Skip to main content

Raman Spectroscopy

  • Chapter
  • First Online:
Technology in Practical Dermatology

Abstract

In the field of skin research, Raman spectroscopy (RS) is an analytical technique capable of measuring vibrational modes of biomolecules. Substantial technical progress in design and performance of the individual setup components like detectors and lasers as well as the combination with reflectance confocal microscopy enables chemically selective and nondestructive sample analysis with high spatial resolution in three dimensions. By improving objectivity, thanks to the molecular-specific analysis, RS bears great potential for numerous skin applications, both in vitro and ex vivo, ranging from the analysis of physiological component distribution in skin tissue, the diagnosis of pathological states or skin cancers up to pharmaceutical investigations such as drug penetration kinetics within the different skin layers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franzen L, Windbergs M. Applications of Raman spectroscopy in skin research-From skin physiology and diagnosis up to risk assessment and dermal drug delivery. Adv Drug Deliv Rev. 2015;89:91–104.

    Article  CAS  PubMed  Google Scholar 

  2. Zhao J, Zeng H, Kalia S, Lui H. Using Raman spectroscopy to detect and diagnose skin cancer in vivo. Dermatol Clin. 2017;35(4):495–504.

    Article  CAS  PubMed  Google Scholar 

  3. Gniadecka M, Wulf HC, Nielsen OF, Christensen DH, Hercogova J. Distinctive molecular abnormalities in benign and malignant skin lesions: studies by Raman spectroscopy. Photochem Photobiol. 1997;66(4):418–23.

    Article  CAS  PubMed  Google Scholar 

  4. Krafft C, Codrich D, Pelizzo G, Sergo V. Raman mapping and FTIR imaging of lung tissue: congenital cystic adenomatoid malformation. Analyst. 2008;133(3):361–71.

    Article  CAS  PubMed  Google Scholar 

  5. Byrne HJ, et al. Spectropathology for the next generation: quo vadis? Analyst. 2015;140(7):2066–73.

    Article  CAS  PubMed  Google Scholar 

  6. Verrier S, Zoladek A, Notingher I. Raman micro-spectroscopy as a non-invasive cell viability test. Methods Mol Biol Clifton NJ. 2011;740:179–89.

    Article  CAS  Google Scholar 

  7. Alawi SA, et al. Optical coherence tomography for presurgical margin assessment of non-melanoma skin cancer—a practical approach. Exp Dermatol. 2013;22(8):547–51.

    Article  PubMed  Google Scholar 

  8. Patil CA, Arrasmith CL, Mackanos MA, Dickensheets DL, Mahadevan-Jansen A. A handheld laser scanning confocal reflectance imaging-confocal Raman microspectroscopy system. Biomed Opt Express. 2012;3(3):488–502.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Caspers PJ, Lucassen GW, Wolthuis R, Bruining HA, Puppels GJ. In vitro and in vivo Raman spectroscopy of human skin. Biospectroscopy. 1998;4(5):S31–9.

    Article  CAS  PubMed  Google Scholar 

  10. Caspers PJ, Lucassen GW, Puppels GJ. Combined in vivo confocal Raman spectroscopy and confocal microscopy of human skin. Biophys J. 2003;85(1):572–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Schleusener J, et al. In vivo study for the discrimination of cancerous and normal skin using fibre probe-based Raman spectroscopy. Exp Dermatol. 2015;24(10):767–72.

    Article  PubMed  Google Scholar 

  12. Lademann J, et al. In vivo methods for the analysis of the penetration of topically applied substances in and through the skin barrier. Int J Cosmet Sci. 2012;34(6):551–9.

    Article  CAS  PubMed  Google Scholar 

  13. Franzen L, Selzer D, Fluhr JW, Schaefer UF, Windbergs M. Towards drug quantification in human skin with confocal Raman microscopy. Eur J Pharm Biopharm Off J Arbeitsgemeinschaft Pharm Verfahrenstechnik EV. 2013;84(2):437–44.

    Article  CAS  Google Scholar 

  14. Haka AS, et al. In vivo margin assessment during partial mastectomy breast surgery using raman spectroscopy. Cancer Res. 2006;66(6):3317–22.

    Article  CAS  PubMed  Google Scholar 

  15. Barry BW, Edwards HGM, Williams AC. Fourier-transform Raman and infrared vibrational study of human skin—assignment of spectral bands. J Raman Spectrosc. 1992;23:641–5.

    Article  CAS  Google Scholar 

  16. Williams AC, Edwards HG, Barry BW. The “Iceman”: molecular structure of 5200-year-old skin characterised by Raman spectroscopy and electron microscopy. Biochim Biophys Acta. 1995;1246(1):98–105.

    Article  PubMed  Google Scholar 

  17. Tfayli A, Piot O, Manfait M. Confocal Raman microspectroscopy on excised human skin: uncertainties in depth profiling and mathematical correction applied to dermatological drug permeation. J Biophotonics. 2008;1(2):140–53.

    Article  CAS  PubMed  Google Scholar 

  18. Ashtikar M, Matthäus C, Schmitt M, Krafft C, Fahr A, Popp J. Non-invasive depth profile imaging of the stratum corneum using confocal Raman microscopy: first insights into the method. Eur J Pharm Sci Off J Eur Fed Pharm Sci. 2013;50(5):601–8.

    CAS  Google Scholar 

  19. Lawson EE, Anigbogu AN, Williams AC, Barry BW, Edwards HG. Thermally induced molecular disorder in human stratum corneum lipids compared with a model phospholipid system; FT-Raman spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc. 1998;54A(3):543–58.

    Article  CAS  PubMed  Google Scholar 

  20. Cinotti E, et al. Identification of a soft tissue filler by ex vivo confocal microscopy and Raman spectroscopy in a case of adverse reaction to the filler. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2015;21(1):114–8.

    CAS  Google Scholar 

  21. Cinotti E, Labeille B, Boukenter A, Ouerdane Y, Cambazard F, Perrot JL. Characterization of coal tattoos by Raman spectroscopy. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2015;21(4):511–2.

    CAS  Google Scholar 

  22. Cinotti E, Labeille B, Perrot JL, Boukenter A, Ouerdane Y, Cambazard F. Characterization of cutaneous foreign bodies by Raman spectroscopy. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2013;19(4):508–9.

    Google Scholar 

  23. Cinotti E, et al. Optical diagnosis of a metabolic disease: cystinosis. J Biomed Opt. 2013;18(4):046013.

    Article  PubMed  Google Scholar 

  24. Huang Z, Lui H, Chen XK, Alajlan A, McLean DI, Zeng H. Raman spectroscopy of in vivo cutaneous melanin. J Biomed Opt. 2004;9(6):1198–205.

    Article  CAS  PubMed  Google Scholar 

  25. González FJ, et al. Noninvasive estimation of chronological and photoinduced skin damage using Raman spectroscopy and principal component analysis. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2012;18(4):442–6.

    Google Scholar 

  26. Tfayli A, Guillard E, Manfait M, Baillet-Guffroy A. Raman spectroscopy: feasibility of in vivo survey of stratum corneum lipids, effect of natural aging. Eur J Dermatol EJD. 2012;22(1):36–41.

    Article  CAS  PubMed  Google Scholar 

  27. Barba C, Alonso C, Martí M, Manich A, Coderch L. Skin barrier modification with organic solvents. Biochim Biophys Acta. 2016;1858(8):1935–43.

    Article  CAS  PubMed  Google Scholar 

  28. Vyumvuhore R, et al. Lipid organization in xerosis: the key of the problem? Int J Cosmet Sci. 2018;40:549–54.

    Article  CAS  PubMed  Google Scholar 

  29. Egawa M, Tagami H. Comparison of the depth profiles of water and water-binding substances in the stratum corneum determined in vivo by Raman spectroscopy between the cheek and volar forearm skin: effects of age, seasonal changes and artificial forced hydration. Br J Dermatol. 2008;158(2):251–60.

    Article  CAS  PubMed  Google Scholar 

  30. Egawa M, Kajikawa T. Changes in the depth profile of water in the stratum corneum treated with water. Skin Res Technol Off J Int Soc Bioeng Skin ISBS Int Soc Digit Imaging Skin ISDIS Int Soc Skin Imaging ISSI. 2009;15(2):242–9.

    Google Scholar 

  31. Chrit L, et al. In vitro and in vivo confocal Raman study of human skin hydration: assessment of a new moisturizing agent, pMPC. Biopolymers. 2007;85(4):359–69.

    Article  CAS  PubMed  Google Scholar 

  32. Tippavajhala VK, de Oliveira Mendes T, Martin AA. In vivo human skin penetration study of sunscreens by confocal Raman spectroscopy. AAPS PharmSciTech. 2018;19(2):753–60.

    Article  CAS  PubMed  Google Scholar 

  33. Broding HC, van der Pol A, de Sterke J, Monsé C, Fartasch M, Brüning T. In vivo monitoring of epidermal absorption of hazardous substances by confocal Raman micro-spectroscopy. J Dtsch Dermatol Ges J Ger Soc Dermatol JDDG. 2011;9(8):618–27.

    Google Scholar 

  34. Mélot M, Pudney PDA, Williamson A-M, Caspers PJ, Van Der Pol A, Puppels GJ. Studying the effectiveness of penetration enhancers to deliver retinol through the stratum cornum by in vivo confocal Raman spectroscopy. J Control Release Off J Control Release Soc. 2009;138(1):32–9.

    Article  CAS  Google Scholar 

  35. Mohammed D, Crowther JM, Matts PJ, Hadgraft J, Lane ME. Influence of niacinamide containing formulations on the molecular and biophysical properties of the stratum corneum. Int J Pharm. 2013;441(1–2):192–201.

    Article  CAS  PubMed  Google Scholar 

  36. Egawa M, et al. In vivo characterization of the structure and components of lesional psoriatic skin from the observation with Raman spectroscopy and optical coherence tomography: a pilot study. J Dermatol Sci. 2010;57(1):66–9.

    Article  PubMed  Google Scholar 

  37. Alda J, Castillo-Martinez C, Valdes-Rodriguez R, Hernández-Blanco D, Moncada B, González FJ. Use of Raman spectroscopy in the analysis of nickel allergy. J Biomed Opt. 2013;18(6):061206.

    Article  PubMed  Google Scholar 

  38. O’Regan GM, et al. Raman profiles of the stratum corneum define 3 filaggrin genotype-determined atopic dermatitis endophenotypes. J Allergy Clin Immunol. 2010;126(3):574–580.e1.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Wascotte V, Caspers P, de Sterke J, Jadoul M, Guy RH, Préat V. Assessment of the “skin reservoir” of urea by confocal Raman microspectroscopy and reverse iontophoresis in vivo. Pharm Res. 2007;24(10):1897–901.

    Article  CAS  PubMed  Google Scholar 

  40. Schallreuter KU, Moore J, Behrens-Williams S, Panske A, Harari M. Rapid initiation of repigmentation in vitiligo with Dead Sea climatotherapy in combination with pseudocatalase (PC-KUS). Int J Dermatol. 2002;41(8):482–7.

    Article  PubMed  Google Scholar 

  41. Gniadecka M, et al. Melanoma diagnosis by Raman spectroscopy and neural networks: structure alterations in proteins and lipids in intact cancer tissue. J Invest Dermatol. 2004;122(2):443–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nijssen A, et al. Discriminating basal cell carcinoma from perilesional skin using high wave-number Raman spectroscopy. J Biomed Opt. 2007;12(3):034004.

    Article  PubMed  Google Scholar 

  43. Nijssen A, et al. Discriminating basal cell carcinoma from its surrounding tissue by Raman spectroscopy. J Invest Dermatol. 2002;119(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  44. Lieber CA, Majumder SK, Billheimer D, Ellis DL, Mahadevan-Jansen A. Raman microspectroscopy for skin cancer detection in vitro. J Biomed Opt. 2008;13(2):024013.

    Article  PubMed  Google Scholar 

  45. Larraona-Puy M, et al. Development of Raman microspectroscopy for automated detection and imaging of basal cell carcinoma. J Biomed Opt. 2009;14(5):054031.

    Article  PubMed  CAS  Google Scholar 

  46. Lui H, Zhao J, McLean D, Zeng H. Real-time Raman spectroscopy for in vivo skin cancer diagnosis. Cancer Res. 2012;72(10):2491–500.

    Article  CAS  PubMed  Google Scholar 

  47. Zhao J, Lui H, Kalia S, Zeng H. Real-time Raman spectroscopy for automatic in vivo skin cancer detection: an independent validation. Anal Bioanal Chem. 2015;407(27):8373–9.

    Article  CAS  PubMed  Google Scholar 

  48. Philipsen PA, Knudsen L, Gniadecka M, Ravnbak MH, Wulf HC. Diagnosis of malignant melanoma and basal cell carcinoma by in vivo NIR-FT Raman spectroscopy is independent of skin pigmentation. Photochem Photobiol Sci Off J Eur Photochem Assoc Eur Soc Photobiol. 2013;12(5):770–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cinotti, E., Provvidenziale, L., Perrot, J.L. (2020). Raman Spectroscopy. In: Fimiani, M., Rubegni, P., Cinotti, E. (eds) Technology in Practical Dermatology. Springer, Cham. https://doi.org/10.1007/978-3-030-45351-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45351-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45350-3

  • Online ISBN: 978-3-030-45351-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics