Skip to main content

Contrast-Induced Acute Kidney Injury: Epidemiology, Risk Stratification, and Prognosis

  • Chapter
  • First Online:
Kidney Disease in the Cardiac Catheterization Laboratory

Abstract

Contrast-induced acute kidney injury (CI-AKI) risk is generally higher with the use of coronary angiography, with an average incidence of CI-AKI of 13.7% and a range between 4.4% and 28%. Long-term effects of acute kidney injury following nephrotoxic exposure include CKD progression and all-cause mortality. Baseline CKD status is the most predictive risk factor for CI-AKI, with increased risk in eGFR <30 mL/min/1.73 m. Prophylactic measures, including avoidance of high-osmolar contrast media (HOCM), use of lowest volume of contrast media (CM), and volume optimization with isotonic fluids, are useful for the prevention of CI-AKI. Innovative measures for targeting the latter two strategies are being investigated. Other prophylactic measures, including extracorporeal removal of CM with dialysis methods and administration of N-acetyl cysteine, have not been consistently shown to prevent CI-AKI. Although long-term outcomes following CI-AKI are present, it remains crucial to consider the risks and benefits of use vs nonuse of angiographic procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartels ED, Brun GC, Gammeltoft A, Gjørup PA. Acute Annria Following Intravenous Pyelography in a Patient with Myelomatosis. Acta Med Scand. 1954;150(4):297–302.

    CAS  PubMed  Google Scholar 

  2. Luk L, Steinman J, Newhouse JH. Intravenous contrast-induced nephropathy-the rise and fall of a threatening idea. Adv Chronic Kidney Dis. 2017;24(3):169–75.

    PubMed  Google Scholar 

  3. Parfrey PS, Griffiths SM, Barrett BJ, et al. Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med. 1989;320(3):143–9.

    CAS  PubMed  Google Scholar 

  4. Katzberg RW, Newhouse JH. Intravenous contrast medium-induced nephrotoxicity: is the medical risk really as great as we have come to believe? Radiology. 2010;256(1):21–8.

    PubMed  Google Scholar 

  5. McDonald RJ, McDonald JS, Newhouse JH, Davenport MS. Controversies in contrast material-induced acute kidney injury: closing in on the truth? Radiology. 2015;277(3):627–32.

    PubMed  Google Scholar 

  6. Newhouse JH, RoyChoudhury A. Quantitating contrast medium-induced nephropathy: controlling the controls. Radiology. 2013;267(1):4–8.

    PubMed  Google Scholar 

  7. Katzberg RW, Lamba R. Contrast-induced nephropathy after intravenous administration: fact or fiction? Radiol Clin North Am. 2009;47(5):789–800.. v

    PubMed  Google Scholar 

  8. Pandya B, Chalhoub JM, Parikh V, et al. Contrast media use in patients with chronic kidney disease undergoing coronary angiography: a systematic review and meta-analysis of randomized trials. Int J Cardiol. 2017;228:137–44.

    PubMed  Google Scholar 

  9. Lasser EC, Lyon SG, Berry CC. Reports on contrast media reactions: analysis of data from reports to the U.S. Food and Drug Administration. Radiology. 1997;203(3):605–10.

    CAS  PubMed  Google Scholar 

  10. Rihal CS, Textor SC, Grill DE, et al. Incidence and prognostic importance of acute renal failure after percutaneous coronary intervention. Circulation. 2002;105(19):2259–64.

    PubMed  Google Scholar 

  11. McCullough PA, Wolyn R, Rocher LL, Levin RN, O'Neill WW. Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med. 1997;103(5):368–75.

    CAS  PubMed  Google Scholar 

  12. Marenzi G, Lauri G, Assanelli E, et al. Contrast-induced nephropathy in patients undergoing primary angioplasty for acute myocardial infarction. J Am Coll Cardiol. 2004;44(9):1780–5.

    PubMed  Google Scholar 

  13. Dangas G, Iakovou I, Nikolsky E, et al. Contrast-induced nephropathy after percutaneous coronary interventions in relation to chronic kidney disease and hemodynamic variables. Am J Cardiol. 2005;95(1):13–9.

    PubMed  Google Scholar 

  14. Levy EM, Viscoli CM, Horwitz RI. The effect of acute renal failure on mortality. A cohort analysis. JAMA. 1996;275(19):1489–94.

    CAS  PubMed  Google Scholar 

  15. Gruberg L, Mintz GS, Mehran R, et al. The prognostic implications of further renal function deterioration within 48 h of interventional coronary procedures in patients with pre-existent chronic renal insufficiency. J Am Coll Cardiol. 2000;36(5):1542–8.

    CAS  PubMed  Google Scholar 

  16. Lindsay J, Apple S, Pinnow EE, et al. Percutaneous coronary intervention-associated nephropathy foreshadows increased risk of late adverse events in patients with normal baseline serum creatinine. Catheter Cardiovasc Interv. 2003;59(3):338–43.

    PubMed  Google Scholar 

  17. Rudnick MR, Goldfarb S, Tumlin J. Contrast-induced nephropathy: is the picture any clearer? Clin J Am Soc Nephrol. 2008;3(1):261–2.

    PubMed  Google Scholar 

  18. Solomon RJ, Natarajan MK, Doucet S, et al. Cardiac angiography in Renally impaired patients (CARE) study: a randomized double-blind trial of contrast-induced nephropathy in patients with chronic kidney disease. Circulation. 2007;115(25):3189–96.

    PubMed  Google Scholar 

  19. Hoste EAJ, Kellum JA, Selby NM, et al. Global epidemiology and outcomes of acute kidney injury. Nat Rev Nephrol. 2018;14:607–25.

    CAS  PubMed  Google Scholar 

  20. James MT, Samuel SM, Manning MA, et al. Contrast-induced acute kidney injury and risk of adverse clinical outcomes after coronary angiography: a systematic review and meta-analysis. Circ Cardiovasc Interv. 2013;6(1):37–43.

    PubMed  Google Scholar 

  21. Chertow GM, Normand SL, McNeil BJ. "Renalism": inappropriately low rates of coronary angiography in elderly individuals with renal insufficiency. J Am Soc Nephrol. 2004;15(9):2462–8.

    PubMed  Google Scholar 

  22. Han JH, Chandra A, Mulgund J, et al. Chronic kidney disease in patients with non-ST-segment elevation acute coronary syndromes. Am J Med. 2006;119(3):248–54.

    PubMed  Google Scholar 

  23. Goldenberg I, Subirana I, Boyko V, et al. Relation between renal function and outcomes in patients with non-ST-segment elevation acute coronary syndrome: real-world data from the European public health outcome research and indicators collection project. Arch Intern Med. 2010;170(10):888–95.

    PubMed  Google Scholar 

  24. Mehran R, Nikolsky E. Contrast-induced nephropathy: definition, epidemiology, and patients at risk. Kidney Int Suppl. 2006;100:S11–5.

    CAS  Google Scholar 

  25. O'Sullivan ED, Hughes J, Ferenbach DA. Renal aging: causes and consequences. J Am Soc Nephrol. 2017;28(2):407–20.

    CAS  PubMed  Google Scholar 

  26. Sidhu RB, Brown JR, Robb JF, et al. Interaction of gender and age on post cardiac catheterization contrast-induced acute kidney injury. Am J Cardiol. 2008;102(11):1482–6.

    PubMed  Google Scholar 

  27. Berns AS. Nephrotoxicity of contrast media. Kidney Int. 1989;36(4):730–40.

    CAS  PubMed  Google Scholar 

  28. Rudnick MR, Goldfarb S, Wexler L, et al. Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol cooperative study. Kidney Int. 1995;47(1):254–61.

