Skip to main content

Effect of Acute Mechanical Circulatory Support on Kidney Function

  • Chapter
  • First Online:
Kidney Disease in the Cardiac Catheterization Laboratory

Abstract

Over the past two decades acute mechanical circulatory support (AMCS) devices are increasingly being used to support high-risk cardiovascular interventions or cardiogenic shock. The primary hemodynamic objectives for the use of AMCS devices include: (1) providing circulatory support by increasing mean arterial pressure, (2) unloading cardiac workload by reducing left ventricular and/or right ventricular pressures and volumes, (3) increasing myocardial perfusion, and (4) facilitating decongestion of the venous system. In this chapter, we review how each AMCS device achieves these hemodynamic objectives through distinct mechanisms of action and further discuss the impact of these devices on renal function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stretch R, Sauer CM, Yuh DD, Bonde P. National trends in the utilization of short-term mechanical circulatory support: incidence, outcomes, and cost analysis. J Am Coll Cardiol. 2014;64(14):1407–15.

    PubMed  Google Scholar 

  2. Williams DO, Korr KS, Gewirtz H, Most AS. The effect of intraaortic balloon counterpulsation on regional myocardial blood flow and oxygen consumption in the presence of coronary artery stenosis in patients with unstable angina. Circulation. 1982;66(3):593–7.

    CAS  PubMed  Google Scholar 

  3. Kern MJ, Aguirre FV, Tatineni S, Penick D, Serota H, Donohue T, et al. Enhanced coronary blood flow velocity during intraaortic balloon counterpulsation in critically ill patients. J Am Coll Cardiol. 1993;21(2):359–68.

    CAS  PubMed  Google Scholar 

  4. Braunwald E, Sarnoff SJ, Case RB, Stainsby WN, Welch GH Jr. Hemodynamic determinants of coronary flow: effect of changes in aortic pressure and cardiac output on the relationship between myocardial oxygen consumption and coronary flow. Am J Phys. 1958;192(1):157–63.

    CAS  Google Scholar 

  5. Sarnoff SJ, Braunwald E, Welch GH Jr, Case RB, Stainsby WN, Macruz R. Hemodynamic determinants of oxygen consumption of the heart with special reference to the tension-time index. Am J Phys. 1958;192(1):148–56.

    CAS  Google Scholar 

  6. Sarnoff SJ, Case RB, Welch GH Jr, Braunwald E, Stainsby WN. Performance characteristics and oxygen debt in a nonfailing, metabolically supported, isolated heart preparation. Am J Phys. 1958;192(1):141–7.

    CAS  Google Scholar 

  7. Welch GH Jr, Braunwald E, Case RB, Sarnoff SJ. The effect of mephentermine sulfate on myocardial oxygen consumption, myocardial efficiency and peripheral vascular resistance. Am J Med. 1958;24(6):871–81.

    PubMed  Google Scholar 

  8. Schreuder JJ, Castiglioni A, Donelli A, Maisano F, Jansen JR, Hanania R, et al. Automatic intraaortic balloon pump timing using an intrabeat dicrotic notch prediction algorithm. Ann Thorac Surg. 2005;79(3):1017–22; discussion 22.

    PubMed  Google Scholar 

  9. Schreuder JJ, Maisano F, Donelli A, Jansen JR, Hanlon P, Bovelander J, et al. Beat-to-beat effects of intraaortic balloon pump timing on left ventricular performance in patients with low ejection fraction. Ann Thorac Surg. 2005;79(3):872–80.

    PubMed  Google Scholar 

  10. Annamalai SK, Buiten L, Esposito ML, Paruchuri V, Mullin A, Breton C, et al. Acute hemodynamic effects of intra-aortic balloon counterpulsation pumps in advanced heart failure. J Card Fail. 2017;23(8):606–14.

    PubMed  Google Scholar 

  11. Sintek MA, Gdowski M, Lindman BR, Nassif M, Lavine KJ, Novak E, et al. Intra-aortic balloon counterpulsation in patients with chronic heart failure and cardiogenic shock: clinical response and predictors of stabilization. J Card Fail. 2015;21(11):868–76.

    PubMed  PubMed Central  Google Scholar 

  12. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, et al. Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med. 2012;367(14):1287–96.

    CAS  PubMed  Google Scholar 

  13. Authors/Task Force m, Windecker S, Kolh P, Alfonso F, Collet JP, Cremer J, et al. 2014 ESC/EACTS guidelines on myocardial revascularization: the Task Force on Myocardial Revascularization of the European Society of Cardiology (ESC) and the European Association for Cardio-Thoracic Surgery (EACTS) developed with the special contribution of the European Association of Percutaneous Cardiovascular Interventions (EAPCI). Eur Heart J. 2014;35(37):2541–619.

    Google Scholar 

  14. O’Gara PT, Kushner FG, Ascheim DD, Casey DE Jr, Chung MK, de Lemos JA, et al. 2013 ACCF/AHA guideline for the management of ST-elevation myocardial infarction: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;127(4):e362–425.

    PubMed  Google Scholar 

  15. Moazami N, Fukamachi K, Kobayashi M, Smedira NG, Hoercher KJ, Massiello A, et al. Axial and centrifugal continuous-flow rotary pumps: a translation from pump mechanics to clinical practice. J Heart Lung Transplant. 2013;32(1):1–11.

    PubMed  Google Scholar 

  16. Sjauw KD, Konorza T, Erbel R, Danna PL, Viecca M, Minden HH, et al. Supported high-risk percutaneous coronary intervention with the Impella 2.5 device the Europella registry. J Am Coll Cardiol. 2009;54(25):2430–4.

    PubMed  Google Scholar 

  17. Maini B, Naidu SS, Mulukutla S, Kleiman N, Schreiber T, Wohns D, et al. Real-world use of the Impella 2.5 circulatory support system in complex high-risk percutaneous coronary intervention: the USpella registry. Catheter Cardiovasc Interv. 2012;80(5):717–25.

    PubMed  Google Scholar 

  18. Seyfarth M, Sibbing D, Bauer I, Frohlich G, Bott-Flugel L, Byrne R, et al. A randomized clinical trial to evaluate the safety and efficacy of a percutaneous left ventricular assist device versus intra-aortic balloon pumping for treatment of cardiogenic shock caused by myocardial infarction. J Am Coll Cardiol. 2008;52(19):1584–8.

    PubMed  Google Scholar 

  19. Basir MB, Schreiber TL, Grines CL, Dixon SR, Moses JW, Maini BS, et al. Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am J Cardiol. 2017;119(6):845–51.

    PubMed  Google Scholar 

  20. Griffith BP, Anderson MB, Samuels LE, Pae WE Jr, Naka Y, Frazier OH. The RECOVER I: a multicenter prospective study of Impella 5.0/LD for postcardiotomy circulatory support. J Thorac Cardiovasc Surg. 2013;145(2):548–54.

    PubMed  Google Scholar 

  21. Lemaire A, Anderson MB, Lee LY, Scholz P, Prendergast T, Goodman A, et al. The Impella device for acute mechanical circulatory support in patients in cardiogenic shock. Ann Thorac Surg. 2014;97(1):133–8.

    PubMed  Google Scholar 

  22. Hall SA, Uriel N, Carey SA, Edens M, Gong G, Esposito M, et al. Use of a percutaneous temporary circulatory support device as a bridge to decision during acute decompensation of advanced heart failure. J Heart Lung Transplant. 2018;37(1):100–6.

    PubMed  Google Scholar 

  23. Esposito ML, Jablonski J, Kras A, Krasney S, Kapur NK. Maximum level of mobility with axillary deployment of the Impella 5.0 is associated with improved survival. Int J Artif Organs. 2018;41:236. https://doi.org/10.1177/0391398817752575.

    Article  PubMed  Google Scholar 

  24. Anderson MB, Goldstein J, Milano C, Morris LD, Kormos RL, Bhama J, et al. Benefits of a novel percutaneous ventricular assist device for right heart failure: the prospective RECOVER RIGHT study of the Impella RP device. J Heart Lung Transplant. 2015;34(12):1549–60.

    PubMed  Google Scholar 

  25. Butt W, MacLaren G. Extracorporeal membrane oxygenation 2016: an update. F1000Res. 2016;5:F1000.

    PubMed  PubMed Central  Google Scholar 

  26. Yetimakman AF, Tanyildiz M, Kesici S, Kockuzu E, Bayrakci B. Continuous renal replacement therapy applications on extracorporeal membrane oxygenation circuit. Indian J Crit Care Med. 2017;21(6):355–8.

    PubMed  PubMed Central  Google Scholar 

  27. Laverdure F, Masson L, Tachon G, Guihaire J, Stephan F. Connection of a renal replacement therapy or plasmapheresis device to the ECMO circuit. ASAIO J. 2018;64(1):122–5.

