Skip to main content

Amino Acid Metabolism in the Kidneys: Nutritional and Physiological Significance

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1265))

Abstract

The kidneys are developed from the intermediate mesoderm of the embryo. They are important for osmoregulation, regulation of acid-base balance, reabsorption of nutrients, and excretion of metabolites. In fish, the kidneys also serve as a hematopoietic, lymphoid and endocrine organ for the generation of red blood cells, the development of lymphocytes, and the production of hormones (e.g., glucocorticoids, catecholamines, and thyroid hormones). In humans and all animals, kidneys play a vital role in the metabolism and reabsorption of amino acids (AAs) and glucose. Specifically, this organ contributes to glucose synthesis from AAs, lactate and pyruvate via the gluconeogenesis pathway; regulates acid-base balance via inter-organ metabolism of glutamine; and synthesizes arginine, tyrosine, and glycine, respectively, from citrulline, phenylalanine, and 4-hydroxyproline. In mammals and birds, kidneys participate in creatine synthesis. Renal dysfunction adversely alters the concentrations of AAs in blood, while promoting muscle protein breakdown, inflammation, mitochondrial abnormalities, defects in the immune response, and cardiovascular diseases. Moderation of dietary AA intake has a protective and therapeutic effect on chronic kidney disease. Understanding the functions and metabolism of AAs in kidneys is essential for maintaining whole-body homeostasis, improving health and well-being, and preventing or treating renal metabolic diseases in humans and farm animals (including swine, poultry, ruminants, fish and shrimp).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel RM, Beck CH Jr, Abbott WM, Ryan JA Jr, Barnett GO, Fischer JE (1973) Improved survival from acute renal failure after treatment with intravenous essential L-amino acids and glucose: results of a prospective, double-blind study. N Engl J Med 288:695–699

    CAS  PubMed  Google Scholar 

  • Abumrad NN, Miller B (1983) The physiologic and nutritional significance of plasma-free amino acid levels. J Parent Ent Nutr 7:163–170

    CAS  Google Scholar 

  • Afsar B, Vaziri ND, Aslan G, Tarim K, Kanbay M (2016) Gut hormones and gut microbiota: implications for kidney function and hypertension. J Am Soc Hypertens 10:954–961

    CAS  PubMed  Google Scholar 

  • Ahmed SB, Ramesh S (2016) Sex hormones in women with kidney disease. Nephrol Dial Transplant 31:1787–1795

    CAS  PubMed  Google Scholar 

  • Alvestrand A, Fürst P, Bergström J (1983) Intracellular amino acids in uremia. Kidney Int 16(Suppl):S9–S16

    CAS  Google Scholar 

  • Anderson JW, Stowring LI (1973) Glycolytic and gluconeogenic enzyme activities in renal cortex of diabetic rats. Am J Phys 224:930–936

    CAS  Google Scholar 

  • Anderson PA, Berzins IK, Fogarty F, Hamlin HJ, Guillette LJ Jr (2011) Sound, stress, and seahorses: the consequences of a noisy environment to animal health. Aquaculture 311:129–138

    Google Scholar 

  • Atzler D, Schwedhelm E, Choe CU (2015) L-Homoarginine and cardiovascular disease. Curr Opin Clin Nutr Metab Care 18:83–88

    CAS  PubMed  Google Scholar 

  • Baines AD, Shaikh N, Ho P (1990) Mechanisms of perfused kidney cytoprotection by alanine and glycine. Am J Phys 259:F80–F87

    CAS  Google Scholar 

  • Barcelos RP, Stefanello ST, Mauriz JL, Gonzalez-Gallego J, Soares FA (2016) Creatine and the liver: metabolism and possible interactions. Minirev Med Chem 16:12–18

    CAS  Google Scholar 

  • Baylis C, Corman B (1998) The aging kidney: insights from experimental studies. J Am Soc Nephrol 9:699–709

    CAS  PubMed  Google Scholar 

  • Beasley JM, Katz R, Shlipak M, Rifkin DE, Siscovick D, Kaplan R (2014) Dietary protein intake and change in estimated GFR in the cardiovascular health study. Nutrition 30:794–799

    CAS  PubMed  Google Scholar 

  • Belhadj Slimen I, Najar T, Ghram A, Abdrrabba M (2016) Heat stress effects on livestock: molecular, cellular and metabolic aspects, a review. J Anim Physiol Anim Nutr 100:401–412

    CAS  Google Scholar 

  • Bergstrom J, Ahlberg M, Alvestrand A (1985) Influence of protein intake on renal hemodynamics and plasma hormone concentrations in normal subjects. Acta Med Scand 217:189–196

    CAS  PubMed  Google Scholar 

  • Blokhuis HJ, Hopster H, Geverink NA, Korte SM, Van Reenen CG (1998) Studies of stress in farm animals. Comp Haematol Int 8:94–101

    Google Scholar 

  • Bodamer OA, Sahoo T, Beaudet AL, O’Brien WE, Bottiglieri T, Stöckler-Ipsiroglu S, Wagner C, Scaglia F (2005) Creatine metabolism in combined methylmalonic aciduria and homocystinuria. Ann Neurol 57:557–560

    CAS  PubMed  Google Scholar 

  • Boirie Y, Albright R, Bigelow M, Nair KS (2004) Impairment of phenylalanine conversion to tyrosine inend-stage renal disease causing tyrosine deficiency. Kidney Int 66:591–596

    CAS  PubMed  Google Scholar 

  • Boll M, Daniel H, Gasnier B (2004) The SLC36 family: proton-coupled transporters for the absorption of selected amino acids from extracellular and intracellular proteolysis. Pflugers Arch 447:776–779

    CAS  PubMed  Google Scholar 

  • Borchel A, Verleih M, Rebl A, Kühn C, Goldammer T (2014) Creatine metabolism differs between mammals and rainbow trout (Oncorhynchus mykiss). Springerplus 3:510

    PubMed  PubMed Central  Google Scholar 

  • Borchel A, Verleih M, Kühn C, Rebl A, Goldammer T (2019) Evolutionary expression differences of creatine synthesis-related genes: implications for skeletal muscle metabolism in fish. Sci Rep 9:5429

    PubMed  PubMed Central  Google Scholar 

  • Bowman RH (1970) Gluconeogenesis in the isolated perfused rat kidney. J Biol Chem 245:1604–1612

    CAS  PubMed  Google Scholar 

  • Brenner BM, Meyer TW, Hostetter TH (1982) Dietary protein intake and the progressive nature of kidney disease: the role of hemodynamically mediated glomerular injury in the pathogenesis of progressive glomerular sclerosis in aging, renal ablation, and intrinsic renal disease. N Engl J Med 307:652–659

    CAS  PubMed  Google Scholar 

  • Bröer S (2006) The SLC6 orphans are forming a family of amino acid transporters. Neurochem Int 48:559–567

    PubMed  Google Scholar 

  • Bröer S (2008) Amino acid transport across mammalian intestinal and renal epithelia. Physiol Rev 88:249–286

    PubMed  Google Scholar 

  • Brosnan ME, Brosnan JT (2004) Renal arginine metabolism. J Nutr 134:2791S–2795S

    CAS  PubMed  Google Scholar 

  • Brosnan ME, Brosnan JT (2016) The role of dietary creatine. Amino Acids 48:1785–1791

    CAS  PubMed  Google Scholar 

  • Cameron JN, Kormanik GA (1982) The acid-base responses of gills and kidneys to infused acid and base loads in the channel catfish, Ictalurus punctatus. J Exp Biol 99:143–160

    CAS  PubMed  Google Scholar 

  • Cano NJ, Fouque D, Leverve XM (2006) Application of branched-chain amino acids in human pathological states: renal failure. J Nutr 136:299S–307S

    CAS  PubMed  Google Scholar 

  • Chamberlin ME, Glemet HC, Ballantyne JS (1991) Glutamine metabolism in a holostean (Amia calva) and teleost fish (Salvelinus namaycush). Am J Phys 260:R159–R166

    CAS  Google Scholar 

  • Chauveau P, Combe C, Rigalleau V, Vendrely B, Aparicio M (2007) Restricted protein diet is associated with decrease in proteinuria: consequences on the progression of renal failure. J Renal Nutr 17:250–257

    Google Scholar 

  • Chen G, Liu Y, Jiang J, Jiang W, Kuang S, Tang L, Tang W, Zhang YA, Zhou X, Feng L (2015) Effect of dietary arginine on the immune response and gene expression in head kidney and spleen following infection of Jian carp with Aeromonas hydrophila. Fish Shellfish Immunol 44:195–202

    CAS  PubMed  Google Scholar 

  • Cheng Z, Buentello A, Gatlin DM III (2011) Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, Sciaenops ocellatus. Aquaculture 319:247–252

    CAS  Google Scholar 

  • Chesney RW, Han X, Patters AB (2010) Taurine and the renal system. J Biomed Sci 17:S4

    PubMed  PubMed Central  Google Scholar 

  • Claiborne JB, Evans DH, Goldstein L (1982) Fish branchial Na+/NH4+ exchange is via basolateral Na+-K+-activated ATPase. J Exp Biol 96:431–434

    CAS  Google Scholar 

  • Cooke JP, Ghebremariam YT (2011) DDAH says NO to ADMA. Arterioscler Thromb Vasc Biol 31:1462–1464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Coon CN, Luther LW, Couch JR (1974) Effect of glycine and serine in synthetic amino acid diets upon glycine and serine metabolism in chicks. J Nutr 104:1018–1023

    CAS  PubMed  Google Scholar 

  • Cullen-McEwen L, Sutherland MR, Black MJ (2016) The human kidney: parallels in structure, spatial development, and timing of nephrogenesis. In: Little MH (ed) Kidney development, disease, repair and regeneration. Academic, New York, pp 27–40

    Google Scholar 

  • Daniel H, Spanier B, Kottra G, Weitz D (2006) From bacteria to man: archaic proton-dependent peptide transporters at work. Physiology 21:93–102

    CAS  PubMed  Google Scholar 

  • Davidson A (2014) J: kidney regeneration in fish. Nephron Exp Nephrol 126:45–49

    CAS  PubMed  Google Scholar 

  • Delp MD, Behnke BJ, Spier SA, Wu G, Muller-Delp JM (2008) Aging diminishes endothelium-dependent vasodilation and tetrahydrobiopterin content in rat skeletal muscle arterioles. J Physiol 586:1161–1168

    CAS  PubMed  Google Scholar 

  • Denic A, Glassock RJ, Rule AD (2016) Structural and functional changes with the aging kidney. Adv Chronic Kidney Dis 23:19–28

    PubMed  PubMed Central  Google Scholar 

  • Dhanakoti SN, Brosnan JT, Herzberg GR, Brosnan ME (1990) Renal arginine synthesis: studies in vitro and in vivo. Am J Phys 259:E437–E442

    CAS  Google Scholar 

  • Dressler GR (2006) The cellular basis of kidney development. Annu Rev Cell Dev Biol 22:509–529

    CAS  PubMed  Google Scholar 

  • Druml W, Roth E, Lenz K, Lochs H, Kopsa H (1989) Phenylalanine and tyrosine metabolism in renal failure: dipeptides as tyrosine source. Kidney Int 27(Suppl):S282–S286

    CAS  Google Scholar 

  • Drummond IA (2005) Kidney development and disease in the zebrafish. J Am Soc Nephrol 16:299–304

    CAS  PubMed  Google Scholar 

  • Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Phys 293:F1799–F1804

    CAS  Google Scholar 

  • Enes P, Panserat S, Kaushik S, Oliva-Teles AA (2009) Nutritional regulation of hepatic glucose metabolism in fish. Fish Physiol Biochem 35:519–539

    CAS  PubMed  Google Scholar 

  • Epstein FH, Brosnan JT, Tange JD, Ross BD (1982) Improved function with amino acids in the isolated perfused kidney. Am J Phys 243:F284–F292

    CAS  Google Scholar 

  • Evans DH (2002) Osmoregulation by vertebrates in aquatic environments. Encycl Life Sci:1–4

    Google Scholar 

  • Evans DH, Cameron JN (1986) Gill ammonia transport. J Exp Zool 239:17–23

    CAS  Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955

    CAS  PubMed  Google Scholar 

  • Garibotto G (1999) Muscle amino acid metabolism and the control of muscle protein turnover in patients with chronic renal failure. Nutrition 15:145–155

    CAS  PubMed  Google Scholar 

  • Garibotto G, Sofia A, Saffioti S, Bonanni A, Mannucci I, Verzola D (2010) Amino acid and protein metabolism in the human kidney and in patients with chronic kidney disease. Clin Nutr 29:424–433

    CAS  PubMed  Google Scholar 

  • Gerich JE (2010) Role of the kidney in normal glucose homeostasis and in the hyperglycaemia of diabetes mellitus: therapeutic implications. Diabetic Med 27:136–142

    CAS  PubMed  Google Scholar 

  • Giri SS, Sen SS, Chi C, Kim HJ, Yun S, Park SC, Sukumaran V (2015) Effect of dietary leucine on the growth parameters and expression of antioxidant, immune, and inflammatory genes in the head kidney of Labeo rohita fingerlings. Vet Immunol Immunopathol 167:36–43

    CAS  PubMed  Google Scholar 

  • Guthmiller P, Van Pilsum JF, Boen JR, McGuire DM (1994) Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J Biol Chem 269:17556–17560

    CAS  PubMed  Google Scholar 

  • Hagar HH, El Etter E, Arafa M (2006) Taurine attenuates hypertension and renal dysfunction induced by cyclosporine a in rats. Clin Exp Pharmacol Physiol 33:189–196

    CAS  PubMed  Google Scholar 

  • Hallemeesch MM, Soeters PB, Deutz NE (2002) Renal arginine and protein synthesis are increased during early endotoxemia in mice. Am J Phys 282:F316–F323

    Google Scholar 

  • Hand MF, Haynes WG, Webb DJ (1998) Hemodialysis and L-arginine, but not D-arginine, correct renal failure-associated endothelial dysfunction. Kidney Int 53:1068–1077

    CAS  PubMed  Google Scholar 

  • Hems DA (1972) Metabolism of glutamine and glutamic acid by isolated perfused kidneys of normal and acidotic rats. Biochem J 130:671–680

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holven KB, Haugstad TS, Holm T, Aukrust P, Ose L, Nenseter MS (2003) Folic acid treatment reduces elevated plasma levels of asymmetric dimethylarginine in hyperhomocysteinaemic subjects. Br J Nutr 89:359–363

    CAS  PubMed  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015a) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    CAS  Google Scholar 

  • Hou YQ, Jia SC, Nawaratna G, Hu SD, Dahanayaka S, Bazer FW, Wu G (2015b) Analysis of L-homoarginine in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-L-cysteine. Amino Acids 47:2005–2014

    CAS  PubMed  Google Scholar 

  • Hou YQ, Hu SD, Jia SC, Nawaratna G, Che DS, Wang FL, Bazer FW, Wu G (2016) Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids 48:993–1001

    CAS  PubMed  Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153-1165

    Google Scholar 

  • Hu K, Zhang JX, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Zhou XQ (2015) Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian). Fish Physiol Biochem 41:635–649

    CAS  PubMed  Google Scholar 

  • Hu S, Nawaratna G, Long BD, Bazer FW, Johnson GA, Brosnan JT, Wu G (2017) The hydroxyproline–glycine pathway for glycine synthesis in neonatal pigs. J Anim Sci 95:45

    Google Scholar 

  • Hufton SE, Jennings IG, Cotton RG (1995) Structure and function of the aromatic amino acid hydroxylases. Biochem J 311:353–366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hughes SG, Rumsey GL, Nesheim MC (1984) Effects of dietary excesses of branched-chain amino acids on the metabolism and tissue composition of lake trout (Salvelinus namaycush). Comp Biochem Physiol A 78:413–418

    Google Scholar 

  • Hyodo S, Kakumura K, Takagi W, Hasegawa K, Yamaguchi Y (2014) Morphological and functional characteristics of the kidney of cartilaginous fishes: with special reference to urea reabsorption. Am J Phys 307:R1381–R1395

    CAS  Google Scholar 

  • Ip YK, Chew SF, Randall DJ (2001) Ammonia toxicity, tolerance, and excretion. Fish Physiol 20:109–148

    CAS  Google Scholar 

  • Jia SC, Li XY, Zheng SX, Wu G (2017) Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49:2053–2063

    CAS  PubMed  Google Scholar 

  • Johnson DW, Mudge DW, Sturtevant JM, Hawley CM, Campbell SB, Isbel NM, Hollett P (2003) Predictors of decline of residual renal function in new peritoneal dialysis patients. Perit Dial Int 23:276–283

    PubMed  Google Scholar 

  • Jürss K, Bastrop R (1995) Amino acid metabolism in fish. In: Hochachka PW, Mommsen TP (eds) Biochemistry and molecular biology of fishes, vol 4, pp 159–189

    Google Scholar 

  • Kalantar-Zadeh K, Cano NJ, Budde K, Chazot C, Kovesdy CP, Mak RH, Mehrotra R, Raj DS, Sehgal AR, Stenvinkel P, Ikizler TA (2011) Diets and enteral supplements for improving outcomes in chronic kidney disease. Nat Rev Nephrol 7:369–384

    CAS  PubMed  Google Scholar 

  • Kekelidze T, Khait I, Togliatti A, Benzecry JM, Wieringa B, Holtzman D (2001) Altered brain phosphocreatine and ATP regulation when mitochondrial creatine kinase is absent. J Neurosci Res 66:866–872

    CAS  PubMed  Google Scholar 

  • Kierszenbaum AL, Tres L (2015) Histology and cell biology: an introduction to pathology E-book. Elsevier Health Sciences

    Google Scholar 

  • King PA, Goldstein LE (1983) Renal ammoniagenesis and acid excretion in the dogfish, Squalus acanthias. Am J Physiol 245:R581–R589

    CAS  PubMed  Google Scholar 

  • King AJ, Levey AS (1993) Dietary protein and renal function. J Am Soc Nephrol 3:1723–1737

    CAS  PubMed  Google Scholar 

  • Kirchner S, Panserat S, Lim PL, Kaushik S, Ferraris RP (2008) The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. J Comp Physiol B 178:429–438

    CAS  PubMed  Google Scholar 

  • Knight EL, Stampfer MJ, Hankinson SE, Spiegelman D, Curhan GC (2003) The impact of protein intake on renal function decline in women with normal renal function or mild renal insufficiency. Ann Intern Med 138:460–467

    PubMed  Google Scholar 

  • Knox D, Walton MJ, Cowey CB (1980) Distribution of enzymes of glycolysis and gluconeogenesis in fish tissues. Mar Biol 56:7–10

    CAS  Google Scholar 

  • Kopple JD (2007) Phenylalanine and tyrosine metabolism in chronic kidney failure. J Nutr 137:1586S–1590S

    CAS  PubMed  Google Scholar 

  • Kopple JD, Kalantar-Zadeh K, Mehrotra R (2005) Risks of chronic metabolic acidosis in patients with chronic kidney disease. Kidney Int 67:S21–S27

    Google Scholar 

  • Kovesdy CP, Kopple JD, Kalantar-Zadeh K (2013) Management of protein-energy wasting in non-dialysis-dependent chronic kidney disease: reconciling low protein intake with nutritional therapy. Am J Clin Nutr 97:1163–1177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs HA, Bennett DA, De Gasquet P, Gascoyne T, Yoshida T (1963) Renal gluconeogenesis. The effect of diet on the gluconeogenic capacity of rat-kidney-cortex slices. Biochem J 86:22–27

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuhlmann MK, Kopple JD (1990) Amino acid metabolism in the kidney. Semin Nephrol 10:445–457

    CAS  PubMed  Google Scholar 

  • Kum C, Sekkin S (2011) The immune system drugs in fish: immune function, immunoassay, drugs. In: Aral F, Dogu Z (eds) Recent advances in fish farms, pp 169–216

    Google Scholar 

  • Kumar V, Sahu NP, Pal AK, Kumar S, Sinha AK, Ranjan J, Baruah K (2010) Modulation of key enzymes of glycolysis, gluconeogenesis, amino acid catabolism, and TCA cycle of the tropical freshwater fish Labeo rohita fed gelatinized and non-gelatinized starch diet. Fish Physiol Biochem 36:491–499

    CAS  PubMed  Google Scholar 

  • Levey AS, Becker C, Inker LA (2015) Glomerular filtration rate and albuminuria for detection and staging of acute and chronic kidney disease in adults: a systematic review. JAMA 313:837–846

    CAS  PubMed  PubMed Central  Google Scholar 

  • Levillain O, Parvy P, Hassler C (1997) Amino acid handling in uremic rats: citrulline, a reliable marker of renal insufficiency and proximal tubular dysfunction. Metabolism 46:611–618

    CAS  PubMed  Google Scholar 

  • Li P, Wu G (2018) Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids 50:29–38

    CAS  PubMed  Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Li XL, Zheng SX, Wu G (2020) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671–691

    Google Scholar 

  • Lim VS, Yarasheski KE, Flanigan MJ (1998) The effect of uraemia, acidosis, and dialysis treatment on protein metabolism: a longitudinal leucine kinetic study. Nephrol Dial Transplant 13:1723–1730

    CAS  PubMed  Google Scholar 

  • Lowry M, Hall DE, Brosnan JT (1985) Hydroxyproline metabolism by the rat kidney: distribution of renal enzymes of hydroxyproline catabolism and renal conversion of hydroxyproline to glycine and serine. Metabolism 34:955–961

    CAS  PubMed  Google Scholar 

  • Mahasen LM (2016) Evolution of the kidney. Anat Physiol Biochem Int J 1:555554

    Google Scholar 

  • Manna P, Sinha M, Sil PC (2009) Taurine plays a beneficial role against cadmium-induced oxidative renal dysfunction. Amino Acids 36:417–428

    CAS  PubMed  Google Scholar 

  • Marescau B, Qureshi IA, De Deyn P, Letarte J, Ryba R, Lowenthal A (1985) Guanidino compounds in plasma, urine and cerebrospinal fluid of hyperargininemic patients during therapy. Clin Chim Acta 146:21–27

    CAS  PubMed  Google Scholar 

  • Martin WF, Armstrong LE, Rodriguez NR (2005) Dietary protein intake and renal function. Nutr Metab 2:25

    Google Scholar 

  • May RC, Hara Y, Kelly RA, Block KP, Buse MG, Mitch WE (1987) Branched-chain amino acid metabolism in rat muscle: abnormal regulation in acidosis. Am J Phys 252:E712–E718

    CAS  Google Scholar 

  • McDonald KM, Miller PD, Anderson RJ, Berl T, Schrier RW (1976) Hormonal control of renal water excretion. Kidney Int 10:38–45

    CAS  PubMed  Google Scholar 

  • McGee MM, Greengard O, Knox WE (1972) The quantitative determination of phenylalanine hydroxylase in rat tissues. Its developmental formation in liver. Biochem J 127:669–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • McGuire DM, Gross MD, Van Pilsum JF, Towle HC (1984) Repression of rat kidney L-arginine: glycine amidinotransferase synthesis by creatine at a pretranslational level. J Biol Chem 259:12034–12038

    CAS  PubMed  Google Scholar 

  • McNeal CJ, Meininger CJ, Wilborn CD, Tekwe CD, Wu G (2018) Safety of dietary supplementation with arginine in adult humans. Amino Acids 50:1215-1229

    Google Scholar 

  • Meyer C, Stumvoll M, Nadkarni V, Dostou J, Mitrakou A, Gerich J (1998) Abnormal renal and hepatic glucose metabolism in type 2 diabetes mellitus. J Clin Invest 102:619–624

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mistry SK, Greenfeld Z, Morris SM Jr, Baylis C (2002) The ‘intestinal–renal’arginine biosynthetic axis in the aging rat. Mech Ageing Dev 123:1159–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitrakou A (2011) Kidney: its impact on glucose homeostasis and hormonal regulation. Diabetes Res Clin Pract 93:S66–S72

    CAS  PubMed  Google Scholar 

  • Møller N, Meek S, Bigelow M, Andrews J, Nair KS (2000) The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: a metabolic role of the kidney. Proc Natl Acad Sci U S A 97:1242–1246

    PubMed  PubMed Central  Google Scholar 

  • Moon TW, Foster GD. Tissue carbohydrate metabolism, gluconeogenesis and hormonal and environmental influences. In: Biochemistry and molecular biology of fishes, PW Hochachka and TP Mommsen. 1995; 4: 65-100. Elsevier, New York

    Google Scholar 

  • Morris SM Jr (2016) Arginine metabolism revisited. J Nutr 146:2579S–2586S

    CAS  PubMed  Google Scholar 

  • National Research Council (2011) Nutrient requirements of fish and shrimp. National Academies Press, Washington, DC

    Google Scholar 

  • Ochoa JB, Strange J, Kearney P, Gellin G, Endean E, Fitzpatrick E (2001) Effects of L-arginine on the proliferation of T lymphocyte subpopulations. J Parent Enteral Nutr 25:23–29

    CAS  Google Scholar 

  • Ogawa T, Kimoto M, Watanabe H, Sasaoka K (1987) Metabolism of NG, NG-and NG, NG-dimethylarginine in rats. Arch Biochem Biophys 252:526–537

    CAS  PubMed  Google Scholar 

  • Palacín M, Estévez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  Google Scholar 

  • Pandey G, Madhuri S (2014) Heavy metals causing toxicity in animals and fishes. Res J Anim Vet Fish Sci 2:17–23

    CAS  Google Scholar 

  • Pedrini MT, Levey AS, Lau J, Chalmers TC, Wang PH (1996) The effect of dietary protein restriction on the progression of diabetic and nondiabetic renal diseases: a meta-analysis. Ann Intern Med 124:627–632

    CAS  PubMed  Google Scholar 

  • Perry SF, Shahsavarani A, Georgalis T, Bayaa M, Furimsky M, Thomas SL (2003) Channels, pumps, and exchangers in the gill and kidney of freshwater fishes: their role in ionic and acid-base regulation. J Exp Zool A 300:53–62

    CAS  Google Scholar 

  • Pillai S, Verrey F (2019) Dietary amino acids affect the rate of chronic kidney disease progression in rats. FASEB J 33(Suppl 1):570.1

    Google Scholar 

  • Pohlenz C, Buentello A, Criscitiello MF, Mwangi W, Smith R, Gatlin DM III (2012) Synergies between vaccination and dietary arginine and glutamine supplementation improve the immune response of channel catfish against Edwardsiella ictaluri. Fish Shellfish Immunol 33:543–551

    CAS  PubMed  Google Scholar 

  • Pollock AS (1989) Induction of renal phosphoenolpyruvate carboxykinase mRNA: suppressive effect of glucose. Am J Phys 257:F145–F151

    CAS  Google Scholar 

  • Price SR, Wang XI, Bailey JL (1998) Tissue-specific responses of branched-chain alpha-ketoacid dehydrogenase activity in metabolic acidosis. J Am Soc Nephrol 9:1892–1898

    CAS  PubMed  Google Scholar 

  • Reddy ST, Wang CY, Sakhaee K, Brinkley L, Pak CY (2002) Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am J Kidney Dis 40:265–274

    CAS  PubMed  Google Scholar 

  • Reyes AA, Karl IE, Klahr SA (1994) Role of arginine in health and in renal disease. Am J Phys 267:F331–F346

    CAS  Google Scholar 

  • Rogers QR, Phang JM (1985) Deficiency of pyrroline-5-carboxylate synthase in the intestinal mucosa of the cat. J Nutr 115:146–150

    CAS  PubMed  Google Scholar 

  • Ryan WL, Wells IC (1964) Homocitrulline and homoarginine synthesis from lysine. Science 144:1122–1123

    CAS  PubMed  Google Scholar 

  • Ryan WL, Barak AJ, Johnson RJ (1968) Lysine, homocitrulline, and homoarginine metabolism by the isolated perfused rat liver. Arch Biochem Biophys 123:294–297

    CAS  PubMed  Google Scholar 

  • Ryan WL, Johnson RJ, Dimari S (1969) Homoarginine synthesis by rat kidney. Arch Biochem Biophys 131:521–526

    CAS  PubMed  Google Scholar 

  • Sasaki M, Sasako T, Kubota N, Sakurai Y, Takamoto I, Kubota T, Inagi R, Seki G, Goto M, Ueki K, Nangaku M (2017) Dual regulation of gluconeogenesis by insulin and glucose in the proximal tubules of the kidney. Diabetes 66:2339–2350

    CAS  PubMed  Google Scholar 

  • Schnyder G, Roffi M, Flammer Y, Pin R, Hess OM (2002) Effect of homocysteine-lowering therapy with folic acid, vitamin B12, and vitamin B6 on clinical outcome after percutaneous coronary intervention: the Swiss Heart study: a randomized controlled trial. JAMA 288:973–979

    CAS  PubMed  Google Scholar 

  • Schoolwerth AC, Smith BC, Culpepper RM (1988) Renal gluconeogenesis. Miner Electrolyte Metab 14:347–361

    CAS  PubMed  Google Scholar 

  • Schrock H, Goldstein LE (1981) Interorgan relationships for glutamine metabolism in normal and acidotic rats. Am J Phys 240:E519–E525

    CAS  Google Scholar 

  • Seely JC (2017) A brief review of kidney development, maturation, developmental abnormalities, and drug toxicity: juvenile animal relevancy. J Toxicol Pathol 30:125–133

    PubMed  PubMed Central  Google Scholar 

  • Shen CS, Mistry SP (1979) Development of gluconeogenic, glycolytic, and pentose-shunt enzymes in the chicken kidney. Poult Sci 58:663–667

    CAS  PubMed  Google Scholar 

  • Shoemaker C, Xu DH, LaFrentz B, LaPatra S (2015) Overview of fish immune system and infectious diseases. In: Lee CS, CLim DM, III G, Webster CD (eds) Dietary nutrients, additives and fish health. Wiley, Hoboken, pp 1–24

    Google Scholar 

  • Sibal L, Agarwal SC, Home PD, Boger RH (2010) The role of asymmetric dimethylarginine (ADMA) in endothelial dysfunction and cardiovascular disease. Curr Cardiol Rev 6:82–90

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silbernagl ST (1988) The renal handling of amino acids and oligopeptides. Physiol Rev 68:911–1007

    CAS  PubMed  Google Scholar 

  • Silva P, Rosen S, Spokes K, Epstein FH (1991) Effect of glycine on medullary thick ascending limb injury in perfused kidneys. Kidney Int 39:653–658

    CAS  PubMed  Google Scholar 

  • Silva RP, Clow K, Brosnan JT, Brosnan ME (2014) Synthesis of guanidinoacetate and creatine from amino acids by rat pancreas. Br J Nutr 111:571–577

    PubMed  Google Scholar 

  • Sipilä I (1980) Inhibition of arginine-glycine amidinotransferase by ornithine. A possible mechanism for the muscular and chorioretinal atrophies in gyrate atrophy of the choroid and retina with hyperornithinemia. Biochim Biophys Acta 613:79–84

    PubMed  Google Scholar 

  • Skov AR, Toubro S, Bülow J, Krabbe K, Parving HH, Astrup A (1999) Changes in renal function during weight loss induced by high vs low-protein low-fat diets in overweight subjects. Int J Obesity 23:1170–1177

    CAS  Google Scholar 

  • Stam F, van Guldener C, Wee PM, Kulik W, Smith DE, Jakobs C, Stehouwer CD, de Meer K (2004) Homocysteine clearance and methylation flux rates in health and end-stage renal disease: association with S-adenosylhomocysteine. Am J Phys 287:F215–F223

    CAS  Google Scholar 

  • Stead LM, Brosnan JT, Brosnan ME, Vance DE, Jacobs RL (2006) Is it time to reevaluate methyl balance in humans? Am J Clin Nutr 83:5–10

    CAS  PubMed  Google Scholar 

  • Stühlinger MC, Tsao PS, Her JH, Kimoto M, Balint RF, Cooke JP (2001) Homocysteine impairs the nitric oxide synthase pathway: role of asymmetric dimethylarginine. Circulation 104:2569–2575

    PubMed  Google Scholar 

  • Stumvoll M, Meyer C, Mitrakou A, Nadkarni V, Gerich JE (1997) Renal glucose production and utilization: new aspects in humans. Diabetologia 40:749–757

    CAS  PubMed  Google Scholar 

  • Stumvoll M, Meyer C, Perriello G, Kreider M, Welle S, Gerich J (1998) Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am J Phys 274:E817–E826

    CAS  Google Scholar 

  • Stumvoll M, Perriello G, Meyer C, Gerich J (1999) Role of glutamine in human carbohydrate metabolism in kidney and other tissues. Kidney Int 55:778–792

    CAS  PubMed  Google Scholar 

  • Sun MS, Pan CJ, Shieh JJ, Ghosh A, Chen LY, Mansfield BC, Ward JM, Byrne BJ, Chou JY (2002) Sustained hepatic and renal glucose-6-phosphatase expression corrects glycogen storage disease type la in mice. Hum Mol Genet 11:2155–2164

    CAS  PubMed  Google Scholar 

  • Tangri N, Stevens LA, Griffith J, Tighiouart H, Djurdjev O, Naimark D, Levin A, Levey AS (2011) A predictive model for progression of chronic kidney disease to kidney failure. JAMA 305:1553–1559

    CAS  PubMed  Google Scholar 

  • Tinker DA, Brosnan JT, Herzberg GR (1986) Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). Biochem J 240:829–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tizianello A, Deferrari G, Garibotto G, Robaudo C, Lutman M, Passerone G, Bruzzone M (1983) Branched-chain amino acid metabolism in chronic renal failure. Kidney Int 16:S17–S22

    CAS  Google Scholar 

  • Trachtman H, Futterweit S, Maesaka J, Ma C, Valderrama E, Fuchs A, Tarectecan AA, Rao PS, Sturman JA, Boles TH (1995) Taurine ameliorates chronic streptozocin-induced diabetic nephropathy in rats. Am J Phys 269:F429–F438

    CAS  Google Scholar 

  • Triscari J, Stern JS, Johnson PR, Sullivan AC (1979) Carbohydrate metabolism in lean and obese Zucker rats. Metabolism 28:183–189

    CAS  PubMed  Google Scholar 

  • Tsikas D, Wu G (2015) Homoarginine, arginine, and relatives: analysis, metabolism, transport, physiology, and pathology. Amino Acids 47:1697–1702

    CAS  PubMed  Google Scholar 

  • Tsikas D, Bollenbach A, Hanff E, Kayacelebi AA (2018) Asymmetric dimethylarginine (ADMA), symmetric dimethylarginine (SDMA) and homoarginine (hArg): the ADMA, SDMA and hArg paradoxes. Cardiovasc Diabetol 17:1

    CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay K, Silverstein DM (2014) Renal development: a complex process dependent on inductive interaction. Curr Pediatr Rev 10:107–114

    CAS  PubMed  Google Scholar 

  • Van De Poll MC, Soeters PB, Deutz NE, Fearon KC, Dejong CH (2004) Renal metabolism of amino acids: its role in interorgan amino acid exchange. Am J Clin Nutr 79:185–197

    PubMed  Google Scholar 

  • Vercoutère B, Durozard D, Baverel G, Martin G (2004) Complexity of glutamine metabolism in kidney tubules from fed and fasted rats. Biochem J 378:485–495

    PubMed  PubMed Central  Google Scholar 

  • Verrey F, Ristic Z, Romeo E, Ramadan T, Makrides V, Dave MH, Wagner CA, Camargo SM (2005) Novel renal amino acid transporters. Annu Rev Physiol 67:557–572

    CAS  PubMed  Google Scholar 

  • Verrey F, Singer D, Ramadan T, Vuille-dit-Bille RN, Mariotta L, Camargo SM (2009) Kidney amino acid transport. Pflugers Arch 458:53–60

    CAS  PubMed  Google Scholar 

  • Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    PubMed  Google Scholar 

  • Wang W, Wu Z, Lin G, Hu S, Wang B, Dai Z, Wu G (2014a) Glycine stimulates protein synthesis and inhibits oxidative stress in pig small intestinal epithelial cells. J Nutr 144:1540–1548

    CAS  PubMed  Google Scholar 

  • Wang W, Dai Z, Wu Z, Lin G, Jia S, Hu S, Dahanayaka S, Wu G (2014b) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46:2037–2045

    CAS  PubMed  Google Scholar 

  • Watford M, Hod Y, Chiao YB, Utter MF, Hanson RW (1981) The unique role of the kidney in gluconeogenesis in the chicken. The significance of a cytosolic form of phosphoenolpyruvate carboxykinase. J Biol Chem 256:10023–10027

    CAS  PubMed  Google Scholar 

  • Watowich SS (2011) The erythropoietin receptor: molecular structure and hematopoietic signaling pathways. J Investig Med 59:1067–1072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Webster AC, Nagler EV, Morton RL, Masson P (2017) Chronic kidney disease. Lancet 389:1238–1252

    PubMed  Google Scholar 

  • Weiner ID, Mitch WE, Sands JM (2015) Urea and ammonia metabolism and the control of renal nitrogen excretion. Clin J Am Soc Nephrol 10:1444–1458

    CAS  PubMed  Google Scholar 

  • Weinstein JR, Anderson S (2010) The aging kidney: physiological changes. Adv Chronic Kidney Dis 17:302–307

    PubMed  PubMed Central  Google Scholar 

  • Welbourne TC (1974) Ammonia production and pathways of glutamine metabolism in the isolated perfused rat kidney. Am J Phys 226:544–548

    CAS  Google Scholar 

  • Welbourne TC (1987) Interorgan glutamine flow in metabolic acidosis. Am J Phys 253:F1069–F1076

    CAS  Google Scholar 

  • Wetzel MD, Gao T, Venkatachalam M, Morris SM Jr, Awad AS (2019) L-Homoarginine supplementation prevents diabetic kidney damage. Physiol Rep 7:e14235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wieczorek-Surdacka E, Hanff E, Chyrchel B, Kuźniewski M, Surdacki A, Tsikas D (2019) Distinct associations between plasma osteoprotegerin, homoarginine and asymmetric dimethylarginine in chronic kidney disease male patients with coronary artery disease. Amino Acids 51:977–982

    CAS  PubMed  Google Scholar 

  • Wirthensohn GA, Guder WG (1986) Renal substrate metabolism. Physiol Rev 66:469–497

    CAS  PubMed  Google Scholar 

  • Wu G, Knabe DA (1995) Arginine synthesis in enterocytes of neonatal pigs. Am J Physiol 269:R621-R629

    Google Scholar 

  • Wu G (1997) Synthesis of citrulline and arginine from proline in enterocytes of postnatal pigs. Am J Phys 272:G1382–G1390

    CAS  Google Scholar 

  • Wu G (2013a) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G (2013b) Functional amino acids in nutrition and health. Amino Acids 45:407–411

    CAS  PubMed  Google Scholar 

  • Wu G (2016) Dietary protein intake and human health. Food Funct 7:1251–1265

    CAS  PubMed  Google Scholar 

  • Wu G (2020a) Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 471–492

    Google Scholar 

  • Wu G (2020b) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329-360

    Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Meininger CJ, Knabe DA, Baze FW, Rhoads MJ (2000) Arginine nutrition in development, health and disease. Curr Opin Clin Nutr Metab Care 3:59–66

    CAS  PubMed  Google Scholar 

  • Wu G, Bazer FW, Davis TA, Kim SW, Li P, Rhoads JM, Satterfield MC, Smith SB, Spencer TE, Yin Y (2009) Arginine metabolism and nutrition in growth, health and disease. Amino Acids 37:153–168

    CAS  PubMed  Google Scholar 

  • Wu ZL, Hou YQ, Hu SD, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016) Catabolism and safety of supplemental L-arginine in animals. Amino Acids 48:1541–1552

    CAS  PubMed  Google Scholar 

  • Wu G (2018) Principles of Animal Nutrition. CRC Press, Boca Raton, Florid

    Google Scholar 

  • Wu ZL, Hou YQ, Dai ZL, Hu CA, Wu G (2019) Metabolism, nutrition, and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    CAS  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Yánez AJ, Nualart F, Droppelmann C, Bertinat R, Brito M, Concha II, Slebe JC (2003) Broad expression of fructose-1, 6-bisphosphatase and phosphoenolpyruvate carboxykinase provide evidence for gluconeogenesis in human tissues other than liver and kidney. J Cell Physiol 197:189–197

    PubMed  Google Scholar 

  • Yin M, Zhong Z, Connor HD, Bunzendahl H, Finn WF, Rusyn I, Li X, Raleigh JA, Mason RP, Thurman RG (2002) Protective effect of glycine on renal injury induced by ischemia-reperfusion in vivo. Am J Phys 282:F417–F423

    CAS  Google Scholar 

  • Young GA (1991) Amino acids and the kidney. Amino Acids 1:183–192

    CAS  PubMed  Google Scholar 

  • Zhou CP, Song F, Wu G (2018) Catabolism of branched-chain amino acids in tissues of hybrid striped bass (Morone chrysops x M. Saxatilis). Aquaculture America Annual Meeting, Las Vegas, Feb. 19–22, 2018

    Google Scholar 

Download references

Acknowledgments

We thank students and research assistants in our laboratory for helpful discussions. Financial support by Guangdong Yeuhai Feeds Group Co., Ltd. is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, X., Zheng, S., Wu, G. (2020). Amino Acid Metabolism in the Kidneys: Nutritional and Physiological Significance. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1265. Springer, Cham. https://doi.org/10.1007/978-3-030-45328-2_5

Download citation

Publish with us

Policies and ethics