Skip to main content

Assessment of Irradiation Stress in Crop Plants with Modern Technical Advances

  • Chapter
  • First Online:
Sustainable Agriculture in the Era of Climate Change

Abstract

It is their necessity for sustaining the crop productivity especially under the adverse condition of environmental impacts to meet the ever-increasing human population. The unfavourable environmental conditions especially with climate change force the selection of crop genotypes with a sustainable practice for better and higher productivities. Light is the crucial environmental inputs that set a bottleneck for the growth of the plants through low and/or excess irradiation. Photosynthesis is a multifaceted physiological phenomenon that solely depends on the quality and quantity of irradiance under any ecological niche that concerns the carbon dioxide (CO2) fixation and regulation of photorespiration. With different hierarchies of light requirement in photosynthesis, the induced photooxidation is the key to regulate the constitution of the photosynthetic organelle and its proper functions. Photochemistry with its successful utilization of irradiance is often limited by the loss of energy with higher wavelength as fluorescence. It is the realization of the plant scientists to consider the fluorescence as a valve to reduce the photooxidation and its consequences to the loss of carbon through photorespiration. Identification of specific genes imparts the structural and functional integrities of both the photosystems, their modalities in regulation and variations in C3 and C4 species at the insights for photosynthetic improvements at the molecular level. Moreover, the promising direction for CO2 photoassimilation leading to the mechanism of carbon concentration also opens up the possibilities of ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) in proper functioning, particularly under high irradiation stress. Undoubtedly, it is next to impossible to transfer the C4 trait into C3 into precise manner; however, improvisation of CO2 concentration on RuBisCO is fixed. Therefore, the modern state of the art in increasing photosynthetic efficiency is based on proper utilization of irradiation by more into photochemistry, reducing the photooxidation, prone to RuBisCO more into carboxylation and partitioning of photoassimilates into cellular constituents which are the spaces for crop improvement. Thus, the review is intended to improve the techniques and approaches for photosynthetic activities with possible and feasible directions by which sustenance crop growth and productivity may be assured under irradiation stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alric J, Lavergne J, Rappaport F (2010) Redox and ATP control of photosynthetic cyclic electron flow in Chlamydomonas reinhardtii (I) aerobic conditions. Biochim Biophys Acta 1797(1):44–51

    CAS  PubMed  Google Scholar 

  • Anten NP, Bastiaans L (2016) The use of canopy models to analyze light competition among plants. In: Hikosaka K, Niinemets Ãœ, Anten NPR (eds) Canopy photosynthesis: from basics to applications. Springer, Dordrecht, pp 379–398

    Google Scholar 

  • Ballottari M, Truong TB, De Re E, Erickson E, Stella GR, Fleming GR, Bassi R, Niyogi KK (2016) Identification of pH-sensing sites in the light harvesting complex stress-related 3 protein essential for triggering non-photochemical quenching in Chlamydomonas reinhardtii. J Biol Chem 291(14):7334–7346

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bandyopadhyay U, Das D, Banerjee RK (1999) Reactive oxygen species: oxidative damage and pathogenesis. Curr Sci 77:658–666

    CAS  Google Scholar 

  • Busch FA, Sage RF (2017) The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytol 213(3):1036–1051

    CAS  PubMed  Google Scholar 

  • Castillo CC, Tanaka K, Sato YI, Ishikawa R, Bellina B, Higham C, Chang N, Mohanty R, Kajale M, Fuller DQ (2016) Archaeogenetic study of prehistoric rice remains from Thailand and India: evidence of early japonica in South and Southeast Asia. Archaeol Anthropol Sci 8(3):523–543

    Google Scholar 

  • Chen YE, Liu WJ, Su YQ, Cui JM, Zhang ZW, Yuan M, Zhang HY, Yuan S (2016) Different response of photosystem II to short and long-term drought stress in Arabidopsis thaliana. Physiol Plant 158(2):225–235

    CAS  PubMed  Google Scholar 

  • Foyer CH, Lelandais M, Kunert KJ (1994) Photooxidative stress in plants. Physiol Plant 92(4):696–717

    CAS  Google Scholar 

  • Gerotto C, Morosinotto T (2013) Evolution of photoprotection mechanisms upon land colonization: evidence of PSBS-dependent NPQ in late Streptophyte algae. Physiol Plant 149(4):583–598

    CAS  PubMed  Google Scholar 

  • Gilmore AM (1999) How higher plants respond to excess light: energy dissipation in photosystem II. In: Singhal GS, Renger G, Sopory SK, Irrgang KD, Govindjee (eds) Concepts in photobiology. Springer, Dordrecht, pp 513–548

    Google Scholar 

  • Goron TL, Raizada MN (2015) Genetic diversity and genomic resources available for the small millet crops to accelerate a new green revolution. Front Plant Sci 6:157

    PubMed  PubMed Central  Google Scholar 

  • Guenni O, Romero E, Guédez Y, Bravo de Guenni L, Pittermann J (2018) Influence of low light intensity on growth and biomass allocation, leaf photosynthesis and canopy radiation interception and use in two forage species of Centrosema (DC.) Benth. Grass For Sci 73(4):967–978

    CAS  Google Scholar 

  • Guidi L, Landi M, Lo Piccolo E (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci 10:174

    PubMed  PubMed Central  Google Scholar 

  • Hagemann M, Bauwe H (2016) Photorespiration and the potential to improve photosynthesis. Curr Opin Chem Biol 35:109–116

    CAS  PubMed  Google Scholar 

  • Hagemann M, Fernie AR, Espie GS, Kern R, Eisenhut M, Reumann S, Bauwe H, Weber AP (2013) Evolution of the biochemistry of the photorespiratory C2 cycle. Plant Biol 15(4):639–647

    CAS  PubMed  Google Scholar 

  • Hall J, Renger T, Müh F, Picorel R, Krausz E (2016) The lowest-energy chlorophyll of photosystem II is adjacent to the peripheral antenna: emitting states of CP47 assigned via circularly polarized luminescence. Biochim Biophys Acta 1857(9):1580–1593

    CAS  PubMed  Google Scholar 

  • Hanson DT (2016) Breaking the rules of RuBisCO catalysis. J Exp Bot 67(11):3180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry RJ (2014) Genomics strategies for germplasm characterization and the development of climate resilient crops. Front Plant Sci 5:68

    PubMed  PubMed Central  Google Scholar 

  • Horton P (2012) Optimization of light harvesting and photoprotection: molecular mechanisms and physiological consequences. Philos Trans R Soc Lond B Biol Sci 367(1608):3455–3465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Idris A, Linatoc AC, Aliyu AM, Muhammad SM, Bakar MF (2018) Effect of light on the photosynthesis, pigment content and stomatal density of Sun and shade leaves of Vernonia Amygdalina. Int J Eng Technol 7(4.30):209–212

    CAS  Google Scholar 

  • Johnson MP, Davison PA, Ruban AV, Horton P (2008) The xanthophyll cycle pool size controls the kinetics of non-photochemical quenching in Arabidopsis thaliana. FEBS Lett 582(2):262–266

    CAS  PubMed  Google Scholar 

  • Kebeish R, Kreuzaler F, Metzlaff M, Niessen M, Peterhaensel C, Van Rie J (2015) Method for increasing photosynthetic carbon fixation in rice. United States patent application US 14/576,874. WO2010012796A1

    Google Scholar 

  • Li XP, Müller-Moulé P, Gilmore AM, Niyogi KK (2002) PsbS-dependent enhancement of feedback de-excitation protects photosystem II from photoinhibition. Proc Natl Acad Sci 99(23):15222–15227

    CAS  PubMed  Google Scholar 

  • Li G, Jain R, Chern M, Pham NT, Martin JA, Wei T, Schackwitz WS, Lipzen AM, Duong PQ, Jones KC, Jiang L (2017) The sequences of 1504 mutants in the model rice variety kitaake facilitate rapid functional genomic studies. Plant Cell 29(6):1218–1231