    CAS  PubMed  Google Scholar 

  29. VanZee BE, Hoy WE, Talley TE, Jaenike JR. Renal injury associated with intravenous pyelography in nondiabetic and diabetic patients. Ann Intern Med. 1978;89(1):51–4.

    CAS  PubMed  Google Scholar 

  30. Lameire N, Adam A, Becker CR, et al. Baseline renal function screening. Am J Cardiol. 2006;98(6a):21k–6k.

    PubMed  Google Scholar 

  31. Khwaja A. KDIGO clinical practice guidelines for acute kidney injury. Nephron Clin Pract. 2012;120(4):c179–84.

    PubMed  Google Scholar 

  32. Ahuja TS, Niaz N, Agraharkar M. Contrast-induced nephrotoxicity in renal allograft recipients. Clin Nephrol. 2000;54(1):11–4.

    CAS  PubMed  Google Scholar 

  33. Nikolsky E, Mehran R, Turcot D, et al. Impact of chronic kidney disease on prognosis of patients with diabetes mellitus treated with percutaneous coronary intervention. Am J Cardiol. 2004;94(3):300–5.

    PubMed  Google Scholar 

  34. McCullough PA. Radiocontrast-induced acute kidney injury. Nephron Physiol. 2008;109(4):p61–72.

    CAS  PubMed  Google Scholar 

  35. Toprak O, Cirit M, Yesil M, et al. Impact of diabetic and pre-diabetic state on development of contrast-induced nephropathy in patients with chronic kidney disease. Nephrol Dial Transplant. 2007;22(3):819–26.

    PubMed  Google Scholar 

  36. Nikolsky E, Mehran R, Lasic Z, et al. Low hematocrit predicts contrast-induced nephropathy after percutaneous coronary interventions. Kidney Int. 2005;67(2):706–13.

    PubMed  Google Scholar 

  37. Rich MW, Crecelius CA. Incidence, risk factors, and clinical course of acute renal insufficiency after cardiac catheterization in patients 70 years of age or older. A prospective study. Arch Intern Med. 1990;150(6):1237–42.

    CAS  PubMed  Google Scholar 

  38. Mehran R, Aymong ED, Nikolsky E, et al. A simple risk score for prediction of contrast-induced nephropathy after percutaneous coronary intervention: development and initial validation. J Am Coll Cardiol. 2004;44(7):1393–9.

    PubMed  Google Scholar 

  39. Allen DW, Ma B, Leung KC, et al. Risk prediction models for contrast-induced acute kidney injury accompanying cardiac catheterization: systematic review and meta-analysis. Can J Cardiol. 2017;33(6):724–36.

    PubMed  Google Scholar 

  40. Solomon RJ, Mehran R, Natarajan MK, et al. Contrast-induced nephropathy and long-term adverse events: cause and effect? Clin J Am Soc Nephrol. 2009;4(7):1162–9.

    PubMed  PubMed Central  Google Scholar 

  41. Solomon R. Contrast media: are there differences in nephrotoxicity among contrast media? Biomed Res Int. 2014;2014:934947.

    PubMed  PubMed Central  Google Scholar 

  42. https://www.acr.org/Clinical-Resources/ACR-Appropriateness-Criteria.

  43. ACR Clinical Appropriateness Criteria 2018.pdf.

    Google Scholar 

  44. Barrett BJ, Carlisle EJ. Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology. 1993;188(1):171–8.

    CAS  PubMed  Google Scholar 

  45. Grynne BH, Nossen JO, Bolstad B, Borch KW. Main results of the first comparative clinical studies on Visipaque. Acta Radiol Suppl. 1995;399:265–70.

    CAS  PubMed  Google Scholar 

  46. Murakami R, Tajima H, Kumazaki T, Yamamoto K. Effect of iodixanol on renal function immediately after abdominal angiography. Clinical comparison with iomeprol and ioxaglate. Acta radiologica (Stockholm, Sweden : 1987). 1998;39(4):368–71.

    CAS  Google Scholar 

  47. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348(6):491–9.

    CAS  PubMed  Google Scholar 

  48. Solomon R. The role of osmolality in the incidence of contrast-induced nephropathy: a systematic review of angiographic contrast media in high risk patients. Kidney Int. 2005;68(5):2256–63.

    CAS  PubMed  Google Scholar 

  49. Heinrich MC, Haberle L, Muller V, Bautz W, Uder M. Nephrotoxicity of iso-osmolar iodixanol compared with nonionic low-osmolar contrast media: meta-analysis of randomized controlled trials. Radiology. 2009;250(1):68–86.

    PubMed  Google Scholar 

  50. Reed M, Meier P, Tamhane UU, Welch KB, Moscucci M, Gurm HS. The relative renal safety of iodixanol compared with low-osmolar contrast media: a meta-analysis of randomized controlled trials. JACC Cardiovasc Interv. 2009;2(7):645–54.

    PubMed  Google Scholar 

  51. From AM, Al Badarin FJ, McDonald FS, Bartholmai BJ, Cha SS, Rihal CS. Iodixanol versus low-osmolar contrast media for prevention of contrast induced nephropathy: meta-analysis of randomized, controlled trials. Circ Cardiovasc Interv. 2010;3(4):351–8.

    CAS  PubMed  Google Scholar 

  52. McCullough PA, Brown JR. Effects of intra-arterial and intravenous Iso-Osmolar contrast medium (Iodixanol) on the risk of contrast-induced acute kidney injury: a meta-analysis. Cardioren Med. 2011;1(4):220–34.

    CAS  Google Scholar 

  53. McCullough PA, Bertrand ME, Brinker JA, Stacul F. A meta-analysis of the renal safety of isosmolar iodixanol compared with low-osmolar contrast media. J Am Coll Cardiol. 2006;48(4):692–9.

    CAS  PubMed  Google Scholar 

  54. Eng J, Subramaniam RM, Wilson RF, et al. AHRQ comparative effectiveness reviews. Contrast-induced nephropathy: comparative effects of different contrast media. Rockville: Agency for Healthcare Research and Quality (US); 2015.

    Google Scholar 

  55. McCullough PA, Choi JP, Feghali GA, et al. Contrast-induced acute kidney injury. J Am Coll Cardiol. 2016;68(13):1465–73.

    PubMed  Google Scholar 

  56. Mehran R, Dangas GD, Weisbord SD. Contrast-associated acute kidney injury. N Engl J Med. 2019;380(22):2146–55.

    CAS  PubMed  Google Scholar 

  57. Levine GN, Bates ER, Blankenship JC, et al. 2011 ACCF/AHA/SCAI guideline for percutaneous coronary intervention. A report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines and the society for cardiovascular angiography and interventions. J Am Coll Cardiol. 2011;58(24):e44–122.

    PubMed  Google Scholar 

  58. Aoun J, Nicolas D, Brown JR, Jaber BL. Maximum allowable contrast dose and prevention of acute kidney injury following cardiovascular procedures. Curr Opin Nephrol Hypertens. 2018;27(2):121–9.

    PubMed  PubMed Central  Google Scholar 

  59. Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86(6 Pt 1):649–52.

    CAS  PubMed  Google Scholar 

  60. Laskey WK, Jenkins C, Selzer F, et al. Volume-to-creatinine clearance ratio: a pharmacokinetically based risk factor for prediction of early creatinine increase after percutaneous coronary intervention. J Am Coll Cardiol. 2007;50(7):584–90.

    CAS  PubMed  Google Scholar 

  61. Hawkins IF, Cho KJ, Caridi JG. Carbon dioxide in angiography to reduce the risk of contrast-induced nephropathy. Radiol Clin North Am. 2009;47(5):813–25.. v-vi

    PubMed  Google Scholar 

  62. Kian K, Wyatt C, Schon D, Packer J, Vassalotti J, Mishler R. Safety of low-dose radiocontrast for interventional AV fistula salvage in stage 4 chronic kidney disease patients. Kidney Int. 2006;69(8):1444–9.

    CAS  PubMed  Google Scholar 

  63. Hill M, Mor MK, Travis L, et al. Renal function following fistulography in patients with advanced chronic kidney disease. Ren Fail. 2013;35(6):791–5.

    CAS  PubMed  Google Scholar 

  64. Fujihara M, Kawasaki D, Shintani Y, et al. Endovascular therapy by CO2 angiography to prevent contrast-induced nephropathy in patients with chronic kidney disease: a prospective multicenter trial of CO2 angiography registry. Catheter Cardiovasc Interv. 2015;85(5):870–7.

    PubMed  Google Scholar 

  65. Kelly SC, Li S, Stys TP, Thompson PA, Stys AT. Reduction in contrast nephropathy From coronary angiography and percutaneous coronary intervention with ultra-low contrast delivery using an automated contrast injector system. J Invasive Cardiol. 2016;28(11):446–50.

    PubMed  Google Scholar 

  66. Pavlidis AN, Jones DA, Sirker A, Mathur A, Smith EJ. Prevention of contrast-induced acute kidney injury after percutaneous coronary intervention for chronic total coronary occlusions. Am J Cardiol. 2015;115(6):844–51.

    PubMed  Google Scholar 

  67. Ali ZA, Karimi Galougahi K, Nazif T, et al. Imaging- and physiology-guided percutaneous coronary intervention without contrast administration in advanced renal failure: a feasibility, safety, and outcome study. Eur Heart J. 2016;37(40):3090–5.

    PubMed  PubMed Central  Google Scholar 

  68. Mariani J Jr, Guedes C, Soares P, et al. Intravascular ultrasound guidance to minimize the use of iodine contrast in percutaneous coronary intervention: the MOZART (Minimizing cOntrast utiliZation With IVUS Guidance in coRonary angioplasTy) randomized controlled trial. JACC Cardiovasc Interv. 2014;7(11):1287–93.

    PubMed  PubMed Central  Google Scholar 

  69. Nayak KR, Mehta HS, Price MJ, et al. A novel technique for ultra-low contrast administration during angiography or intervention. Catheter Cardiovasc Interv. 2010;75(7):1076–83.

    PubMed  Google Scholar 

  70. Sapontis J, Barron G, Seneviratne S, et al. A first in human evaluation of a novel contrast media saving device. Catheter Cardiovasc Interv. 2017;90(6):928–34.

    PubMed  Google Scholar 

  71. Rogers T, Satler LF. Are new devices required to reduce contrast load in the cath lab, or is behavioral change sufficient? Catheter Cardiovasc Interv. 2017;90(6):935–6.

    PubMed  Google Scholar 

  72. Brar SS, Aharonian V, Mansukhani P, et al. Haemodynamic-guided fluid administration for the prevention of contrast-induced acute kidney injury: the POSEIDON randomised controlled trial. Lancet (London, England). 2014;383(9931):1814–23.

    Google Scholar 

  73. Marenzi G, Ferrari C, Marana I, et al. Prevention of contrast nephropathy by furosemide with matched hydration: the MYTHOS (induced diuresis with matched hydration compared to standard hydration for contrast induced nephropathy prevention) trial. JACC Cardiovasc Interv. 2012;5(1):90–7.

    PubMed  Google Scholar 

  74. Cruz DN, Goh CY, Marenzi G, Corradi V, Ronco C, Perazella MA. Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med. 2012;125(1):66–78.e3.

    PubMed  Google Scholar 

  75. Shah R, Wood SJ, Khan SA, Chaudhry A, Rehan Khan M, Morsy MS. High-volume forced diuresis with matched hydration using the RenalGuard system to prevent contrast-induced nephropathy: a meta-analysis of randomized trials. Clin Cardiol. 2017;40(12):1242–6.

    PubMed  PubMed Central  Google Scholar 

  76. Evaluation of renalguard® system to reduce the incidence of contrast induced nephropathy in at-risk patients. https://ClinicalTrials.gov/show/NCT01456013.

  77. Mueller C, Buerkle G, Buettner HJ, et al. Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med. 2002;162(3):329–36.

    CAS  PubMed  Google Scholar 

  78. Merten GJ, Burgess WP, Gray LV, et al. Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA. 2004;291(19):2328–34.

    CAS  PubMed  Google Scholar 

  79. Zoungas S, Ninomiya T, Huxley R, et al. Systematic review: sodium bicarbonate treatment regimens for the prevention of contrast-induced nephropathy. Ann Intern Med. 2009;151(9):631–8.

    PubMed  Google Scholar 

  80. Zhang B, Liang L, Chen W, Liang C, Zhang S. The efficacy of sodium bicarbonate in preventing contrast-induced nephropathy in patients with pre-existing renal insufficiency: a meta-analysis. BMJ Open. 2015;5(3):e006989.

    PubMed  PubMed Central  Google Scholar 

  81. Weisbord SD, Gallagher M, Jneid H, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med. 2018;378(7):603–14.

    CAS  PubMed  Google Scholar 

  82. Tepel M, van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med. 2000;343(3):180–4.

    CAS  PubMed  Google Scholar 

  83. Xu R, Tao A, Bai Y, Deng Y, Chen G. Effectiveness of N-Acetylcysteine for the prevention of contrast-induced nephropathy: a systematic review and meta-analysis of randomized controlled trials. J Am Heart Assoc. 2016;5(9):e003968.

    PubMed  PubMed Central  Google Scholar 

  84. Zhou MS, Schuman IH, Jaimes EA, Raij L. Renoprotection by statins is linked to a decrease in renal oxidative stress, TGF-beta, and fibronectin with concomitant increase in nitric oxide bioavailability. Am J Physiol Renal Physiol. 2008;295(1):F53–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Han Y, Zhu G, Han L, et al. Short-term rosuvastatin therapy for prevention of contrast-induced acute kidney injury in patients with diabetes and chronic kidney disease. J Am Coll Cardiol. 2014;63(1):62–70.

    CAS  PubMed  Google Scholar 

  86. Briasoulis A, Pala M, Telila T, et al. Statins and contrast-induced nephropathy: a systematic review and meta-analysis. Curr Pharm Des. 2017;23:7141–8.

    CAS  Google Scholar 

  87. Su X, Xie X, Liu L, et al. Comparative effectiveness of 12 treatment strategies for preventing contrast-induced acute kidney injury: a systematic review and Bayesian network meta-analysis. Am J Kidney Dis. 2017;69(1):69–77.

    CAS  PubMed  Google Scholar 

  88. Bell RM, Rear R, Cunningham J, Dawnay A, Yellon DM. Effect of remote ischaemic conditioning on contrast-induced nephropathy in patients undergoing elective coronary angiography (ERICCIN): rationale and study design of a randomised single-Centre, double-blind placebo-controlled trial. Clin Res Cardiol. 2014;103(3):203–9.

    CAS  PubMed  Google Scholar 

  89. Er F, Nia AM, Dopp H, et al. Ischemic preconditioning for prevention of contrast medium-induced nephropathy: randomized pilot RenPro Trial (Renal Protection Trial). Circulation. 2012;126(3):296–303.

    CAS  PubMed  Google Scholar 

  90. Zhou CC, Yao WT, Ge YZ, et al. Remote ischemic conditioning for the prevention of contrast-induced acute kidney injury in patients undergoing intravascular contrast administration: a meta-analysis and trial sequential analysis of 16 randomized controlled trials. Oncotarget. 2017;8(45):79323–36.

    PubMed  PubMed Central  Google Scholar 

  91. Tumlin J, Stacul F, Adam A, et al. Pathophysiology of contrast-induced nephropathy. Am J Cardiol. 2006;98(6a):14k–20k.

    CAS  PubMed  Google Scholar 

  92. Solomon R, Werner C, Mann D, D'Elia J, Silva P. Effects of saline, mannitol, and furosemide on acute decreases in renal function induced by radiocontrast agents. N Engl J Med. 1994;331(21):1416–20.

    CAS  PubMed  Google Scholar 

  93. Zhou L, Duan S. Effects of angiotensin converting enzyme inhibitors and angiotensin receptor blockers in contrast-induced nephropathy. Kidney Blood Press Res. 2013;38(2–3):165–71.

    CAS  PubMed  Google Scholar 

  94. Rosenstock JL, Bruno R, Kim JK, et al. The effect of withdrawal of ACE inhibitors or angiotensin receptor blockers prior to coronary angiography on the incidence of contrast-induced nephropathy. Int Urol Nephrol. 2008;40(3):749–55.

    CAS  PubMed  Google Scholar 

  95. Rim MY, Ro H, Kang WC, et al. The effect of renin-angiotensin-aldosterone system blockade on contrast-induced acute kidney injury: a propensity-matched study. Am J Kidney Dis. 2012;60(4):576–82.

    CAS  PubMed  Google Scholar 

  96. Bainey KR, Rahim S, Etherington K, et al. Effects of withdrawing vs continuing renin-angiotensin blockers on incidence of acute kidney injury in patients with renal insufficiency undergoing cardiac catheterization: results from the angiotensin converting enzyme inhibitor/angiotensin receptor blocker and contrast induced nephropathy in patients receiving cardiac catheterization (CAPTAIN) trial. Am Heart J. 2015;170(1):110–6.

    CAS  PubMed  Google Scholar 

  97. Peng F, Su J, Lin J, Niu W. Impact of renin-angiotensin-aldosterone system-blocking agents on the risk of contrast-induced acute kidney injury: a prospective study and meta-analysis. J Cardiovasc Pharmacol. 2015;65(3):262–8.

    CAS  PubMed  Google Scholar 

  98. Susantitaphong P, Eiam-Ong S. Nonpharmacological strategies to prevent contrast-induced acute kidney injury. Biomed Res Int. 2014;2014:463608.

    PubMed  PubMed Central  Google Scholar 

  99. Deray G. Dialysis and iodinated contrast media. Kidney Int Suppl. 2006;100:S25–9.

    CAS  Google Scholar 

  100. Rodby RA. Preventing complications of radiographic contrast media: is there a role for dialysis? Semin Dial. 2007;20(1):19–23.

    PubMed  Google Scholar 

  101. Weisbord SD, Palevsky PM. Iodinated contrast media and the role of renal replacement therapy. Adv Chronic Kidney Dis. 2011;18(3):199–206.

    PubMed  Google Scholar 

  102. Lehnert T, Keller E, Gondolf K, Schaffner T, Pavenstadt H, Schollmeyer P. Effect of haemodialysis after contrast medium administration in patients with renal insufficiency. Nephrol Dial Transplant. 1998;13(2):358–62.

    CAS  PubMed  Google Scholar 

  103. Vogt B, Ferrari P, Schonholzer C, et al. Prophylactic hemodialysis after radiocontrast media in patients with renal insufficiency is potentially harmful. Am J Med. 2001;111(9):692–8.

    CAS  PubMed  Google Scholar 

  104. Cruz DN, Perazella MA, Bellomo R, et al. Extracorporeal blood purification therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Kidney Dis. 2006;48(3):361–71.

    PubMed  Google Scholar 

  105. Russo D, Minutolo R, Cianciaruso B, Memoli B, Conte G, De Nicola L. Early effects of contrast media on renal hemodynamics and tubular function in chronic renal failure. J Am Soc Nephrol. 1995;6(5):1451–8.

    CAS  PubMed  Google Scholar 

  106. Heyman SN, Clark BA, Kaiser N, et al. Radiocontrast agents induce endothelin release in vivo and in vitro. J Am Soc Nephrol. 1992;3(1):58–65.

    CAS  PubMed  Google Scholar 

  107. Marenzi G, Bartorelli AL, Lauri G, et al. Continuous veno-venous hemofiltration for the treatment of contrast-induced acute renal failure after percutaneous coronary interventions. Catheter Cardiovasc Interv. 2003;58(1):59–64.

    PubMed  Google Scholar 

  108. Marenzi G, Lauri G, Campodonico J, et al. Comparison of two hemofiltration protocols for prevention of contrast-induced nephropathy in high-risk patients. Am J Med. 2006;119(2):155–62.

    PubMed  Google Scholar 

  109. Choi MJ, Yoon JW, Han SJ, et al. The prevention of contrast-induced nephropathy by simultaneous hemofiltration during coronary angiographic procedures: a comparison with periprocedural hemofiltration. Int J Cardiol. 2014;176(3):941–5.

    PubMed  Google Scholar 

  110. Ando G, Costa F, Trio O, Oreto G, Valgimigli M. Impact of vascular access on acute kidney injury after percutaneous coronary intervention. Cardiovasc Revasc Med. 2016;17(5):333–8.

    PubMed  Google Scholar 

  111. Ando G, Cortese B, Russo F, et al. Acute kidney injury after radial or femoral access for invasive acute coronary syndrome management: AKI-MATRIX. J Am Coll Cardiol. 2017;69:2592.

    Google Scholar 

  112. Feldkamp T, Luedemann M, Spehlmann ME, et al. Radial access protects from contrast media induced nephropathy after cardiac catheterization procedures. Clin Res Cardiol. 2018;107(2):148–57.

    PubMed  Google Scholar 

  113. Lee MJ, Park JT, Park KS, et al. Prognostic value of residual urine volume, GFR by 24-hour urine collection, and eGFR in patients receiving Dialysis. Clin J Am Soc Nephrol. 2017;12(3):426–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. Mathew AT, Fishbane S, Obi Y, Kalantar-Zadeh K. Preservation of residual kidney function in hemodialysis patients: reviving an old concept. Kidney Int. 2016;90(2):262–71.

    PubMed  PubMed Central  Google Scholar 

  115. Shemin D, Bostom AG, Laliberty P, Dworkin LD. Residual renal function and mortality risk in hemodialysis patients. Am J Kidney Dis. 2001;38(1):85–90.

    CAS  PubMed  Google Scholar 

  116. van der Wal WM, Noordzij M, Dekker FW, et al. Full loss of residual renal function causes higher mortality in dialysis patients; findings from a marginal structural model. Nephrol Dial Transplant. 2011;26(9):2978–83.

    PubMed  Google Scholar 

  117. Younathan CM, Kaude JV, Cook MD, Shaw GS, Peterson JC. Dialysis is not indicated immediately after administration of nonionic contrast agents in patients with end-stage renal disease treated by maintenance dialysis. AJR Am J Roentgenol. 1994;163(4):969–71.

    CAS  PubMed  Google Scholar 

  118. Hamani A, Petitclerc T, Jacobs C, Deray G. Is dialysis indicated immediately after administration of iodinated contrast agents in patients on haemodialysis? Nephrol Dial Transplant. 1998;13(4):1051–2.

    CAS  PubMed  Google Scholar 

  119. Takebayashi S, Hidai H, Chiba T. No need for immediate dialysis after administration of low-osmolarity contrast medium in patients undergoing hemodialysis. Am J Kidney Dis. 2000;36(1):226.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amanda K. Leonberg-Yoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bahrainwala, J.Z., Leonberg-Yoo, A.K., Rudnick, M.R. (2020). Contrast-Induced Acute Kidney Injury: Epidemiology, Risk Stratification, and Prognosis. In: Rangaswami, J., Lerma, E., McCullough, P. (eds) Kidney Disease in the Cardiac Catheterization Laboratory . Springer, Cham. https://doi.org/10.1007/978-3-030-45414-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45414-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45413-5

  • Online ISBN: 978-3-030-45414-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics