Skip to main content

Biophotonic Therapy Induced Photobiomodulation

  • Chapter
  • First Online:
Technology in Practical Dermatology

Abstract

Biophotonics—the interdisciplinary field marrying photonics and biology—has had a profound impact on modern medicine, supporting the diagnosis, management and treatment of disease. Learning from evolutionary mechanisms of photon absorption by chromophores coupled with our growing knowledge of light–tissue interactions has uncovered a niche area of phototherapy—photobiomodulation (PBM). PBM is the capacity of non-ionizing forms of light to induce photochemical and photophysical biological reactions. Now widely applied in various fields to restore function, stimulate and aid healing, its role in medical and cosmetic dermatology is dominating. In this chapter, we discuss the current knowledge of PBM and introduce a novel induction of PBM using fluorescent light energy (FLE). Research supports the capacity of FLE to modulate immune and connective cell function—supporting an anti-inflammatory and healing effect. It is currently used clinically as a stand-alone treatment for inflammatory skin conditions, acne vulgaris and rosacea, as well as offering adjunct support to more invasive technologies and rejuvenating the skin. Further exploration underpinning its unique mechanism of action will enlighten future dermatological practice and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hamblin MR. Mechanisms and mitochondrial redox signaling in photobiomodulation. Photochem Photobiol. 2018;94(2):199–212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Yun SH, Kwok SJJ. Light in diagnosis, therapy and surgery. Nat Biomed Eng. 2017;1:0008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Grzybowski A, Sak J, Pawlikowski J. A brief report on the history of phototherapy. Clin Dermatol. 2016;34(5):532–7.

    Article  PubMed  Google Scholar 

  4. Mester E, Szende B, Gartner P. The effect of laser beams on the growth of hair in mice. Radiobiol Radiother. 1968;9(5):621–6.

    CAS  Google Scholar 

  5. Anders JJ, Lanzafame RJ, Arany PR. Low-levelf light/laser therapy versus photobiomodulation therapy. Photomed Laser Surg. 2015;33(4):183–4.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Avci P, Gupta A, Sadasivam M, Vecchio D, Pam Z, Pam N, et al. Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg. 2013;32(1):41–52.

    PubMed  PubMed Central  Google Scholar 

  7. Hamblin MR, de Sousa MVP, Agrawal T. Handbook of low-level laser therapy. New York, NY: Pan Stanfrod; 2016.

    Book  Google Scholar 

  8. Smith KC. Laser and led photobiology. Laser Ther. 2010;19(2):72–8.

    Article  Google Scholar 

  9. Smith KC. Basic photochemistry. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2014. http://www.photobiology.info/.

  10. Antonie V, Olaf R. Basic photophysics. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2014. http://www.photobiology.info/.

  11. Hamblin MR, Huang Y-Y, Heiskanen V. Non-mammalian hosts and photobiomodulation: do all life-forms respond to light? Photochem Photobiol. 2018;13

    Google Scholar 

  12. Nowicka B, Kruk J. Powered by light: phototrophy and photosynthesis in prokaryotes and its evolution. Microbiol Res. 2016;186–187:99–118.

    Article  PubMed  CAS  Google Scholar 

  13. The light fantastic. Nat Chem Biol. 2014;10:483.

    Google Scholar 

  14. Hubel DH. Eye, brain, and vision [Internet] (Scientific American library series). Henry Holt and Company; 1995. https://books.google.ie/books?id=2Id9QgAACAAJ.

  15. Musio C, Santillo S. Non-visual photoreception in invertebrates. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2009. http://www.photobiology.info/.

  16. Hoang N, Schleicher E, Kacprzak S, Bouly J-P, Picot M, Wu W, et al. Human and Drosophila cryptochromes are light activated by flavin photoreduction in living cells. PLoS Biol. 2008;6(7):e160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Mignon C, Botchkareva NV, Uzunbajakava NE, Tobin DJ. Photobiomodulation devices for hair regrowth and wound healing: a therapy full of promise but a literature full of confusion. Exp Dermatol. 2016;25(10):745–9.

    Article  PubMed  Google Scholar 

  18. Jurgens M, Mayerhofer T, Jurgen P. Handbook of biophotonics: basics and techniques, vol. 1. Hoboken, NJ: Wiley; 2011. p. 1–38.

    Google Scholar 

  19. Mahendran P. All in a flash of light: phototherapy throughout time. In: Proceedings of the European Academy of Dermatology and Venerology; 2018 Sep 12–16; Paris; Abstract number P1167.

    Google Scholar 

  20. Lim HW, Silpa-archa N, Amadi U, Menter A, Van Voorhees AS, Lebwohl M. Phototherapy in dermatology: a call for action. J Am Acad Dermatol. 2015;72:1078–80.

    Google Scholar 

  21. Stern RS. Psoralen and ultraviolet a light therapy for psoriasis. N Engl J Med. 2007;357(7):682–90.

    Article  CAS  PubMed  Google Scholar 

  22. Hamblin MR. Mechanisms of low level light therapy [Internet]. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2013. http://www.photobiology.info/.

  23. Chung H, Dai T, Sharma S, Huang Y-Y, Carroll J, Hamblin M. The nuts and bolts of low-level laser (light) therapy. Ann Biomed Eng. 2012;40(2):516–33.

    Article  PubMed  Google Scholar 

  24. Mester E, Spiry T, Szende B, Tota JG. Effect of laser rays on wound healing. Am J Surg. 1971;122(4):532–5.

    Article  CAS  PubMed  Google Scholar 

  25. Jalili A. Chromophore gel-assisted phototherapy. J für Ästhetische Chir. 2018;20:1–5.

    Google Scholar 

  26. Alexiades-Armenakas MR, Dover JS, Arndt KA. The spectrum of laser skin resurfacing: nonablative, fractional, and ablative laser resurfacing. J Am Acad Dermatol. 2008;58(5):719–37.

    Article  PubMed  Google Scholar 

  27. de Freitas LF, Hamblin MR. Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quantum Electron. 2016;22(3):348–64.

    Article  CAS  Google Scholar 

  28. Gajinov Z, Matić M, Prćić S, Đuran V. Optičke osobine ljudske kože [Optical properties of the human skin]. Serbian J Dermatol Venerol. 2010;2(4):131–6.

    Article  Google Scholar 

  29. Huang Y-Y, Mroz P, Hamblin MR. Basic photomedicine [Internet]. Photobiological sciences online. Smith KC, editor. American Society for Photobiology. 2009. http://www.photobiology.info/.

  30. Jeronimo R, Moraes MN, de Assis LVM, Ramos BC, Rocha T, Castrucci AM d L. Thermal stress in Danio rerio: a link between temperature, light, thermo-TRP channels, and clock genes. J Therm Biol. 2017;68(Pt A):128–38.

    Article  CAS  PubMed  Google Scholar 

  31. Pennisi E. Opsins: not just for eyes. Science. 2013;339(6121):754–5.

    Article  CAS  PubMed  Google Scholar 

  32. Haltaufderhyde K, Ozdeslik RN, Wicks NL, Najera JA, Oancea E. Opsin expression in human epidermal skin. Photochem Photobiol. 2015;91(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  33. Castellano-Pellicena I, Uzunbajakava NE, Mignon C, Raafs B, Botchkarev VA, Thornton MJ. Does blue light restore human epidermal barrier function via activation of Opsin during cutaneous wound healing? Lasers Surg Med. 2018;

    Google Scholar 

  34. Karu T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J Photochem Photobiol B. 1999;49(1):1–17.

    Article  CAS  PubMed  Google Scholar 

  35. Heiskanen V, Hamblin MR. Photobiomodulation: lasers: vs. light emitting diodes? Photochem Photobiol Sci. 2018;17(8):1003–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Terakita A. The opsins. Genome Biol. 2005;6(3):1–9.

    Article  Google Scholar 

  37. Farivar S, Malekshahabi T, Shiari R. Biological effects of low level laser therapy. J Lasers Med Sci. 2014;5(2):58–62.

    PubMed  PubMed Central  Google Scholar 

  38. Karu TI, Pyatibrat LV, Afanasyeva NI. A novel mitochondrial signaling pathway activated by visible-to-near infrared radiation. Photochem Photobiol. 80(2):366–72.

    Google Scholar 

  39. Fluoresence and fluoresence applications. Integrated DNA technologies. 2011.

    Google Scholar 

  40. Schaefer PM, Kalinina S, Rueck A, Von Arnim CAF. NADH auto fluorescence—a marker on its way to boost bioenergetic research. Cytometry A. 95(1):34–46.

    Google Scholar 

  41. Croce AC, Bottiroli G. Autofluorescence spectroscopy for monitoring metabolism in animal cells and tissues. Methods Mol Biol. 2017;1560:15–43.

    Article  CAS  PubMed  Google Scholar 

  42. Edge D, Mellergaard M, Dam-Hansen C, Corell DD, Devemy E, Jaworska J, et al. Fluorescent light energy: the future for treatment of inflammatory skin conditions? J Clin Aesthet Dermatol. 2019;12(5):E61–8.

    PubMed  PubMed Central  Google Scholar 

  43. Barolet D. Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg. 2008;27(4):227–38.

    Article  CAS  PubMed  Google Scholar 

  44. Pillai S, Cornell M, Christian O. Skin physiology pertinent to cosmetic dermatology. In: Cosmetic dermatology, products and procedures: John Ciley and Sons Ltd; 2010. p. 3–12.

    Google Scholar 

  45. Simpson CR, Kohl M, Essenpreis M, Cope M. Near-infrared optical properties of ex vivo human skin and subcutaneous tissues measured using the Monte Carlo inversion technique. Phys Med Biol. 1998;43(9):2465–78.

    Article  CAS  PubMed  Google Scholar 

  46. Opel DR, Hagstrom E, Pace AK, Sisto K, Hirano-Ali SA, Desai S, et al. Light-emitting diodes: a brief review and clinical experience. J Clin Aesthet Dermatol. 2015;8(6):36–44.

    PubMed  PubMed Central  Google Scholar 

  47. Elman M, Lebzelter J. Light therapy in the treatment of acne vulgaris. Dermatol Surg. 2004;30(2 Pt 1):139–46.

    PubMed  Google Scholar 

  48. Hamilton FL, Car J, Lyons C, Car M, Layton A, Majeed A. Laser and other light therapies for the treatment of acne vulgaris: systematic review. Br J Dermatol. 2009;160(6):1273–85.

    Article  CAS  PubMed  Google Scholar 

  49. Shnitkind E, Yaping E, Geen S, Shalita AR, Lee W-L. Anti-inflammatory properties of narrow-band blue light. J Drugs Dermatol. 2006;5(7):605–10.

    PubMed  Google Scholar 

  50. de Vasconcelos Catao MHC, Nonaka CFW, de Albuquerque RLCJ, Bento PM, de Oliveira Costa R. Effects of red laser, infrared, photodynamic therapy, and green LED on the healing process of third-degree burns: clinical and histological study in rats. Lasers Med Sci. 2015;30(1):421–8.

    Article  PubMed  Google Scholar 

  51. Sadick NS, Karcher C, Palmisano L. Cosmetic dermatology of the aging face. Clin Dermatol. 2009;27(3 SUPPL):S3–12.

    Article  Google Scholar 

  52. Barolet D, Roberge CJ, Auger FA, Boucher A, Germain L. Regulation of skin collagen metabolism in vitro using a pulsed 660nm LED light source: clinical correlation with a single-blinded study. J Invest Dermatol. 2009;129(12):2751–9.

    Article  CAS  PubMed  Google Scholar 

  53. Lee SY, Park K-H, Choi J-W, Kwon J-K, Lee DR, Shin MS, et al. A prospective, randomized, placebo-controlled, double-blinded, and split-face clinical study on LED phototherapy for skin rejuvenation: clinical, profilometric, histologic, ultrastructural, and biochemical evaluations and comparison of three different tre. J Photochem Photobiol B Biol. 2007;88(1):51–67.

    Article  CAS  Google Scholar 

  54. Nikolis A, Bernstein S, Kinney B, Scuderi N, Rastogi S, Sampalis JS. A randomized, placebo-controlled, single-blinded, split-faced clinical trial evaluating the efficacy and safety of KLOX-001 gel formulation with KLOX light-emitting diode light on facial rejuvenation. Clin Cosmet Investig Dermatol. 2016;9:115–25.

    PubMed  PubMed Central  Google Scholar 

  55. Koceva I, Rümmelein B, Gerber PA, Edge D, Nielsen MCE. Fluorescent light energy a new therapeutic approach to effectively treating acne conglobata and hidradenitis suppurativa. Clin Case Rep. 2019;00:1–4.

    Google Scholar 

  56. Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie G, et al. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol. 2001;117(5):1218–24.

    Article  CAS  PubMed  Google Scholar 

  57. Lynch B, Bonod-Bidaud C, Ducourthial G, Affagard JS, Bancelin S, Psilodimitrakopoulos S, et al. How aging impacts skin biomechanics: a multiscale study in mice. Sci Rep. 2017;7(1):1–10.

    Article  CAS  Google Scholar 

  58. Sannino M, Lodi G, Dethlefsen MW, Nistico SP, Cannarozzo G, Canova Engelbrecht Nielsen M. Fluorescent light energy: treating rosacea subtypes 1, 2, and 3. Clin Case Rep. 2018;00:1–6.

    Google Scholar 

  59. Fox L, Csongradi C, Aucamp M, Du Plessis J, Gerber M. Treatment modalities for acne. Molecules. 2016;21(8):1–20.

    Article  CAS  Google Scholar 

  60. Barolet D. Photobiomodulation in dermatology: harnessing light from visible to near infrared. Med Res Arch. 2018;6(1).

    Google Scholar 

  61. Ashkenazi H, Malik Z, Harth Y, Nitzan Y. Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol Med Microbiol. 2003;35(1):17–24.

    Article  CAS  PubMed  Google Scholar 

  62. Goldberg DJ, Russell BA. Combination blue (415 nm) and red (633 nm) LED phototherapy in the treatment of mild to severe acne vulgaris. J Cosmet Laser Ther. 2006;8(2):71–5.

    Article  PubMed  Google Scholar 

  63. Lee SY, You CE, Park MY. Blue and red light combination LED phototherapy for acne vulgaris in patients with skin phototype IV. Lasers Surg Med. 2007;39(2):180–8.

    Article  PubMed  Google Scholar 

  64. Antoniou C, Dessinioti C, Sotiriadis D, Kalokasidis K, Kontochristopoulos G, Petridis A, et al. A multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne. Int J Dermatol. 2016;55(12):1321–8.

    Article  CAS  PubMed  Google Scholar 

  65. Nikolis A, Fauverghe S, Scapagnini G, Sotiriadis D, Kontochristopoulos G, Petridis A, et al. An extension of a multicenter, randomized, split-face clinical trial evaluating the efficacy and safety of chromophore gel-assisted blue light phototherapy for the treatment of acne. Int J Dermatol. 2018;57(1):94–103.

    Article  PubMed  Google Scholar 

  66. Mahendran A, Wong XL, Kao S, Sebaratnam DF. Treatment of erlotinib-induced acneiform eruption with chromophore gel-assisted phototherapy. Photodermatol Photoimmunol Photomed. 2019;35(3):190–2.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Zheng Q. Editorial: at the crossroad between inflammation and skin aging. Inflamm Allergy Drug Targets. 2014;13(3):151–2.

    Article  CAS  PubMed  Google Scholar 

  68. Houh YK, Kim KE, Park HJ, Cho D. Roles of erythroid differentiation regulator 1 (Erdr1) on inflammatory skin diseases. Int J Mol Sci. 2016;17(12):1–10.

    Article  CAS  Google Scholar 

  69. Hamblin MR, R Hamblin M. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. AIMS Biophys. 2017;4(3):337–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mescher AL. Macrophages and fibroblasts during inflammation and tissue repair in models of organ regeneration. Regeneration. 2017;4(2):39–53.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sauder DN. The role of epidermal cytokines in inflammatory skin diseases. J Invest Dermatol. 1990;95(5 Suppl):27S–8S.

    Article  CAS  PubMed  Google Scholar 

  72. Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S, et al. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014;41(1):14–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: where are we (going)? Trends Immunol. 2017;38(6):395–406.

    Article  PubMed  CAS  Google Scholar 

  74. Young DA, Lowe LD, Clark SC. Comparison of the effects of IL-3, granulocyte-macrophage colony-stimulating factor, and macrophage colony-stimulating factor in supporting monocyte differentiation in culture. Analysis of macrophage antibody-dependent cellular cytotoxicity. J Immunol. 1990;145(2):607–15.

    CAS  PubMed  Google Scholar 

  75. Murray PJ, Wynn TA. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol. 2011;11:723.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Nowarski R, Jackson R, Flavell RA. The stromal intervention: regulation of immunity and inflammation at the epithelial-mesenchymal barrier. Cell. 2017;168(3):362–75.

    Article  CAS  PubMed  Google Scholar 

  77. Banno T, Gazel A, Blumenberg M. Effects of tumor necrosis factor-α (TNFα) in epidermal keratinocytes revealed using global transcriptional profiling. J Biol Chem. 2004;279(31):32633–42.

    Article  CAS  PubMed  Google Scholar 

  78. Hernández MV, Meineri M, Sanmartí R. Skin lesions and treatment with tumor necrosis factor alpha antagonists Lesiones cutáneas y terapia biológica con antagonistas del factor de necrosis tumoral. Reum Clin. 2013;9(1):53–61.

    Article  Google Scholar 

  79. Tanaka T, Kishimoto T. The biology and medical implications of interleukin-6. Cancer Immunol Res. 2014;2(4):288–94.

    Article  CAS  PubMed  Google Scholar 

  80. Tan J, Almeida LMC, Bewley A, Cribier B, Dlova NC, Gallo R, et al. Updating the diagnosis, classification and assessment of rosacea: recommendations from the global ROSacea COnsensus (ROSCO) panel. Br J Dermatol. 2017;176(2):431–8.

    Article  CAS  PubMed  Google Scholar 

  81. Weinkle AP, Doktor V, Emer J. Update on the management of rosacea. Plast Surg Nurs. 2015;35(4):184–202.

    Article  PubMed  Google Scholar 

  82. Abokwidir M, Feldman SR. Rosacea management. Ski Appendage Disord. 2016;2(1–2):26–34.

    Article  Google Scholar 

  83. Braun SA, Gerber PA. A photoconverter gel-assisted blue light therapy for the treatment of rosacea. Int J Dermatol. 2017;56(12):1489–90.

    Article  PubMed  Google Scholar 

  84. Liu RC, Makhija M, Wong XL, Sebaratnam DF. Treatment of granulomatous rosacea with chromophore gel-assisted phototherapy. Photodermatol Photoimmunol Photomed. 2018;2019:1–2.

    Google Scholar 

  85. Gallo RL, Granstein RD, Kang S, Mannis M, Steinhoff M, Tan J, et al. Standard classification and pathophysiology of rosacea: the 2017 update by the National Rosacea Society Expert Committee. J Am Acad Dermatol. 2018;78(1):148–55.

    Article  PubMed  Google Scholar 

  86. Hamblin MR. Shining light on the head: photobiomodulation for brain disorders. BBA Clin. 2016;6:113–24.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Ablon G. Phototherapy with light emitting diodes: treating a broad range of medical and aesthetic conditions in dermatology. J Clin Aesthet Dermatol. 2018;11(2):21–7.

    PubMed  PubMed Central  Google Scholar 

  88. Scarcella G, Dethlefsen M, Nielsen M. Treatment of solar lentigines using a combination of picosecond laser and biophotonic treatment. Clin Case Rep. 2018;00:1–3.

    Google Scholar 

  89. Fitzpatrick RE, Goldman MP, Satur NM, Tope WD. Pulsed carbon dioxide laser resurfacing of photo-aged facial skin. Arch Dermatol. 1996;132(4):395–402.

    Article  CAS  PubMed  Google Scholar 

  90. Gerber PA, Scarcella G, Edge D, Nielsen MCE. Biophotonic pre-treatment enhances the targeting of senile lentigines with a 694 nm QS-ruby laser. Photodermatol Photoimmunol Photomed. 2019;

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Canova Engelbrecht Nielsen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Edge, D., Schødt, M., Nielsen, M.C.E. (2020). Biophotonic Therapy Induced Photobiomodulation. In: Fimiani, M., Rubegni, P., Cinotti, E. (eds) Technology in Practical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-45351-0_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45351-0_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45350-3

  • Online ISBN: 978-3-030-45351-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics