez A, Corma A (2012) Similarities and differences between the “relativistic” triad gold, platinum, and mercury in catalysis. Angew Chemie, Int Ed 51:614–635. https://doi.org/10.1002/anie.201101726

    Article  CAS  Google Scholar 

  36. Leyva-Perez A, Domenech-Carbo A, Corma A (2015) Unique distal size selectivity with a digold catalyst during alkyne homocoupling. Nat Commun 6:6703. https://doi.org/10.1038/ncomms7703

    Article  CAS  PubMed  Google Scholar 

  37. Leyva-Perez A, Oliver-Meseguer J, Rubio-Marques P, Corma A (2013) Water-stabilized three- and four-atom palladium clusters as highly active catalytic species in ligand-free C-C cross-coupling reactions. Angew Chemie, Int Ed 52:11554–11559. https://doi.org/10.1002/anie.201303188

    Article  CAS  Google Scholar 

  38. Liu L, Corma A (2018) Metal catalysts for heterogeneous catalysis: from single atoms to nanoclusters and nanoparticles. Chem Rev (Washington, DC, United States) 118:4981–5079. https://doi.org/10.1021/acs.chemrev.7b00776

  39. Liu L, Zakharov DN, Arenal R et al (2018) Evolution and stabilization of subnanometric metal species in confined space by in situ TEM. Nat Commun 9:1–10. https://doi.org/10.1038/s41467-018-03012-6

    Article  CAS  Google Scholar 

  40. Liu P, Zhao Y, Qin R, et al (2016) Photochemical route for synthesizing atomically dispersed palladium catalysts. Science (80) 352:797 LP–800. https://doi.org/10.1126/science.aaf5251

  41. Longoni G, Chini P (1976) Synthesis and chemical characterization of platinum carbonyl dianions [Pt3(CO)6]n2- (n = .apprx.10,6,5,4,3,2,1). A new series of inorganic oligomers. J Am Chem Soc 98:7225–7231. https://doi.org/10.1021/ja00439a020

    Article  CAS  Google Scholar 

  42. Marciniec B (2008) Hydrosilylation of unsaturated carbon—heteroatom bonds

    Google Scholar 

  43. Marcinkowski MD, Liu J, Murphy CJ et al (2017) Selective formic acid dehydrogenation on Pt-Cu single-atom alloys. ACS Catal 7:413–420. https://doi.org/10.1021/acscatal.6b02772

    Article  CAS  Google Scholar 

  44. Mon M, Ferrando-Soria J, Grancha T et al (2016) Selective gold recovery and catalysis in a highly flexible methionine-decorated metal-organic framework. J Am Chem Soc 138:7864–7867. https://doi.org/10.1021/jacs.6b04635

    Article  CAS  PubMed  Google Scholar 

  45. Mon M, Rivero-Crespo MA, Ferrando-Soria J et al (2018) synthesis of densely packaged, ultrasmall Pt02 clusters within a thioether-functionalized mof: catalytic activity in industrial reactions at low temperature. Angew Chemie, Int Ed 57:6186–6191. https://doi.org/10.1002/anie.201801957

    Article  CAS  Google Scholar 

  46. Murahashi T, Fujimoto M, Oka M (2006) discrete sandwich compounds of monolayer palladium sheets. Science (80) 313:1104 LP–1107. https://doi.org/10.1126/science.1125245

  47. Murahashi T, Kato N, Uemura T, Kurosawa H (2007) Rearrangement of a Pd4 skeleton from a 1D chain to a 2D sheet on the face of a perylene or fluoranthene ligand caused by exchange of the binder molecule. Angew Chemie Int Ed 46:3509–3512. https://doi.org/10.1002/anie.200700340

    Article  CAS  Google Scholar 

  48. Murahashi T, Uemura T, Kurosawa H (2003) Perylene − Tetrapalladium Sandwich Complexes. J Am Chem Soc 125:8436–8437. https://doi.org/10.1021/ja0358246

    Article  CAS  PubMed  Google Scholar 

  49. Oliver-Meseguer J, Cabrero-Antonino JR, Dominguez I (2012) Small gold clusters formed in solution give reaction turnover numbers of 107 at room temperature. Sci (Washington, DC, United States) 338:1452–1455. https://doi.org/10.1126/science.1227813

  50. Oliver-Meseguer J, Dominguez I, Gavara R (2017) The wet synthesis and quantification of ligand-free sub-nanometric Au clusters in solid matrices. Chem Commun (Cambridge, United Kingdom) 53:1116–1119. https://doi.org/10.1039/C6CC09119A

  51. Oliver-Meseguer J, Dominguez I, Gavara R et al (2017) Disassembling Metal Nanocrystallites into Sub-nanometric Clusters and Low-faceted Nanoparticles for Multisite Catalytic Reactions. Chem Cat Chem 9:1429–1435. https://doi.org/10.1002/cctc.201700037

    Article  CAS  Google Scholar 

  52. Oliver-Meseguer J, Leyva-Perez A, Al-Resayes SI, Corma A (2013) Formation and stability of 3–5 atom gold clusters from gold complexes during the catalytic reaction: dependence on ligands and counteranions. Chem Commun (Cambridge, United Kingdom) 49:7782–7784. https://doi.org/10.1039/c3cc44104k

  53. Oliver-Meseguer J, Leyva-Perez A, Corma A (2013) Very small (3–6 atoms) gold cluster catalyzed carbon-carbon and carbon-heteroatom bond-forming reactions in solution. Chem Cat Chem 5:3509–3515. https://doi.org/10.1002/cctc.201300695

    Article  CAS  Google Scholar 

  54. Oliver-Meseguer J, Liu L, Garcia-Garcia S et al (2015) Stabilized naked sub-nanometric cu clusters within a polymeric film catalyze C-N, C-C, C-O, C-S, and C-P Bond-Forming Reactions. J Am Chem Soc 137:3894–3900. https://doi.org/10.1021/jacs.5b03889

    Article  CAS  PubMed  Google Scholar 

  55. Panyala RN, Pena-Mendez ME, Havel J (2009) Gold and nano-gold in medicine: overview, toxicology and perspectives. J Appl Biomed 7:75–91

    Article  CAS  Google Scholar 

  56. Pastoriza-Santos I, Liz-Marzan LM (1999) Formation and stabilization of silver nanoparticles through reduction by N, N-dimethylformamide. Langmuir 15:948–951. https://doi.org/10.1021/LA980984U

    Article  CAS  Google Scholar 

  57. Peredkov S, Peters S, Al-Hada M et al (2016) Structural investigation of supported Cun clusters under vacuum and ambient air conditions using EXAFS spectroscopy. Catal Sci Technol 6:6942–6952. https://doi.org/10.1039/C6CY00436A

    Article  CAS  Google Scholar 

  58. Polozkov RG, Ivanov VK, Verkhovtsev AV (2013) New applications of the jellium model for the study of atomic clusters. J. Phys. Conf. Ser. 438. https://doi.org/10.1088/1742-6596/438/1/012009

  59. Rivero-Crespo MA, Leyva-Pérez A, Corma A (2017) A ligand-free Pt 3 cluster catalyzes the markovnikov hydrosilylation of alkynes with up to 10 6 turnover frequencies. Chem - A Eur J 23:1702–1708. https://doi.org/10.1002/chem.201605520

    Article  CAS  Google Scholar 

  60. Rivero-Crespo MA, Mon M, Ferrando-Soria J et al (2018) Confined Pt11 + water clusters in a MOF catalyze the low-temperature water-gas shift reaction with both CO2 oxygen atoms coming from water. Angew Chemie, Int Ed 57:17094–17099. https://doi.org/10.1002/anie.201810251

    Article  CAS  Google Scholar 

  61. Rubio-Marques P, Rivero-Crespo MA, Leyva-Perez A, Corma A (2015) Well-defined noble metal single sites in zeolites as an alternative to catalysis by insoluble metal salts. J Am Chem Soc 137:11832–11837. https://doi.org/10.1021/jacs.5b07304

    Article  CAS  PubMed  Google Scholar 

  62. Sa J, Frances S, Taylor R (2012) Redispersion of gold supported on oxides

    Google Scholar 

  63. Sá J, Goguet A, Taylor SFR et al (2011) Influence of methyl halide treatment on gold nanoparticles supported on activated carbon. Angew Chem Int Ed Engl 50:8912–8916. https://doi.org/10.1002/anie.201102066

    Article  CAS  PubMed  Google Scholar 

  64. Sakaki S, Mizoe N, Sugimoto M (1998) theoretical study of platinum(0)-catalyzed hydrosilylation of ethylene. chalk − harrod mechanism or modified chalk − harrod mechanism. Organometallics 17:2510–2523. https://doi.org/10.1021/om980190a

    Article  CAS  Google Scholar 

  65. Scarabelli L, Coronado-Puchau M, Giner-Casares JJ et al (2014) monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced raman scattering. ACS Nano 8:5833–5842. https://doi.org/10.1021/nn500727w

    Article  CAS  PubMed  Google Scholar 

  66. Serna P, Gates BC (2014) Molecular metal catalysts on supports: organometallic chemistry meets surface science. Acc Chem Res 47:2612–2620. https://doi.org/10.1021/ar500170k

    Article  CAS  PubMed  Google Scholar 

  67. Sharma S, Kurashige W, Niihori Y, Negishi Y (2016) Nanocluster Science. Elsevier Inc

    Google Scholar 

  68. Tian S, Fu Q, Chen W et al (2018) Carbon nitride supported Fe2 cluster catalysts with superior performance for alkene epoxidation. Nat Commun 9:2353. https://doi.org/10.1038/s41467-018-04845-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Vajda S, White MG (2015) Catalysis applications of size-selected cluster deposition. ACS Catal 5:7152–7176. https://doi.org/10.1021/acscatal.5b01816

    Article  CAS  Google Scholar 

  70. Wang N, Sun Q, Yu J (2019) Ultrasmall metal nanoparticles confined within crystalline nanoporous materials: a fascinating class of nanocatalysts. Adv Mater 31:1–23. https://doi.org/10.1002/adma.201803966

    Article  CAS  Google Scholar 

  71. Wu X-F, Anbarasan P, Neumann H, Beller M (2010) From noble metal to nobel prize: palladium-catalyzed coupling reactions as key methods in organic synthesis. Angew Chemie, Int Ed 49:9047–9050. https://doi.org/10.1002/anie.201006374

    Article  CAS  Google Scholar 

  72. Yang Y, Reber AC, Gilliland SE et al (2018) Donor/acceptor concepts for developing efficient suzuki cross-coupling catalysts using graphene-supported Ni, Cu, Fe, Pd, and Bimetallic Pd/Ni Clusters. J Phys Chem C 122:25396–25403. https://doi.org/10.1021/acs.jpcc.8b07538

    Article  CAS  Google Scholar 

  73. Zea H, Lester K, Datye AK et al (2005) The influence of Pd-Ag catalyst restructuring on the activation energy for ethylene hydrogenation in ethylene-acetylene mixtures. Appl Catal A Gen 282:237–245. https://doi.org/10.1016/j.apcata.2004.12.026

    Article  CAS  Google Scholar 

  74. Zhai Y, Pierre D, Si R (2010) Alkali-stabilized Pt-OH<em><sub>x</sub></em> species catalyze low-temperature water-gas shift reactions. Science (80) 329:1633 LP–1636. https://doi.org/10.1126/science.1192449

  75. Zhang C, Laine RM (2000) Hydrosilylation of allyl alcohol with [HSiMe2OSiO1.5]8: Octa (3-hydroxypropyldimethylsiloxy) octasilsesquioxane and its octamethacrylate derivative as potential precursors to hybrid nanocomposites. J Am Chem Soc 122:6979–6988. https://doi.org/10.1021/ja000318r

    Article  CAS  Google Scholar 

  76. Zitoun D, Respaud M, Fromen M-C et al (2002) Magnetic enhancement in nanoscale corh particles. Phys Rev Lett 89:37203. https://doi.org/10.1103/PhysRevLett.89.037203

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Leyva–Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oliver–Meseguer, J., Leyva–Pérez, A. (2020). Ligand-Free Sub-Nanometer Metal Clusters in Catalysis. In: van Leeuwen, P., Claver, C. (eds) Recent Advances in Nanoparticle Catalysis. Molecular Catalysis, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-030-45823-2_1

Download citation

Publish with us

Policies and ethics