    CAS  PubMed  PubMed Central  Google Scholar 

  • Long TA, Okegawa Y, Shikanai T, Schmidt GW, Covert SF (2008) Conserved role of proton gradient regulation 5 in the regulation of PSI cyclic electron transport. Planta 228(6):907

    CAS  PubMed  Google Scholar 

  • Malnoë A (2018) Photoinhibition or photoprotection of photosynthesis? Update on the (newly termed) sustained quenching component qH. Environ Exp Bot 154:123–133

    Google Scholar 

  • Maxwell K, Badger MR, Osmond CB (1998) A comparison of CO2 and O2 exchange patterns and the relationship with chlorophyll fluorescence during photosynthesis in C3 and CAM plants. Funct Plant Biol 25(1):45–52

    Google Scholar 

  • Müller-Moulé P, Conklin PL, Niyogi KK (2002) Ascorbate deficiency can limit violaxanthin de-epoxidase activity in vivo. Plant Physiol 128(3):970–977

    PubMed  PubMed Central  Google Scholar 

  • Munne-Bosch S, Pinto-Marijuan M (2016) Free radicals, oxidative stress and antioxidants. Encycl Appl Plant Sci 2:16–19

    Google Scholar 

  • Neill SO, Gould KS (2003) Anthocyanins in leaves: light attenuators or antioxidants? Funct Plant Biol 30(8):865–873

    CAS  Google Scholar 

  • Nowicka B, Ciura J, SzymaÅ„ska R, Kruk J (2018) Improving photosynthesis, plant productivity and abiotic stress tolerance–current trends and future perspectives. J Plant Physiol 231:415–433

    CAS  PubMed  Google Scholar 

  • Orr DJ, Alcântara A, Kapralov MV, Andralojc PJ, Carmo-Silva E, Parry MA (2016) Surveying RuBisCO diversity and temperature response to improve crop photosynthetic efficiency. Plant Physiol 72(2):707–717

    Google Scholar 

  • Ouzounidou G, Moustakas M, Strasser RJ (1997) Sites of action of copper in the photosynthetic apparatus of maize leaves: kinetic analysis of chlorophyll fluorescence, oxygen evolution, absorption changes and thermal dissipation as monitored by photoacoustic signals. Funct Plant Biol 24(1):81–90

    CAS  Google Scholar 

  • Park YI, Chow WS, Anderson JM (1996) Chloroplast movement in the shade plant Tradescantia albiflora helps protect photosystem II against light stress. Plant Physiol 111(3):867–875

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruhil K, Ahmad A, Iqbal M, Tripathy BC (2015) Photosynthesis and growth responses of mustard (Brassica juncea L. cv. Pusa Bold) plants to free air carbon dioxide enrichment (FACE). Protoplasma 252(4):935–946

    CAS  PubMed  Google Scholar 

  • Sacharz J, Giovagnetti V, Ungerer P, Mastroianni G, Ruban AV (2017) The xanthophyll cycle affects reversible interactions between PsbS and light-harvesting complex II to control non-photochemical quenching. Nat Plants 3(2):16225

    PubMed  Google Scholar 

  • Saha I, De AK, Ghosh A, Sarkar B, Dey N, Adak MK (2018a) Preliminary variations in physiological modules when sub1A QTL is under soil-moisture deficit stress. Am J Plant Sci 9(04):732

    CAS  Google Scholar 

  • Saha I, De AK, Sarkar B, Ghosh A, Dey N, Adak MK (2018b) Cellular response of oxidative stress when sub1A QTL of rice receives water deficit stress. Plant Sci Today 5(3):84–94

    CAS  Google Scholar 

  • Sarvikas P, Hakala M, Pätsikkä E, Tyystjärvi T, Tyystjärvi E (2006) Action spectrum of photoinhibition in leaves of wild type and npq1-2 and npq4-1 mutants of Arabidopsis thaliana. Plant Cell Physiol 47(3):391–400

    CAS  PubMed  Google Scholar 

  • Schuler ML, Mantegazza O, Weber AP (2016) Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. Plant J 87(1):51–65

    CAS  PubMed  Google Scholar 

  • Schuster G, Dewit M, Staehelin LA, Ohad I (1986) Transient inactivation of the thylakoid photosystem II light-harvesting protein kinase system and concomitant changes in intramembrane particle size during photoinhibition of Chlamydomonas reinhardtii. J Cell Biol 103(1):71–80

    CAS  PubMed  Google Scholar 

  • Sharma M, Gupta SK, Deeba F, Pandey V (2017) Effects of reactive oxygen species on crop productivity: an overview. In: Singh VP, Singh S, Tripathi DK, Prasad SM, Chauhan DK (eds) Reactive oxygen species in plants: boon or bane – revisiting the role of ROS, vol 11. Wiley, Hoboken, p 117

    Google Scholar 

  • Singh S, Tripathi DK, Dubey NK, Chauhan DK (2016) Global explicit profiling of water deficit-induced diminutions in agricultural crop sustainability: key emerging trends and challenges. In: Ahmad P (ed) Water stress and crop plants: a sustainable approach. Wiley, Chichester

    Google Scholar 

  • Slattery RA, VanLoocke A, Bernacchi CJ, Zhu XG, Ort DR (2017) Photosynthesis, light use efficiency, and yield of reduced-chlorophyll soybean mutants in field conditions. Front Plant Sci 8:549

    PubMed  PubMed Central  Google Scholar 

  • South PF, Cavanagh AP, Lopez-Calcagno PE, Raines CA, Ort DR (2018) Optimizing photorespiration for improved crop productivity. J Integr Plant Biol 60(12):1217–1230

    CAS  PubMed  Google Scholar 

  • Sticklen M (2006) Plant genetic engineering to improve biomass characteristics for biofuels. Curr Opin Biotechnol 17(3):315–319

    CAS  PubMed  Google Scholar 

  • Taguchi-Shiobara F, Ota T, Ebana K, Ookawa T, Yamasaki M, Tanabata T, Yamanouchi U, Wu J, Ono N, Nonoue Y, Nagata K (2015) Natural variation in the flag LEAF morphology of rice due to a mutation of the NARROW LEAF 1 gene in Oryza sativa L. Genetics 201(2):795–808

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi A, Chauhan DK, Singh GS, Kumar N (2015) Effect of elevated CO2 and temperature stress on cereal crops. In: Azooz MM, Ahmad P (eds) Plant-environment interaction: responses and approaches to mitigate stress, vol 2. Wiley, Hoboken, p 184

    Google Scholar 

  • Vialet-Chabrand S, Matthews JS, Simkin AJ, Raines CA, Lawson T (2017) Importance of fluctuations in light on plant photosynthetic acclimation. Plant Physiol 173(4):2163–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vitlin Gruber A, Feiz L (2018) RuBisCO assembly in the chloroplast. Front Mol Biosci 5:24

    PubMed  PubMed Central  Google Scholar 

  • Walker BJ, Drewry DT, Slattery RA, VanLoocke A, Cho YB, Ort DR (2018) Chlorophyll can be reduced in crop canopies with little penalty to photosynthesis. Plant Physiol 176(2):1215–1232

    CAS  PubMed  Google Scholar 

  • Wang Z, Wu L, Sun K, Chen T, Jiang Z, Cheng T, Goddard WA III (2018) Surface ligand promotion of carbon dioxide reduction through stabilizing chemisorbed reactive intermediates. J Phys Chem Lett 9(11):3057–3061

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, I., Dolui, D., Ghosh, A., Sarkar, B., De, A.K., Adak, M.K. (2020). Assessment of Irradiation Stress in Crop Plants with Modern Technical Advances. In: Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., Srivastava, S. (eds) Sustainable Agriculture in the Era of Climate Change. Springer, Cham. https://doi.org/10.1007/978-3-030-45669-6_10

Download citation

Publish with us

Policies and ethics