    PubMed  Google Scholar 

  28. Esposito ML, Shah N, Dow S, Kang S, Paruchuri V, Karas RH, et al. Distinct effects of left or right atrial cannulation on left ventricular hemodynamics in a swine model of acute myocardial injury. ASAIO J. 2016;62(6):671–6.

    PubMed  Google Scholar 

  29. Swartz MT, Sakamoto T, Arai H, Reedy JE, Salenas L, Yuda T, et al. Effects of intraaortic balloon position on renal artery blood flow. Ann Thorac Surg. 1992;53(4):604–10.

    CAS  PubMed  Google Scholar 

  30. Haywood GA, Keeling PJ, Parker DJ, McKenna WJ. Short-term effects of intra-aortic balloon pumping on renal blood flow and renal oxygen consumption in cardiogenic shock. J Card Fail. 1995;1(3):217–22.

    CAS  PubMed  Google Scholar 

  31. Sloth E, Sprogoe P, Lindskov C, Horlyck A, Solvig J, Jakobsen C. Intra-aortic balloon pumping increases renal blood flow in patients with low left ventricular ejection fraction. Perfusion. 2008;23(4):223–6.

    CAS  PubMed  Google Scholar 

  32. Moller-Helgestad OK, Poulsen CB, Christiansen EH, Lassen JF, Ravn HB. Support with intra-aortic balloon pump vs. Impella2.5(R) and blood flow to the heart, brain and kidneys - an experimental porcine model of ischaemic heart failure. Int J Cardiol. 2015;178:153–8.

    PubMed  Google Scholar 

  33. Flaherty MP, Pant S, Patel SV, Kilgore T, Dassanayaka S, Loughran JH, et al. Hemodynamic support with a microaxial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention. Circ Res. 2017;120(4):692–700.

    CAS  PubMed  Google Scholar 

  34. Naranjo M, Rangaswami J, Witzke C. Letter by Naranjo et al regarding article, “Hemodynamic support with a micro-axial percutaneous left ventricular assist device (Impella) protects against acute kidney injury in patients undergoing high-risk percutaneous coronary intervention”. Circ Res. 2017;120(11):e51.

    CAS  PubMed  Google Scholar 

  35. Badiye AP, Hernandez GA, Novoa I, Chaparro SV. Incidence of hemolysis in patients with cardiogenic shock treated with Impella percutaneous left ventricular assist device. ASAIO J. 2016;62(1):11–4.

    CAS  PubMed  Google Scholar 

  36. Chen YC, Tsai FC, Fang JT, Yang CW. Acute kidney injury in adults receiving extracorporeal membrane oxygenation. J Formos Med Assoc. 2014;113(11):778–85.

    PubMed  Google Scholar 

  37. Villa G, Katz N, Ronco C. Extracorporeal membrane oxygenation and the kidney. Cardiorenal Med. 2015;6(1):50–60.

    PubMed  PubMed Central  Google Scholar 

  38. Kozik DJ, Tweddell JS. Characterizing the inflammatory response to cardiopulmonary bypass in children. Ann Thorac Surg. 2006;81(6):S2347–54.

    PubMed  Google Scholar 

  39. Toft P, Nielsen CH, Tonnesen E, Hansen TG, Hokland M. Changes in adhesion molecule expression and oxidative burst activity of granulocytes and monocytes during open-heart surgery with cardiopulmonary bypass compared with abdominal surgery. Eur J Anaesthesiol. 1998;15(3):345–53.

    CAS  PubMed  Google Scholar 

  40. Antonsen S, Brandslund I, Clemensen S, Sofeldt S, Madsen T, Alstrup P. Neutrophil lysosomal enzyme release and complement activation during cardiopulmonary bypass. Scand J Thorac Cardiovasc Surg. 1987;21(1):47–52.

    CAS  PubMed  Google Scholar 

  41. Heimark RL, Kurachi K, Fujikawa K, Davie EW. Surface activation of blood coagulation, fibrinolysis and kinin formation. Nature. 1980;286(5772):456–60.

    CAS  PubMed  Google Scholar 

  42. Despotis GJ, Avidan MS, Hogue CW Jr. Mechanisms and attenuation of hemostatic activation during extracorporeal circulation. Ann Thorac Surg. 2001;72(5):S1821–31.

    CAS  PubMed  Google Scholar 

  43. Mc IRB, Timpa JG, Kurundkar AR, Holt DW, Kelly DR, Hartman YE, et al. Plasma concentrations of inflammatory cytokines rise rapidly during ECMO-related SIRS due to the release of preformed stores in the intestine. Lab Investig. 2010;90(1):128–39.

    Google Scholar 

  44. Bonventre JV, Yang L. Cellular pathophysiology of ischemic acute kidney injury. J Clin Invest. 2011;121(11):4210–21.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Undar A, Masai T, Yang SQ, Goddard-Finegold J, Frazier OH, Fraser CD Jr. Effects of perfusion mode on regional and global organ blood flow in a neonatal piglet model. Ann Thorac Surg. 1999;68(4):1336–42; discussion 42–3.

    CAS  PubMed  Google Scholar 

  46. Song Z, Wang C, Stammers AH. Clinical comparison of pulsatile and nonpulsatile perfusion during cardiopulmonary bypass. J Extra Corpor Technol. 1997;29(4):170–5.

    CAS  PubMed  Google Scholar 

  47. Semmekrot BA, Pesman GJ, Span PN, Sweep CG, van Heijst AF, Monnens LA, et al. Serial plasma concentrations of atrial natriuretic peptide, plasma renin activity, aldosterone, and antidiuretic hormone in neonates on extracorporeal membrane oxygenation. ASAIO J. 2002;48(1):26–33.

    CAS  PubMed  Google Scholar 

  48. Lin CY, Chen YC, Tsai FC, Tian YC, Jenq CC, Fang JT, et al. RIFLE classification is predictive of short-term prognosis in critically ill patients with acute renal failure supported by extracorporeal membrane oxygenation. Nephrol Dial Transplant. 2006;21(10):2867–73.

    PubMed  Google Scholar 

  49. Yan X, Jia S, Meng X, Dong P, Jia M, Wan J, et al. Acute kidney injury in adult postcardiotomy patients with extracorporeal membrane oxygenation: evaluation of the RIFLE classification and the acute kidney injury network criteria. Eur J Cardiothorac Surg. 2010;37(2):334–8.

    PubMed  Google Scholar 

  50. Tsai TY, Chien H, Tsai FC, Pan HC, Yang HY, Lee SY, et al. Comparison of RIFLE, AKIN, and KDIGO classifications for assessing prognosis of patients on extracorporeal membrane oxygenation. J Formos Med Assoc. 2017;116(11):844–51.

    PubMed  Google Scholar 

  51. Chen YC, Tsai FC, Chang CH, Lin CY, Jenq CC, Juan KC, et al. Prognosis of patients on extracorporeal membrane oxygenation: the impact of acute kidney injury on mortality. Ann Thorac Surg. 2011;91(1):137–42.

    PubMed  Google Scholar 

  52. Gregoric ID, Loyalka P, Radovancevic R, Jovic Z, Frazier OH, Kar B. TandemHeart as a rescue therapy for patients with critical aortic valve stenosis. Ann Thorac Surg. 2009;88(6):1822–6.

    PubMed  Google Scholar 

  53. Thiele H, Sick P, Boudriot E, Diederich KW, Hambrecht R, Niebauer J, et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26(13):1276–83.

    PubMed  Google Scholar 

  54. Ostermann M, McCullough PA, Forni LG, Bagshaw SM, Joannidis M, Shi J, et al. Kinetics of urinary cell cycle arrest markers for acute kidney injury following exposure to potential renal insults. Crit Care Med. 2018;46(3):375–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Maisel AS, Wettersten N, van Veldhuisen DJ, Mueller C, Filippatos G, Nowak R, et al. Neutrophil gelatinase-associated lipocalin for acute kidney injury during acute heart failure hospitalizations: the AKINESIS study. J Am Coll Cardiol. 2016;68(13):1420–31.

    CAS  PubMed  Google Scholar 

  56. Pronschinske KB, Qiu S, Wu C, Kato TS, Khawaja T, Takayama H, et al. Neutrophil gelatinase-associated lipocalin and cystatin C for the prediction of clinical events in patients with advanced heart failure and after ventricular assist device placement. J Heart Lung Transplant. 2014;33(12):1215–22.

    PubMed  PubMed Central  Google Scholar 

  57. Fuernau G, Poenisch C, Eitel I, Denks D, de Waha S, Poss J, et al. Prognostic impact of established and novel renal function biomarkers in myocardial infarction with cardiogenic shock: a biomarker substudy of the IABP-SHOCK II-trial. Int J Cardiol. 2015;191:159–66.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navin K. Kapur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Annamalai, S.K., Jorde, L.E., Davila, C.D., Kapur, N.K. (2020). Effect of Acute Mechanical Circulatory Support on Kidney Function. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics