Skip to main content

Computational Approaches for Drug Design: A Focus on Drug Repurposing

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2020)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 12108))

  • 1685 Accesses

Abstract

With the continuous advancements of biomedical instruments and the associated ability to collect diverse types of valuable biological data, numerous recent research studies have been focusing on how to best extract useful information from the Big Biomedical Data currently available. While drug design has been one of the most essential areas of biomedical research, the drug design process for the most part has not fully benefited from the recent explosive growth of biological data and bioinformatics tools. With the significant overhead associated with the traditional drug design process in terms of time and cost, new alternative methods, possibly based on computational approaches, are very much needed to propose innovative ways to propose effective drugs and new treatment options. Employing advanced computational tools for drug design and precision treatments has been the focus of many research studies in recent years. For example, drug repurposing has gained significant attention from biomedical researchers and pharmaceutical companies as an exciting new alternative for drug discovery that benefits from the computational approaches. Molecular profiling of diseases can be used to design customised treatments and more effective approaches can be explored based on the individuals’ genotype. With the newly developed Bioinformatics tools, researchers and clinicians can repurpose existing drugs and propose innovative therapies and precision treatment options. This new development also promises to transform healthcare to focus more on individualized treatments, precision medicine and lower risks of harmful side effects. In particular, this potential new era in healthcare presents transformative opportunities to advance treatments for chronic and rare diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronis, C., Sharma, A., Virvilis, V., Deftereos, S., Persidis, A.: Literature mining, ontologies and information visualization for drug repurposing. Brief. Bioinform. 12(4), 357–368 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. Barretina, J., et al.: The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483(7391), 603–607 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Brown, A.S., Kong, S.W., Kohane, I.S., Patel, C.J.: ksRepo: a generalized platform for computational drug repositioning. BMC Bioinformatics 17(1), 78 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Chavali, A.K., D’Auria, K.M., Hewlett, E.L., Pearson, R.D., Papin, J.A.: A metabolic network approach for the identification and prioritization of antimicrobial drug targets. Trends in Microbiol. 20(3), 113–123 (2012)

    Article  CAS  Google Scholar 

  5. Chen, H.R., Sherr, D.H., Hu, Z., DeLisi, C.: A network based approach to drug repositioning identifies plausible candidates for breast cancer and prostate cancer. BMC Med. Genomics 9(1), 51 (2016)

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Cheng, F., et al.: Prediction of drug-target interactions and drug repositioning via network-based inference. PLoS Comput. Biol. 8(5), e1002503 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Cheng, F., et al.: Network-based approach to prediction and population-based validation of in silico drug repurposing. Nat. Commun. 9(1), 1–12 (2018)

    Article  CAS  Google Scholar 

  8. Cheng, F., et al.: A genome-wide positioning systems network algorithm for in silico drug repurposing. Nat. Commun. 10(1), 1–14 (2019)

    Article  CAS  Google Scholar 

  9. Chiang, A.P., Butte, A.J.: Systematic evaluation of drug-disease relationships to identify leads for novel drug uses. Clin. Pharmacol. Ther. 86(5), 507–510 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Delavan, B., Roberts, R., Huang, R., Bao, W., Tong, W., Liu, Z.: Computational drug repositioning for rare diseases in the era of precision medicine. Drug Discovery Today 23(2), 382–394 (2018)

    Article  CAS  PubMed  Google Scholar 

  11. Dong, G., Zhang, P., Yang, J., Zhang, D., Peng, J.: A systematic framework for drug repurposing based on literature mining. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 939–942. IEEE (2019)

    Google Scholar 

  12. Edgar, R., Domrachev, M., Lash, A.E.: Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30(1), 207–210 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Emig, D., et al.: Drug target prediction and repositioning using an integrated network-based approach. PLoS One 8(4), e60618 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Folger, O., Jerby, L., Frezza, C., Gottlieb, E., Ruppin, E., Shlomi, T.: Predicting selective drug targets in cancer through metabolic networks. Mol. Syst. Biol. 7(501), 1 (2011)

    Google Scholar 

  15. Fukuoka, Y., Takei, D., Ogawa, H.: A two-step drug repositioning method based on a protein-protein interaction network of genes shared by two diseases and the similarity of drugs. Bioinformation 9(2), 89 (2013)

    Article  PubMed  PubMed Central  Google Scholar 

  16. Iorio, F., Rittman, T., Ge, H., Menden, M., Saez-Rodriguez, J.: Transcriptional data: a new gateway to drug repositioning? Drug Discovery Today 18(7–8), 350–357 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson, M.A., Maggiora, G.M.: Concepts and Applications of Molecular Similarity. Wiley, Hoboken (1990)

    Google Scholar 

  18. Keane, H., Ryan, B.J., Jackson, B., Whitmore, A., Wade-Martins, R.: Protein-protein interaction networks identify targets which rescue the MPP+ cellular model of Parkinson’s disease. Sci. Rep. 5(1), 1–12 (2015)

    Article  CAS  Google Scholar 

  19. Keenan, A.B., et al.: The library of integrated network-based cellular signatures NIH program: system-level cataloging of human cells response to perturbations. Cell Syst. 6(1), 13–24 (2018)

    Article  CAS  PubMed  Google Scholar 

  20. Kim, S., Thapa, I., Zhang, L., Ali, H.: On identifying candidates for drug repurposing for the treatment of ulcerative colitis using gene expression data. In: Rojas, I., Valenzuela, O., Rojas, F., Ortuño, F. (eds.) IWBBIO 2019. LNCS, vol. 11465, pp. 513–521. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17938-0_45

    Chapter  Google Scholar 

  21. Kirk, J., et al.: Text mining-based in silico drug discovery in oral mucositis caused by high-dose cancer therapy. Support. Care Cancer 26(8), 2695–2705 (2018). https://doi.org/10.1007/s00520-018-4096-2

    Article  PubMed  Google Scholar 

  22. Lamb, J., et al.: The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313, 1929–1935 (2006)

    Article  CAS  PubMed  Google Scholar 

  23. Leinonen, R., Sugawara, H., Shumway, M., Collaboration, I.N.S.D.: The sequence read archive. Nucleic Acids Res. 39(suppl\(\_\)1), D19–D21 (2010)

    Google Scholar 

  24. Li, J., Zheng, S., Chen, B., Butte, A.J., Swamidass, S.J., Lu, Z.: A survey of current trends in computational drug repositioning. Brief. Bioinform. 17(1), 2–12 (2016)

    Article  PubMed  Google Scholar 

  25. Lotfi Shahreza, M., Ghadiri, N., Mousavi, S.R., Varshosaz, J., Green, J.R.: A review of network-based approaches to drug repositioning. Brief. Bioinform. 19(5), 878–892 (2018)

    Article  PubMed  CAS  Google Scholar 

  26. Moosavinasab, S., et al.: ‘RE: fine drugs’: an interactive dashboard to access drug repurposing opportunities. Database 2016 (2016). https://doi.org/10.1093/database/baw083/2630453. https://academic.oup.com/database/article/

  27. Shim, J.S., Liu, J.O.: Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci. 10(7), 654 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Shore, N.: Accelerating the use of electronic health records in physician practices. N. Engl. J. Med. 362, 192–195 (2010)

    Article  Google Scholar 

  29. So, H.C., et al.: Analysis of genome-wide association data highlights candidates for drug repositioning in psychiatry. Nat. Neurosci. 20(10), 1342 (2017)

    Article  CAS  PubMed  Google Scholar 

  30. Wagner, A.H., et al.: DGidb 2.0: mining clinically relevant drug-gene interactions. Nucleic Acids Res. 44(D1), D1036–D1044 (2016)

    Article  CAS  PubMed  Google Scholar 

  31. Wang, R., Loscalzo, J.: Network-based disease module discovery by a novel seed connector algorithm with pathobiological implications. J. Mol. Biol. 430(18 Pt A), 2939–2950 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hesham Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, S., Thapa, I., Samadi, F., Ali, H. (2020). Computational Approaches for Drug Design: A Focus on Drug Repurposing. In: Rojas, I., Valenzuela, O., Rojas, F., Herrera, L., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2020. Lecture Notes in Computer Science(), vol 12108. Springer, Cham. https://doi.org/10.1007/978-3-030-45385-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45385-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45384-8

  • Online ISBN: 978-3-030-45385-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics