Skip to main content

Amino Acid Metabolism in the Liver: Nutritional and Physiological Significance

  • Chapter
  • First Online:
Amino Acids in Nutrition and Health

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1265))

Abstract

The liver plays a central role in amino acid (AA) metabolism in humans and other animals. In all mammals, this organ synthesizes many AAs (including glutamate, glutamine, alanine, aspartate, asparagine, glycine, serine, and homoarginine), glucose, and glutathione (a major antioxidant). Similar biochemical reactions occur in the liver of birds except for those for arginine and glutamine hydrolysis, proline oxidation, and gluconeogenesis from AAs. In contrast to mammals and birds, the liver of fish has high rates of glutamate and glutamine oxidation for ATP production. In most animals (except for cats and possibly some of the other carnivores), the liver produces taurine from methionine or cysteine. However, the activity of this pathway is limited in human infants (particularly preterm infants) and is also low in adult humans as compared with rats, birds and livestock species (e.g., pigs, cattle and sheep). The liver exhibits metabolic zonation and intracellular compartmentation for ureagenesis, uric acid synthesis, and gluconeogenesis, as well as AA degradation and syntheses. Capitalizing on these extensive bases of knowledge, dietary supplementation with functional AAs (e.g., methionine, N-acetylcysteine, and glycine) to humans and other animals can alleviate or prevent oxidative stress and damage in the liver. Because liver diseases are common problems in humans and farm animals (including fish), much research is warranted to further both basic and applied research on hepatic AA metabolism and functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson PM (2001) Urea and glutamine synthesis: Environmental influences on nitrogen excretion. Fish Physiol 20:239–277

    Google Scholar 

  • Barle H, Ahlman B, Nyberg B, Andersson K, Essén P, Wernerman J (1996) The concentrations of free amino acids in human liver tissue obtained during laparoscopic surgery. Clin Physiol 16:217–227

    CAS  PubMed  Google Scholar 

  • Brosnan JT (2003) Interorgan amino acid transport and its regulation. J Nutr 133:2068S–2072S

    Google Scholar 

  • Brosnan JT, Brosnan ME (2007) Creatine: endogenous metabolite, dietary, and therapeutic supplement. Annu Rev Nutr 27:241–261

    CAS  PubMed  Google Scholar 

  • Brosnan JT, Brosnan ME, Yudkoff M, Nissim I, Daikhin Y, Lazarow A, Horyn O, Nissim I (2001) Alanine metabolism in the perfused rat liver. J Biol Chem 276:31876–31882

    CAS  PubMed  Google Scholar 

  • Brosnan ME, MacMillan L, Stevens JR, Brosnan JT (2015) Division of labour: how does folate metabolism partition between one-carbon metabolism and amino acid oxidation? Biochem J 472:135–146

    CAS  PubMed  Google Scholar 

  • Brown JM, Yu L (2009) Opposing gatekeepers of apical sterol transport: Niemann-pick C1-like 1 (NPC1L1) and ATP-binding cassette transporters G5 and G8 (ABCG5/ABCG8). Immunol Endocr Metab Agents Med Chem 9:18–29

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campollo O, Sprengers D, McIntyre N (1992) The BCAA/AAA ratio of plasma amino acids in three different groups of cirrhotics. Rev Investig Clin 44:513–518

    CAS  Google Scholar 

  • Cheng D, Morsch M, Shami GJ, Chung RS, Braet F (2019) Albumin uptake and distribution in the zebrafish liver as observed via correlative imaging. Exp Cell Res 374:162–171

    CAS  PubMed  Google Scholar 

  • Collins SA, Sinclair G, McIntosh S, Bamforth F, Thompson R, Sobol I, Osborne G, Corriveau A, Santos M, Hanley B (2010) Carnitine palmitoyltransferase 1A (CPT1A) P479L prevalence in live newborns in Yukon, Northwest Territories, and Nunavut. Mol Genet Metab 101:200–204

    Google Scholar 

  • Curthoys NP, Watford M (1995) Regulation of glutaminase activity and glutamine metabolism. Annu Rev Nutr 15:133–159

    CAS  PubMed  Google Scholar 

  • da Silva RP, Nissim I, Brosnan ME, Brosnan JT (2009) Creatine synthesis: hepatic metabolism of guanidinoacetate and creatine in the rat in vitro and in vivo. Am J Phys 296:E256–E261

    Google Scholar 

  • Derave W, Marescau B, Vanden Eede E, Eijnde BO, De Deyn PP, Hespel P (2004) Plasma guanidino compounds are altered by oral creatine supplementation in healthy humans. J Appl Physiol 97:852–857

    Google Scholar 

  • Dohm GL, Beecher GR, Warren RQ, Williams RT (1981) Influence of exercise on free amino acid concentrations in rat tissues. J Appl Physiol 50:41–44

    PubMed  Google Scholar 

  • Edison EE, Brosnan ME, Meyer C, Brosnan JT (2007) Creatine synthesis: production of guanidinoacetate by the rat and human kidney in vivo. Am J Phys 293:F1799–F1804

    CAS  Google Scholar 

  • Felig P (1975) Amino acid metabolism in man. Annu Rev Biochem 44:933–955

    CAS  PubMed  Google Scholar 

  • Furukawa K, He WL, Leyva-Jimenez H, Bailey CA, Bazer FW, Toyomizu M, Wu G (2018) Developmental changes in the activities of enzymes for polyamine synthesis in chickens. Poult Sci 97(E-Suppl 1):3–4

    Google Scholar 

  • Geggel H, Ament M, Heckenlively J (1985) Nutritional requirement for taurine in patients receiving long-term, parenteral nutrition. N Engl J Med 312:142–146

    CAS  PubMed  Google Scholar 

  • Gissen P, Arias IM (2015) Structural and functional hepatocyte polarity and liver disease. J Hepatol 63:1023–1037

    PubMed  PubMed Central  Google Scholar 

  • Guthmiller P, Van Pilsum JF, Boen JR, McGuire DM (1994) Cloning and sequencing of rat kidney L-arginine:glycine amidinotransferase. Studies on the mechanism of regulation by growth hormone and creatine. J Biol Chem 269:17556–17560

    CAS  PubMed  Google Scholar 

  • Hatting M, Tavares CDJ, Sharabi K, Rines AK, Puigserver P (2018) Insulin regulation of gluconeogenesis. Ann N Y Acad Sci 1411:21–35

    CAS  PubMed  Google Scholar 

  • Häussinger D, Schliess F (2007) Glutamine metabolism and signaling in the liver. Front Biosci 12:371–391

    PubMed  Google Scholar 

  • Häussinger D, Lamers H, Moorman AF (1992) Hepatocyte heterogeneity in the metabolism of amino acids and ammonia. Enzyme 46:72–93

    PubMed  Google Scholar 

  • Holeček M (2018) Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab 15:33

    Google Scholar 

  • Holecek M, Kandar R, Sispera L, Kovarik M (2011) Acute hyperammonemia activates branched-chain amino acid catabolism and decreases their extracellular concentrations: different sensitivity of red and white muscle. Amino Acids 40:575–584

    CAS  PubMed  Google Scholar 

  • Holm E, Oliver S, Eva G (1999) Amino acid metabolism in liver disease. Curr Opin Clin Nutr Metab Care 2:47–53

    CAS  PubMed  Google Scholar 

  • Hou YQ, Yin YL, Wu G (2015a) Dietary essentiality of “nutritionally nonessential amino acids” for animals and humans. Exp Biol Med 240:997–1007

    CAS  Google Scholar 

  • Hou YQ, Jia SC, Nawaratna G, Hu SD, Dahanayaka S, Bazer FW, Wu G (2015b) Analysis of L-homoarginine in biological samples by HPLC involving pre-column derivatization with o-phthalaldehyde and N-acetyl-L-cysteine. Amino Acids 47:2005–2014

    CAS  PubMed  Google Scholar 

  • Hou YQ, Hu SD, Jia SC, Nawaratna G, Che DS, Wang FL, Bazer FW, Wu G (2016) Whole-body synthesis of L-homoarginine in pigs and rats supplemented with L-arginine. Amino Acids 48:993–1001

    CAS  PubMed  Google Scholar 

  • Hou YQ, Wu G (2018) L-Glutamate nutrition and metabolism in swine. Amino Acids 50:1497–1510

    Google Scholar 

  • Hou YQ, He WL, Hu SD, Wu G (2019) Composition of polyamines and amino acids in plant-source foods for human consumption. Amino Acids 51:1153–1165

    CAS  PubMed  Google Scholar 

  • Iozzo P, Gastaldelli A, Järvisalo MJ, Kiss J, Borra R, Buzzigoli E, Viljanen A, Naum G, Viljanen T, Oikonen V, Knuuti J, Savunen T, Salvadori PA (2006) Ferrannini E,4, Nuutila P. 18F-FDG assessment of glucose disposal and production rates during fasting and insulin stimulation: a validation study. J Nuclear Med 47:1016–1022

    CAS  Google Scholar 

  • Jia SC, Li XY, Zheng SX, Wu G (2017) Amino acids are major energy substrates for tissues of hybrid striped bass and zebrafish. Amino Acids 49:2053–2063

    CAS  PubMed  Google Scholar 

  • Jungas RL, Halperin ML, Brosnan JT (1992) Quantitative analysis of amino acid oxidation and related gluconeogenesis in humans. Physiol Rev 72:419–448

    CAS  PubMed  Google Scholar 

  • Kandasamy P, Gyimesi G, Kanai Y, Hediger MA (2018) Amino acid transporters revisited: new views in health and disease. Trends Biochem Sci 43:752–789

    CAS  PubMed  Google Scholar 

  • Kent AP, Stylianou IM (2011) Scavenger receptor class B member 1 protein: hepatic regulation and its effects on lipids, reverse cholesterol transport, and atherosclerosis. Hepat Med 3:29–44

    CAS  PubMed  PubMed Central  Google Scholar 

  • Keppler D (2014) The roles of MRP2, MRP3, OATP1B1, and OATP1B3 in conjugated hyperbilirubinemia. Drug Metab Dispos 42:561–565

    PubMed  Google Scholar 

  • Khabou B, Durand-Schneider AM, Delaunay JL, Aït-Slimane T, Barbu V, Fakhfakh F, Housset C, Maurice M (2017) Comparison of in silico prediction and experimental assessment of ABCB4 variants identified in patients with biliary diseases. Int J Biochem Cell Biol 89:101–109

    CAS  PubMed  Google Scholar 

  • Kim TK, Lin Z, Tidwell WJ, Li W, Slominski AT (2015) Melatonin and its metabolites accumulate in the human epidermis in vivo and inhibit proliferation and tyrosinase activity in epidermal melanocytes in vitro. Mol Cell Endocrinol 404:1–8

    Google Scholar 

  • Kristensen NB, Wu G (2012) Metabolic functions of the porcine liver. In: Nutritional Physiology of Pigs, edited by K.E. Bach, N.J. Knudsen, H.D. Kjeldsen, and B.B. Jensen. Danish pig research center, Copenhagen, Denmark. Chapter 13:1–17

    Google Scholar 

  • Kuo FC, Hwu WL, Valle D, Darnell JE (1991) Jr Colocalization in pericentral hepatocytes in adult mice and similarity in developmental expression pattern of ornithine aminotransferase and glutamine synthetase mRNA. Proc Natl Acad Sci U S A 88:9468–9472

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon H, Spencer TE, Bazer FW, Wu G (2003) Developmental changes of amino acids in ovine fetal fluids. Biol Reprod 68:1813–1820

    Google Scholar 

  • Lautt WW (2010) Hepatic circulation: physiology and pathophysiology. Morgan & Claypool Life Sciences, San Rafael

    Google Scholar 

  • Lautt WW, Greenway CV (1987) Conceptual review of the hepatic vascular bed. Hepatology 7:952–963

    CAS  PubMed  Google Scholar 

  • Lee DY, Kim EH (2019) Therapeutic effects of amino acids in liver diseases: current studies and future perspectives. J Cancer Prev 24:72–78

    PubMed  PubMed Central  Google Scholar 

  • Liddle RA (1995) Regulation of cholecystokinin secretion by intraluminal releasing factors. Am J Phys 269:G319–G327

    CAS  Google Scholar 

  • Li XY, Wu G (2019) Oxidation of energy substrates in tissues of Largemouth bass (Micropterus salmoides). J Anim Sci 97 (Suppl 3):68–69

    Google Scholar 

  • Li P, Wu G (2020) Composition of amino acids and related nitrogenous nutrients in feedstuffs for animal diets. Amino Acids 52:523–542

    Google Scholar 

  • Li XL, Zheng SX, Wu G (2020) Nutrition and metabolism of glutamate and glutamine in fish. Amino Acids 52:671-691

    Google Scholar 

  • Maxwell JL, Terracio L, Borg TK, Baynes JW, Thorpe SR (1990) A fluorescent residualizing label for studies on protein uptake and catabolism in vivo and in vitro. Biochem J 267:155–162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Møller N, Meek S, Bigelow M, Andrews J, Nair KS (2000) The kidney is an important site for in vivo phenylalanine-to-tyrosine conversion in adult humans: a metabolic role of the kidney. Proc Natl Acad Sci U S A 97:1242–1246

    PubMed  PubMed Central  Google Scholar 

  • Nedredal GI, Elvevold KH, Ytrebø LM, Olsen R, Revhaug A, Smedsrød B (2003) Liver sinusoidal endothelial cells represents an important blood clearance system in pigs. Comp Hepatol 2:1

    PubMed  PubMed Central  Google Scholar 

  • Neis EPJG, Sabrkhany S, Hundscheid I, Schellekens D, Lenaerts K, Olde Damink SW, Blaak EE, Dejong CHC, Rensen SS (2017) Human splanchnic amino-acid metabolism. Amino Acids 49:161–172

    CAS  PubMed  Google Scholar 

  • Oldham-Ott CK, Gilloteaux J (1997) Comparative morphology of the gallbladder and biliary tract in vertebrates: variation in structure, homology in function and gallstones. Microsc Res Tech 38:571–597

    Google Scholar 

  • O’sullivan D, Brosnan JT, Brosnan ME (1998) Hepatic zonation of the catabolism of arginine and ornithine in the perfused rat liver. Biochem J 330:627–632

    PubMed  PubMed Central  Google Scholar 

  • Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3

    PubMed  PubMed Central  Google Scholar 

  • Perez-Matos MC, Sandhu B, Bonder A, Jiang ZG (2019) Lipoprotein metabolism in liver diseases. Curr Opin Lipidol 30:30–36

    CAS  PubMed  Google Scholar 

  • Pink DBS (2002) Hepatic zonation of ∆1-pyrroline-5-carboxylate metabolism. M.S. thesis, Memorial University of Newfoundland, St. John’s, Canada

    Google Scholar 

  • Pyzik M, Rath T, Kuo TT, Win S, Baker K, Hubbard JJ, Grenha R, Gandhi A, Krämer TD et al (2017) Hepatic FcRn regulates albumin homeostasis and susceptibility to liver injury. Proc Nalt Acad Sci USA 114:E2862–E2871

    CAS  Google Scholar 

  • Rogers QR, Morris JG (1979) Essentiality of amino acids for the growing kitten. J Nutr 109:718–723

    CAS  PubMed  Google Scholar 

  • Rogerson D (2017) Vegan diets: practical advice for athletes and exercisers. J Int Soc Sports Nutr 14:36

    PubMed  PubMed Central  Google Scholar 

  • Sanderson SL, Gross KL, Ogburn PN, Calvert C, Jacobs G, Lowry SR, Bird KA, Koehler LA, Swanson LL (2001) Effects of dietary fat and L-carnitine on plasma and whole blood taurine concentrations and cardiac function in healthy dogs fed protein-restricted diets. Am J Vet Res 62:1616–1623

