Skip to main content

Reactive Oxygen Species and Antioxidant Defence Systems in Plants: Role and Crosstalk Under Biotic Stress

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of Climate Change

Abstract

The plant defence system always acts under the influence of many biotic and abiotic factors, and it has a prime key role in enhancing crop yield potentiality by improving quality as well as disease resistance. Similar to abiotic stress, biotic stress plays a critical role in accelerating reactive oxygen species (ROS) production in the plant system. ROS are generated in response to stress-responsive stimuli and generally regarded as oxidative stress indicative marker. ROS were initially recognized as toxic by-products of stress metabolism causing oxidative stress damage. However, the importance of ROS as signal transduction molecules in the regulation of various biological processes involved in growth, development and different pathways during plant adaptation to various biotic stresses has also been deciphered. To restrict pathogen invasion, a delicate spatio-temporal balance between ROS-producing and ROS-scavenging pathways is essential for the utilization of ROS as signalling molecules and highly crucial for sustainable agriculture. Besides this, plants also developed another survival mechanism that deals with antioxidant systems having two different components, namely, enzymatic and non-enzymatic. These two antioxidant systems coordinately work together, and the generated functional proteins are overexpressed during pathogen attack to ensure the molecular defence response in resistant and/or tolerant plant species. The role of ROS in correlation to antioxidant systems in plant cells is gaining attention due to the fact that ROS are having valuable contribution towards increasing the response in plant defence systems at the molecular level. In the present chapter, we have described some newer aspects of ROS signalling networks in plants under biotic stress along with the use of synthetic biology approaches in increasing a better defence system, especially in crop plants. The molecular network between ROS signalling and antioxidant systems during defence response is also addressed. Further, the chapter also describes the novel techniques being investigated in order to understand the mechanism of signalling networks and metabolic networks in plant systems under biotic stress condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alesandrini F, Mathis R, Van de Sype G, Hérouart D, Puppo A (2003) Possible roles for a cysteine protease and hydrogen peroxide in soybean nodule development and senescence. New Phytol 158:131–138

    Google Scholar 

  • Allan AC, Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9:1559–1572

    CAS  PubMed  PubMed Central  Google Scholar 

  • Allan AC, Lapidot M, Culver JN, Fluhr R (2001) An early tobacco mosaic virus-induced oxidative burst in tobacco indicates extracellular perception of the virus coat protein. Plant Physiol 126:97–108

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    CAS  Google Scholar 

  • Amirsadeghi S, Robson CA, Vanlerberghe GC (2007) The role of the mitochondrion in plant responses to biotic stress. Physiol Plant 129:253–266

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    CAS  PubMed  Google Scholar 

  • Arimura GI, Maffei ME (2010) Calcium and secondary CPK signalling in plants in response to herbivore attack. Biochem Biophys Res Commun 400:455–460

    CAS  PubMed  Google Scholar 

  • Arora A, Sairam RK, Srivastava GC (2002) Oxidative stress and antioxidative system in plants. Curr Sci:1227–1238

    Google Scholar 

  • Asada K (1992) Ascorbate peroxidase-a hydrogen peroxide-scavenging enzyme in plants. Physiol Plant 85:235–241

    CAS  Google Scholar 

  • Asai S, Mase K, Yoshioka H (2010) Role of nitric oxide and reactive oxygen species in disease resistance to necrotrophic pathogens. Plant Signal Behav 5:872–874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Auh CK, Murphy TM (1995) Plasma membrane redox enzyme is involved in the synthesis of O2− and H2O2 by Phytophthora elicitor-stimulated rose cells. Plant Physiol 107:1241–1247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey-Serres J, Mittler R (2006) The roles of reactive oxygen species in plant cells. Plant Physiol 141:311

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baker CJ, Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33:299–321

    CAS  PubMed  Google Scholar 

  • Baron C, Zambryski PC (1995) The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu Rev Genet 29:107–129

    CAS  PubMed  Google Scholar 

  • Becana M, Aparicio-Tejo P, Irigoyen JJ, Sanchez-Diaz M (1986) Some enzymes of hydrogen peroxide metabolism in leaves and root nodules of Medicago sativa. Plant Physiol 82:1169–1171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Becana M, Dalton DA, Moran JF, Iturbe-Ormaetxe I, Matamoros MA, Rubio MC (2000) Reactive oxygen species and antioxidants in legume nodules. Physiol Plant 109:372–381

    CAS  Google Scholar 

  • Behle RW, Dowd PF, Tamez-Guerra P, Lagrimini LM (2002) Effect of transgenic plants expressing high levels of a tobacco anionic peroxidase on the toxicity of Anagrapha falcifera Nucleopolyhedrovirus to Helicoverpa zea (Lepidoptera: Noctuidae). J Econ Entomol 95:81–88

    CAS  PubMed  Google Scholar 

  • Benikhlef L, L’Haridon F, Abou-Mansour E, Serrano M, Binda M, Costa A, Lehmann S, Métraux JP (2013) Perception of soft mechanical stress in Arabidopsis leaves activates disease resistance. BMC Plant Biol 13:133

    PubMed  PubMed Central  Google Scholar 

  • Bhattacharjee S (2005) Reactive oxygen species and oxidative burst: roles in stress, senescence and signal transduction in plants. Curr Sci 10:1113–1121

    Google Scholar 

  • Bhattacharjee S (2010) Sites of generation and physicochemical basis of formation of reactive oxygen species in plant cell. In: Gupta SD (ed) Reactive Oxygen Species and Antioxidants in Higher Plants. Science Publishers: New York, NY, USA, pp 1–30

    Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C, Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a three-component system. J Exp Bot 53:1367–1376

    CAS  PubMed  Google Scholar 

  • Bostock RM (2005) Signal crosstalk and induced resistance: straddling the line between cost and benefit. Annu Rev Phytopathol 43:545–580

    CAS  PubMed  Google Scholar 

  • Bradley DJ, Kjellbom P, Lamb CJ (1992) Elicitor-and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein: a novel, rapid defence response. Cell 70:21–30

    CAS  PubMed  Google Scholar 

  • Brisson LF, Tenhaken R, Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6:1703–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno P, Soto MJ, Rodríguez-Rosales MP, Sanjuan J, Olivares J, Donaire JP (2001) Time-course of lipoxygenase, antioxidant enzyme activities and H2O2 accumulation during the early stages of Rhizobium-legume symbiosis. New Phytol 152:91–96

    CAS  Google Scholar 

  • Cárdenas L, Martínez A, Sánchez F, Quinto C (2008) Fast, transient and specific intracellular ROS changes in living root hair cells responding to Nod factors (NFs). Plant J 56:802–813

    PubMed  Google Scholar 

  • Caverzan A, Casassola A, Patussi Brammer S (2016) Reactive oxygen species and antioxidant enzymes involved in plant tolerance to stress. In: Shanker A (ed) Abiotic and biotic stress in plants. Recent advances and future perspectives. InTechOpen, London, pp 463–480

    Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    CAS  PubMed  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    CAS  PubMed  Google Scholar 

  • Choi HK, Iandolino A, da Silva FG, Cook DR (2013) Water deficit modulates the response of Vitis vinifera to the Pierce’s disease pathogen Xylella fastidiosa. Mol Plant-Microbe Interact 26:643–657

    CAS  PubMed  Google Scholar 

  • Clarke SF, Guy PL, Burritt DJ, Jameson PE (2002) Changes in the activities of antioxidant enzymes in response to virus infection and hormone treatment. Physiol Plant 114:157–164

    CAS  PubMed  Google Scholar 

  • Custers JH, Harrison SJ, Sela-Buurlage MB, Van Deventer E, Lageweg W, Howe PW, Van Der Meijs PJ, Ponstein AS, Simons BH, Melchers LS, Stuiver MH (2004) Isolation and characterisation of a class of carbohydrate oxidases from higher plants, with a role in active defence. Plant J 39:147–160

    CAS  PubMed  Google Scholar 

  • D’Haeze W, De Rycke R, Mathis R, Goormachtig S, Pagnotta S, Verplancke C, Capoen W, Holsters M (2003) Reactive oxygen species and ethylene play a positive role in lateral root base nodulation of a semiaquatic legume. Proc Natl Acad Sci U S A 100:11789–11794

    PubMed  PubMed Central  Google Scholar 

  • Dalton DA, Langeberg L, Treneman NC (1993) Correlations between the ascorbate-glutathione pathway and effectiveness in legume root nodules. Physiol Plant 87:365–870

    CAS  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci 57:779–795

    CAS  PubMed  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjärvi J, Inzé D, Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33:621–632

    CAS  PubMed  Google Scholar 

  • Delaney TP, Uknes S, Vernooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E, Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266:1247–1250

    CAS  PubMed  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588

    CAS  PubMed  Google Scholar 

  • Delledonne M, Zeier J, Marocco A, Lamb C (2001) Signal interactions between nitric oxide and reactive oxygen intermediates in the plant hypersensitive disease resistance response. Proc Natl Acad Sci U S A 98:13454–13459

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delledonne M, Murgia I, Ederle D, Sbicego PF, Biondani A, Polverari A, Lamb C (2002) Reactive oxygen intermediates modulate nitric oxide signalling in the plant hypersensitive disease-resistance response. Plant Physiol Biochem 40:605–610

    CAS  Google Scholar 

  • Desikan R, Reynolds A, Hancock TJ, Neill JS (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doke N (1983) Involvement of superoxide anion generation in the hypersensitive response of potato tuber tissues to infection with an incompatible race of Phytophthora infestans and to the hyphal wall components. Physiol Plant Pathol 23:345–357

    CAS  Google Scholar 

  • Dowd PF, Lagrimini LM (1997) Examination of different tobacco (Nicotiana spp.) types under- and overproducing tobacco anionic peroxidase for their leaf resistance to Helicoverpa zea. J Chem Ecol 23:2357–2370

    CAS  Google Scholar 

  • Dubreuil-Maurizi C, Trouvelot S, Frettinger P, Pugin A, Wendehenne D, Poinssot B (2010) β-Aminobutyric acid primes an NADPH oxidase-dependent reactive oxygen species production during grapevine-triggered immunity. Mol Plant-Microbe Interact 23:1012–1021

    CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42:185–209

    CAS  PubMed  Google Scholar 

  • Ebel J, Mithöfer A (1998) Early events in the elicitation of plant defence. Planta 206:335–348

    CAS  Google Scholar 

  • Evans PJ, Gallesi D, Mathieu C, Hernandez MJ, de Felipe M, Halliwell B, Puppo A (1999) Oxidative stress occurs during soybean nodule senescence. Planta 208:73–79

    CAS  Google Scholar 

  • Faize M, Burgos L, Faize L, Petri C, Barba-Espin G, Diaz-Vivancos P, Clemente-Moreno MJ, Alburquerque N, Hernandez JA (2012) Modulation of tobacco bacterial disease resistance using cytosolic ascorbate peroxidase and Cu, Zn-superoxide dismutase. Plant Pathol 61:858–866

    CAS  Google Scholar 

  • Foyer CH, Harbinson J (1994) Oxygen metabolism and the regulation of photosynthetic electron transport. In: Foyer CH, Mullineaux P (eds) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press Inc, Boca Raton, FL, pp 1-42

    Google Scholar 

  • Fraire-Velázquez S, Rodríguez-Guerra R, Sánchez-Calderón L (2011) Abiotic and biotic stress response crosstalk in plants. In: Shanker A (ed) Abiotic stress response in plants-physiological. Biochemical and genetic perspectives. InTech, Rijeka, pp 3–54

    Google Scholar 

  • Frendo P, Gallesi D, Turnbull R, Van de Sype G, Hérouart D, Puppo A (1999) Localisation of glutathione and homoglutathione in Medicago truncatula is correlated to a differential expression of genes involved in their synthesis. Plant J 17:215–219

    CAS  Google Scholar 

  • Frendo P, Jiménez MJ, Mathieu C, Duret L, Gallesi D, Van de Sype G, Hérouart D, Puppo A (2001) A Medicago truncatula homoglutathione synthetase is derived from glutathione synthetase by gene duplication. Plant Physiol 126:1706–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frendo P, Harrison J, Norman C, Jiménez MJ, Van de Sype G, Gilabert A, Puppo A (2005) Glutathione and homoglutathione play a critical role in the nodulation process of Medicago truncatula. Mol Plant-Microbe Interact 18:254–259

    CAS  PubMed  Google Scholar 

  • Friedrich L, Vernooij B, Gaffney T, Morse A, Ryals J (1995) Characterization of tobacco plants expressing a bacterial salicylate hydroxylase gene. Plant Mol Biol 29:959–968

    CAS  PubMed  Google Scholar 

  • Friedrich L, Lawton K, Ruess W, Masner P, Specker N, Rella MG, Meier B, Dincher S, Staub T, Uknes S, Métraux JP (1996) A benzothiadiazole derivative induces systemic acquired resistance in tobacco. Plant J 10:61–70

    CAS  Google Scholar 

  • Frugoli JA, Zhong HH, Nuccio ML, McCourt P, McPeek MA, Thomas TL, McClung CR (1996) Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiol 112:327–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Crosstalk between abiotic and biotic stress responses: a current view from the points of convergence in the stress signalling networks. Curr Opin Plant Biol 9:436–442

    PubMed  Google Scholar 

  • Galletti R, Denoux C, Gambetta S, Dewdney J, Ausubel FM, De Lorenzo G, Ferrari S (2008) The AtrbohD-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defence responses effective against Botrytis cinerea. Plant Physiol 148:1695–1706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh R, Tarafdar A, Sharma M (2017) Rapid and sensitive diagnoses of dry root rot pathogen of chickpea (Rhizoctonia bataticola (Taub.) Butler) using loop-mediated isothermal amplification assay. Sci Rep 7:42737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    CAS  PubMed  Google Scholar 

  • Govrin EM, Levine A (2000) The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea. Curr Biol 10:751–757

    CAS  PubMed  Google Scholar 

  • Grant M, Brown I, Adams S, Knight M, Ainslie A, Mansfield J (2000) The RPM1 plant disease resistance gene facilitates a rapid and sustained increase in cytosolic calcium that is necessary for the oxidative burst and hypersensitive cell death. Plant J 23:441–450

    CAS  PubMed  Google Scholar 

  • Greenberg JT, Yao N (2004) The role and regulation of programmed cell death in plant-pathogen interactions. Curr Biol 6:201–211

    CAS  Google Scholar 

  • Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B (2012) Compartment-specific antioxidative defence in Arabidopsis against virulent and avirulent Pseudomonas syringae. Phytopathology 102:662–673

    PubMed  Google Scholar 

  • Groten K, Dutilleul C, van Heerden PD, Vanacker H, Bernard S, Finkemeier I, Dietz KJ, Foyer CH (2006) Redox regulation of peroxiredoxin and proteinases by ascorbate and thiols during pea root nodule senescence. FEBS Lett 580:1269–1276

    CAS  PubMed  Google Scholar 

  • Guo M, Guo W, Chen Y, Dong S, Zhang X, Zhang H, Song W, Wang W, Wang Q, Lv R, Zhang Z (2010) The basic leucine zipper transcription factor Moatf1 mediates oxidative stress responses and is necessary for full virulence of the rice blast fungus Magnaporthe oryzae. Mol Plant-Microbe Interact 23:1053–1068

    CAS  PubMed  Google Scholar 

  • Hammond-Kosack KE, Parker JE (2003) Deciphering plant–pathogen communication: fresh perspectives for molecular resistance breeding. Curr Opin Biotechnol 14:177–193

    CAS  PubMed  Google Scholar 

  • Hancock JT, Desikan R, Clarke A, Hurst RD, Neill SJ (2002) Cell signalling following plant/pathogen interactions involves the generation of reactive oxygen and reactive nitrogen species. Plant Physiol Biochem 40:611–617

    CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Free Radicals in Biology and Medicine. Oxford, UK, Oxford University Press

    Google Scholar 

  • Hideg É, Barta C, Kálai T, Vass I, Hideg K, Asada K (2002) Detection of singlet oxygen and superoxide with fluorescent sensors in leaves under stress by photoinhibition or UV radiation. Plant Cell Physiol 43:1154–1164

    CAS  PubMed  Google Scholar 

  • Hoeberichts FA, Ten Have A, Woltering EJ (2003) A tomato metacaspase gene is upregulated during programmed cell death in Botrytis cinerea-infected leaves. Planta 217:517–522

    CAS  PubMed  Google Scholar 

  • Hückelhoven R, Kogel KH (2003) Reactive oxygen intermediates in plant-microbe interactions: who is who in powdery mildew resistance? Planta 216:891–902

    PubMed  Google Scholar 

  • Hückelhoven R, Fodor J, Preis C, Kogel KH (1999) Hypersensitive cell death and papilla formation in barley attacked by the powdery mildew fungus are associated with hydrogen peroxide but not with salicylic acid accumulation. Plant Physiol 119:1251–1260

    PubMed  PubMed Central  Google Scholar 

  • Iwano M, Che FS, Goto K, Tanaka N, Takayama S, Isogai A (2002) Electron microscopic analysis of the H2O2 accumulation preceding hypersensitive cell death induced by an incompatible strain of Pseudomonas avenae in cultured rice cells. Mol Plant Pathol 3:1–8

    CAS  PubMed  Google Scholar 

  • Imlay JA (2008) Cellular defenses against Superoxide and Hydrogen Peroxide. Annu Rev Biochem 77(1):755–776

    Google Scholar 

  • Jabs T (1999) Reactive oxygen intermediates as mediators of programmed cell death in plants and animals. Biochem Pharmacol 57:231–245

    CAS  PubMed  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    CAS  PubMed  Google Scholar 

  • James D, Tarafdar A, Biswas K, Sathyavathi TC, Padaria JC, Kumar PA (2015) Development and characterization of a high temperature stress responsive subtractive cDNA library in Pearl Millet Pennisetum glaucum (L.) R. Br. Indian J Exp Biol 53:543–550

    PubMed  Google Scholar 

  • Jamet A, Mandon K, Puppo A, Hérouart D (2007) H2O2 is required for optimal establishment of the Medicago sativa/Sinorhizobium meliloti symbiosis. J Bacteriol 189:8741–8745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadioglu A, Terzi R, Saruhan N, Saglam A (2012) Current advances in the investigation of leaf rolling caused by biotic and abiotic stress factors. Plant Sci 182:42–48

    CAS  PubMed  Google Scholar 

  • Kanzaki H, Saitoh H, Ito A, Fujisawa S, Kamoun S, Katou S, Yoshioka H, Terauchi R (2003) Cytosolic HSP90 and HSP70 are essential components of INF1-mediated hypersensitive response and non-host resistance to Pseudomonas cichorii in Nicotiana benthamiana. Mol Plant Pathol 4:383–391

    CAS  PubMed  Google Scholar 

  • Kariola T, Brader G, Li J, Palva ET (2005) Chlorophyllase 1, a damage control enzyme, affects the balance between defence pathways in plants. Plant Cell 17:282–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kawarazaki T, Kimura S, Iizuka A, Hanamata S, Nibori H, Michikawa M, Imai A, Abe M, Kaya H, Kuchitsu K (2013) A low temperature-inducible protein AtSRC2 enhances the ROS-producing activity of NADPH oxidase AtRbohF. Biochim Biophys Acta 1833:2775–2780

    CAS  PubMed  Google Scholar 

  • Keunen EL, Peshev D, Vangronsveld J, Van Den Ende WI, Cuypers AN (2013) Plant sugars are crucial players in the oxidative challenge during abiotic stress: extending the traditional concept. Plant Cell Environ 36:1242–1255

    CAS  PubMed  Google Scholar 

  • Kim MC, Chung WS, Yun DJ, Cho MJ (2009) Calcium and calmodulin-mediated regulation of gene expression in plants. Mol Plant 2:13–21

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kovtun Y, Chiu WL, Tena G, Sheen J (2000) Functional analysis of oxidative stress- activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci U S A 97:2940–2945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Pankaj VP, Tarafdar A, Biswas K, Kumar S (2016) Soil microbes and their interaction with plants. In: Mitra R, Barman A (eds) Plant pathogen interaction: recent trends. Sharma Publications & Distributors, New Delhi, pp 1–46

    Google Scholar 

  • Kumudini BS, Shetty HS (2002) Association of lignification and callose deposition with host cultivar resistance and induced systemic resistance in pearl millet to Sclerospora graminicola. Aust Plant Pathol 31:157–164

    Google Scholar 

  • Kunz C, Vandelle E, Rolland S, Poinssot B, Bruel C, Cimerman A, Zotti C, Moreau E, Vedel R, Pugin A, Boccara M (2006) Characterization of a new, non-pathogenic mutant of Botrytis cinerea with impaired plant colonization capacity. New Phytol 170:537–550

    CAS  PubMed  Google Scholar 

  • Kużniak E, SkÅ‚odowska M (2005) Fungal pathogen-induced changes in the antioxidant systems of leaf peroxisomes from infected tomato plants. Planta 222:192–200

    PubMed  Google Scholar 

  • L’Haridon F, Besson-Bard A, Binda M, Serrano M, Abou-Mansour E, Balet F, Schoonbeek HJ, Hess S, Mir R, Léon J, Lamotte O (2011) A permeable cuticle is associated with the release of reactive oxygen species and induction of innate immunity. PLoS Pathog 7:e1002148

    PubMed  PubMed Central  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Biol 48:251–275

    CAS  Google Scholar 

  • Lawton K, Weymann K, Friedrich L, Vernooij B, Uknes S, Ryals J (1995) Systemic acquired resistance in Arabidopsis requires salicylic acid but not ethylene. Mol Plant-Microbe Interact 8:863–870

    CAS  PubMed  Google Scholar 

  • Legendre L, Rueter S, Heinstein PF, Low PS (1993) Characterization of the oligogalacturonide-induced oxidative burst in cultured soybean (Glycine max) cells. Plant Physiol 102:233–240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lehotai N, PetÅ‘ A, Bajkán S, Erdei L, Tari I, Kolbert Z (2011) In vivo and in situ visualization of early physiological events induced by heavy metals in pea root meristem. Acta Physiol Plant 33:2199–2207

    CAS  Google Scholar 

  • Leon J, Lawton MA, Raskin I (1995) Hydrogen peroxide stimulates salicylic acid biosynthesis in tobacco. Plant Physiol 108:1673–1678

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levine A, Tenhaken R, Dixon R, Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell 79:583–593

    CAS  PubMed  Google Scholar 

  • Li J, Zhang ZG, Ji R, Wang YC, Zheng XB (2005) Hydrogen peroxide regulates elicitor PB90-induced cell death and defence in non-heading Chinese cabbage. Physiol Mol Plant Pathol 67:220–230

    CAS  Google Scholar 

  • Liu F, Huang N, Wang L, Ling H, Sun T, Ahmad W, Muhammad K, Guo J, Xu L, Gao S, Que Y, Su Y (2018) A novel L-ascorbate peroxidase 6 gene, ScAPX6, plays an important role in the regulation of response to biotic and abiotic stresses in sugarcane. Front Plant Sci 8:2262

    PubMed  PubMed Central  Google Scholar 

  • Lorrain S, Vailleau F, Balagué C, Roby D (2003) Lesion mimic mutants: keys for deciphering cell death and defence pathways in plants? Trends Plant Sci 8:263–271

    CAS  PubMed  Google Scholar 

  • Loscos J, Matamoros MA, Becana M (2008) Ascorbate and homoglutathione metabolism in common bean nodules under stress conditions and during natural senescence. Plant Physiol 146:1282–1292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Low PS, Merida JR (1996) The oxidative burst in plant defence: function and signal transduction. Physiol Plant 96:533–542

    CAS  Google Scholar 

  • Madgwick JW, West JS, White RP, Semenov MA, Townsend JA, Turner JA, Fitt BD (2011) Impacts of climate change on wheat anthesis and fusarium ear blight in the UK. Eur J Plant Pathol 130:117–131

    Google Scholar 

  • MaÅ‚olepsza U (2005) Spatial and temporal variation of reactive oxygen species and antioxidant enzymes in o-hydroxyethylorutin-treated tomato leaves inoculated with Botrytis cinerea. Plant Pathol 54:317–324

    Google Scholar 

  • MaÅ‚olepsza U, Rozalska S (2005) Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato. Plant Physiol Biochem 43:623–635

    PubMed  Google Scholar 

  • Matamoros MA, Moran JF, Iturbe-Ormaetxe I, Rubio MC, Becana M (1999) Glutathione and homoglutathione synthesis in legume root nodules. Plant Physiol 121:879–888

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateo A, Mühlenbock P, Rustérucci C, Chang CC, Miszalski Z, Karpinska B, Parker JE, Mullineaux PM, Karpinski S (2004) LESION SIMULATING DISEASE 1 is required for acclimation to conditions that promote excess excitation energy. Plant Physiol 136:2818–2830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    CAS  PubMed  Google Scholar 

  • Mayer AM, Staples RC, Gil-ad NL (2001) Mechanisms of survival of necrotrophic fungal plant pathogens in hosts expressing the hypersensitive response. Phytochemistry 58:33–41

    CAS  PubMed  Google Scholar 

  • McCord JM, Fridovich I (1969) Superoxide dismutase an enzymic function for erythrocuprein Hemocuprein. J Biol Chem 244:6049–6055

    CAS  PubMed  Google Scholar 

  • Mellersh DG, Foulds IV, Higgins VJ, Heath MC (2002) H2O2 plays different roles in determining penetration failure in three diverse plant-fungal interactions. The Plant J 29:257–268

    CAS  PubMed  Google Scholar 

  • Messner B, Boll M (1994) Cell suspension cultures of spruce (Picea abies): inactivation of extracellular enzymes by fungal elicitor-induced transient release of hydrogen peroxide (oxidative burst). Plant Cell 39:69–78

    CAS  Google Scholar 

  • Miguel E, Poza-Carrión C, López-Solanilla E, Aguilar I, Llama-Palacios A, García-Olmedo F, Rodríguez-Palenzuela P (2000) Evidence against a direct antimicrobial role of H2O2 in the infection of plants by Erwinia chrysanthemi. Mol Plant-Microbe Interact 13:421–429

    CAS  PubMed  Google Scholar 

  • Mithofer A, Schulze B, Boland W (2004) Biotic and heavy metal stress response in plants: evidence for common signals. FEBS Lett 566:1–5

    CAS  PubMed  Google Scholar 

  • Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2003) Abscisic acid influences the susceptibility of Arabidopsis thaliana to Pseudomonas syringae pv. tomato and Peronospora parasitica. Funct Plant Biol 30:461–469

    CAS  Google Scholar 

  • Montillet JL, Chamnongpol S, Rustérucci C, Dat J, Van De Cotte B, Agnel JP, Battesti C, Inzé D, Van Breusegem F, Triantaphylides C (2005) Fatty acid hydroperoxides and H2O2 in the execution of hypersensitive cell death in tobacco leaves. Plant Physiol 138:1516–1526

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mou Z, Fan W, Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113:935–944

    CAS  PubMed  Google Scholar 

  • Møller IM, Jensen PE, Hansson A (2007) Oxidative Modifications to Cellular Components in Plants. Annu Rev Plant Biol 58(1):459–481

    Google Scholar 

  • Navrot N, Collin V, Gualberto J, Gelhaye E, Hirasawa M, Rey P, Knaff DB, Issakidis E, Jacquot JP, Rouhier N (2006) Plant glutathione peroxidases are functional peroxiredoxins distributed in several subcellular compartments and regulated during biotic and abiotic stresses. Plant Physiol 142:1364–1379

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noctor G, Mhamdi A, Foyer CH (2014) The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol 164:1636–1648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nürnberger T, Nennstiel D, Jabs T, Sacks WR, Hahlbrock K, Scheel D (1994) High affinity binding of a fungal oligopeptide elicitor to parsley plasma membranes triggers multiple defence responses. Cell 78:449–460

    PubMed  Google Scholar 

  • Olson PD, Varner JE (1993) Hydrogen peroxide and lignification. Plant J 4:887–892

    CAS  Google Scholar 

  • Padaria JC, Thuy NT, Tarafdar A, Yadav R (2015) Development of a heat-responsive cDNA library from Prosopis cineraria and molecular characterisation of the Pchsp17.9 gene. J Hortic Sci Biotechnol 90:318–234

    CAS  Google Scholar 

  • Padaria JC, Yadav R, Tarafdar A, Lone SA, Kumar K, Sivalingam PN (2016) Molecular cloning and characterization of drought stress responsive abscisic acid-stress-ripening (Asr1) gene from wild jujube, Ziziphus nummularia (Burm. f.) Wight & Arn. Mol Biol Rep 43:849–859

    CAS  PubMed  Google Scholar 

  • Pandey P, Ramegowda V, Senthil-Kumar M (2015) Shared and unique responses of plants to multiple individual stresses and stress combinations: physiological and molecular mechanisms. Front Plant Sci 6:723

    PubMed  PubMed Central  Google Scholar 

  • Peleg-Grossman S, Volpin H, Levine A (2007) Root hair curling and Rhizobium infection in Medicago truncatula are mediated by phosphatidylinositide-regulated endocytosis and reactive oxygen species. J Exp Bot 58:1637–1649

    CAS  PubMed  Google Scholar 

  • Plancot B, Santaella C, Jaber R, Kiefer-Meyer MC, Follet-Gueye ML, Leprince J, Gattin I, Souc C, Driouich A, Vicré-Gibouin M (2013) Deciphering the responses of root border-like cells of Arabidopsis and flax to pathogen-derived elicitors. Plant Physiol 163:1584–1597

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rajasekaran K, Cary JW, Jacks TJ, Stromberg KD, Cleveland TE (2000) Inhibition of fungal growth in plants and in vitro by transgenic tobacco expressing a bacterial nonheme chloroperoxidase gene. Plant Cell Rep 19:333–338

    CAS  PubMed  Google Scholar 

  • Ramu SK, Peng HM, Cook DR (2002) Nod factor induction of reactive oxygen species production is correlated with expression of the early nodulin gene rip1 in Medicago truncatula. Mol Plant-Microbe Interact 15:522–528

    CAS  PubMed  Google Scholar 

  • Rejeb IB, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plan Theory 3:458–475

    Google Scholar 

  • Repka V (2002) Hydrogen peroxide generated via the octadecanoid pathway is neither necessary nor sufficient for methyl jasmonate-induced hypersensitive cell death in woody plants. Biol Plantarum 45:105–115

    CAS  Google Scholar 

  • Roychowdhury R, Khan MH, Choudhury S (2018) Arsenic in rice: an overview on stress implications, tolerance and mitigation strategies. In: Hasanuzzaman M, Nahar K, Fujita M (eds) Plants under metal and metalloid stress. Springer, Singapore, pp 401–415

    Google Scholar 

  • Roychowdhury R, Khan MH, Choudhury S (2019) Physiological and molecular responses for metalloid stress in rice - a comprehensive overview. In: Hasanuzzaman M, Fujita M, Nahar K, Biswas J (eds) Advances in rice research for abiotic stress tolerance. Woodhead Publishing, Elsevier, pp 341–369

    Google Scholar 

  • Rubio MC, James EK, Clemente MR, Bucciarelli B, Fedorova M, Vance CP, Becana M (2004) Localization of superoxide dismutases and hydrogen peroxide in legume root nodules. Mol Plant-Microbe Interact 17:1294–1305

    CAS  PubMed  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner HY, Hunt MD (1996) Systemic acquired resistance. Plant Cell 8:1809–1819

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santos R, Hérouart D, Sigaud S, Touati D, Puppo A (2001) Oxidative burst in alfalfa- Sinorhizobium meliloti symbiotic interaction. Mol Plant-Microbe Interact 14:86–89

    CAS  PubMed  Google Scholar 

  • Sasabe M, Takeuchi K, Kamoun S, Ichinose Y, Govers F, Toyoda K, Shiraishi T, Yamada T (2000) Independent pathways leading to apoptotic cell death, oxidative burst and defence gene expression in response to elicitin in tobacco cell suspension culture. Eur J Biochem 267:5005–5013

    CAS  PubMed  Google Scholar 

  • Sasaki K, Iwai T, Hiraga S, Kuroda K, Seo S, Mitsuhara I, Miyasaka A, Iwano M, Ito H, Matsui H, Ohashi Y (2004) Ten rice peroxidases redundantly respond to multiple stresses including infection with rice blast fungus. Plant Cell Physiol 45:1442–1452

    CAS  PubMed  Google Scholar 

  • Shadel GS, Horvath TL (2015) Mitochondrial ROS signalling in organismal homeostasis. Cell 163:560–569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Ghosh R (2017) Heat and soil moisture stress differentially impact chickpea plant infection with fungal pathogens. In: Senthil-Kumar M (ed) Plant tolerance to individual and concurrent stresses. Springer, New Delhi, pp 47–57

    Google Scholar 

  • Sharma M, Ghosh R, Tarafdar A, Telangre R (2015) An efficient method for zoospore production, infection and real-time quantification of Phytophthora cajani causing Phytophthora blight disease in pigeonpea under elevated atmospheric CO2. BMC Plant Biol 15:90

    PubMed  PubMed Central  Google Scholar 

  • Sharma S, Kumar V, Tripathi RB (2017) Isolation of phosphate solubilizing microorganism (PSMs) from soil. J Microbiol Biotechnol Res 1:90–95

    Google Scholar 

  • Shaw SL, Long SR (2003) Nod factor inhibition of reactive oxygen efflux in a host legume. Plant Physiol 132:2196–2204

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shetty NP, Kristensen BK, Newman MA, Møller K, Gregersen PL, Jørgensen HL (2003) Association of hydrogen peroxide with restriction of Septoria tritici in resistant wheat. Physiol Mol Plant Pathol 62:333–346

    CAS  Google Scholar 

  • Shetty NP, Mehrabi R, Lütken H, Haldrup A, Kema GH, Collinge DB, Jørgensen HJ (2007) Role of hydrogen peroxide during the interaction between the hemibiotrophic fungal pathogen Septoria tritici and wheat. New Phytol 174:637–647

    CAS  PubMed  Google Scholar 

  • Shetty NP, Jørgensen HJ, Jensen JD, Collinge DB, Shetty HS (2008) Roles of reactive oxygen species in interactions between plants and pathogens. Eur J Plant Pathol 121:267–280

    CAS  Google Scholar 

  • Simon UK, Polanschütz LM, Koffler BE, Zechmann B (2013) High resolution imaging of temporal and spatial changes of subcellular ascorbate, glutathione and H2O2 distribution during Botrytis cinerea infection in Arabidopsis. PLoS One 8:e65811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sinha R, Gupta A, Senthil-Kumar M (2016) Understanding the impact of drought on foliar and xylem invading bacterial pathogen stress in chickpea. Front Plant Sci 7:902

    PubMed  PubMed Central  Google Scholar 

  • Suzuki N, Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signalling and destruction. Physiol Plant 126:45–51

    CAS  Google Scholar 

  • Suzuki N, Rivero RM, Shulaev V, Blumwald E, Mittler R (2014) Abiotic and biotic stress combinations. New Phytol 1:32–43

    Google Scholar 

  • Tarafdar A, Rani TS, Chandran US, Ghosh R, Chobe DR, Sharma M (2018) Exploring combined effect of abiotic (soil moisture) and biotic (Sclerotium rolfsii Sacc.) stress on collar rot development in chickpea. Front Plant Sci 9:1154

    PubMed  PubMed Central  Google Scholar 

  • Taylor NL, Day DA, Millar AH (2002) Environmental stress causes oxidative damage to plant mitochondria leading to inhibition of glycine decarboxylase. J Biol Chem 277:42663–42668

    CAS  PubMed  Google Scholar 

  • Tertivanidis K, Goudoula C, Vasilikiotis C, Hassiotou E, Perl-Treves R, Tsaftaris A (2004) Superoxide dismutase transgenes in sugarbeets confer resistance to oxidative agents and the fungus C. beticola. Transgenic Res 13:225–233

    CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants.H2O2 accumulation in papillae and hypersensitive response during the barley-powdery mildew interaction. Plant J 11:1187–1194

    CAS  Google Scholar 

  • Tiedemann AV (1997) Evidence for a primary role of active oxygen species in induction of host cell death during infection of bean leaves with Botrytis cinerea. Physiol Mol Plant Pathol 50:151–166

    CAS  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2005) Pathogen-induced, NADPH oxidase-derived reactive oxygen intermediates suppress spread of cell death in Arabidopsis thaliana. Nat Genet 37:1130–1134

    CAS  PubMed  Google Scholar 

  • Torres MA, Jones JD, Dangl JL (2006) Reactive oxygen species signalling in response to pathogens. Plant Physiol 141:373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  • Valko MM, Morris H, Cronin MT (2005) Metals, toxicity and oxidative stress. Curr Med Chem 12:1161–1208

    CAS  PubMed  Google Scholar 

  • Varnova E, Van Breusegem F, Dat J, Belles-Boix E, Inze D (2002) The role of reactive oxygen species in signal transduction. In: Scheel D, Wasternack C (eds) Plant Signal Transduction. Oxford University press, pp 41–73

    Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    PubMed  PubMed Central  Google Scholar 

  • Van’t Slot KA, Knogge W (2002) A dual role for microbial pathogen-derived effector proteins in plant disease and resistance. Crit Rev Plant Sci 21:229–271

    Google Scholar 

  • Vernoux T, Wilson RC, Seeley KA, Reichheld JP, Muroy S, Brown S, Maughan SC, Cobbett CS, Van Montagu M, Inzé D, May MJ (2000) The ROOT MERISTEMLESS1/CADMIUM SENSITIVE2 gene defines a glutathione-dependent pathway involved in initiation and maintenance of cell division during postembryonic root development. Plant Cell 12:97–109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wally O, Jayaraj J, Punja Z (2009) Comparative resistance to foliar fungal pathogens in transgenic carrot plants expressing genes encoding for chitinase, b-1, 3-glucanase and peroxidise. Eur J Plant Pathol 123:331–342

    CAS  Google Scholar 

  • Walters DR (2003) Polyamines and plant disease. Phytochemistry 64:97–107

    CAS  PubMed  Google Scholar 

  • Wang ZQ, Chen Y, Yang YT, Su YC, Chen SS, Wu QB et al (2015) Cloning and expression analysis of ascorbate peroxidase gene (ScAPX) in sugarcane (Saccharum officinarum). J Agric Biotechnol 23:170–180

    CAS  Google Scholar 

  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Métraux JP, Ryals JA (1991) Coordinate gene activity in response to agents that induce systemic acquired resistance. Plant Cell 3:1085–1094

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wojtaszek P (1997) Oxidative burst: an early plant response to pathogen infection. Biochem J 322:681–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu GS, Shortt BJ, Lawrence EB, Leon J, Fitzsimmons KC, Levine EB, Raskin I, Shah DM (1997) Activation of host defence mechanisms by elevated production of H2O2 in transgenic plants. Plant Physiol 115:427–435

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Wang YJ, Zhou YH, Tao Y, Mao WH, Shi K, Asami T, Chen Z, Yu JQ (2009) Reactive oxygen species are involved in brassinosteroid-induced stress tolerance in cucumber. Plant Physiol 150:801–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Oh Y, Li H, Baldwin IT, Galis I (2012) Alternative oxidase in resistance to biotic stresses: Nicotiana attenuata AOX contributes to resistance to a pathogen and a piercing-sucking insect but not Manduca sexta larvae. Plant Physiol 160:1453–1467

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biswas, K., Adhikari, S., Tarafdar, A., Kumar, R., Saha, S., Ghosh, P. (2020). Reactive Oxygen Species and Antioxidant Defence Systems in Plants: Role and Crosstalk Under Biotic Stress. In: Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S. (eds) Sustainable Agriculture in the Era of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-45669-6_12

Download citation

Publish with us

Policies and ethics