    CAS  PubMed  Google Scholar 

  • Schleicher J, Tokarski C, Marbach E, Matz-Soja M, Zellmer S, Gebhardt R, Schuster S (2015) Zonation of hepatic fatty acid metabolism - the diversity of its regulation and the benefit of modeling. Biochim Biophys Acta 1851:641–656

    CAS  PubMed  Google Scholar 

  • Stover P, Schirch V (1990) Serine hydroxymethyltransferase catalyzes the hydrolysis of 5,10-methenyltetrahydrofolate to 5-formyltetrahydrofolate. J Biol Chem 265:14227–14233

    CAS  PubMed  Google Scholar 

  • Sturman JA (1993) Taurine in development. Physiol Rev 73:119–147

    CAS  PubMed  Google Scholar 

  • Tajiri K, Shimizu Y (2013) Branched-chain amino acids in liver diseases. World J Gastroenterol 19:7620–7629

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka M, Iwakiri Y (2016) The hepatic lymphatic vascular system: structure, function, markers, and lymphangiogenesis. Cell Mol Gastroenterol Hepatol 2:733–749

    PubMed  PubMed Central  Google Scholar 

  • Tinker DA, Brosnan JT, Herzberg GR (1986) Interorgan metabolism of amino acids, glucose, lactate, glycerol and uric acid in the domestic fowl (Gallus domesticus). Biochem J 240:829–836

    CAS  PubMed  PubMed Central  Google Scholar 

  • Treyer A, Müsch A (2013) Hepatocyte polarity. Compr Physiol 3:243–287

    PubMed  PubMed Central  Google Scholar 

  • Tsikas D, Wu G (2015) Homoarginine, arginine, and relatives: analysis, metabolism, transport, physiology, and pathology. Amino Acids 47:1697–1702

    CAS  PubMed  Google Scholar 

  • Valle D, Simell O (1995) The hyperornithinemias. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular bases of inherited disease, vol 1, 7th edn. McGraw-Hill, New York, pp 1147–1185

    Google Scholar 

  • van de Poll MC, Siroen MP, van Leeuwen PA, Soeters PB, Melis GC, Boelens PG, Deutz NE, Dejong CH (2007) Interorgan amino acid exchange in humans: consequences for arginine and citrulline metabolism. Am J Clin Nutr 85:167–172

    PubMed  Google Scholar 

  • Wang WW, Wu ZL, Dai ZL, Yang Y, Wang JJ, Wu G (2013) Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids 45:463–477

    PubMed  Google Scholar 

  • Watford M (1985) Gluconeogenesis in the chicken. Fed Proc 44:2469–2474

    CAS  PubMed  Google Scholar 

  • Watford M, Wu G (2005) Glutamine metabolism in uricotelic species: variation in skeletal muscle glutamine synthetase, glutaminase, glutamine levels and rates of protein synthesis. Comp Biochem Physiol B 140:607–614

    PubMed  Google Scholar 

  • Wiersma H, Gatti A, Nijstad N, Oude Elferink RPJ, Kuipers F, Tietge UJF (2009) Scavenger receptor class B type I mediates biliary cholesterol secretion independent of ATP-binding cassette transporter g5/g8 in mice. Hepatology 50:1263–1272

    CAS  PubMed  Google Scholar 

  • Wu G (2013) Amino acids: biochemistry and nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G (2018) Principles of animal nutrition. CRC Press, Boca Raton

    Google Scholar 

  • Wu G (2020a) Management of metabolic disorders (including metabolic diseases) in ruminant and nonruminant animals. In: Bazer FW, Lamb GC, Wu G (eds) Animal agriculture: challenges, innovations, and sustainability. Elsevier, New York, pp 471–492

    Google Scholar 

  • Wu G (2020b) Important roles of dietary taurine, creatine, carnosine, anserine and hydroxyproline in human nutrition and health. Amino Acids 52:329–360

    Google Scholar 

  • Wu G, Morris SM (1998) Arginine metabolism: nitric oxide and beyond. Biochem J 336:1–17

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Davis PK, Flynn NE, Knabe DA, Davidson JT (1997) Endogenous synthesis of arginine plays an important role in maintaining arginine homeostasis in postweaning growing pigs. J Nutr 127:2342–2349

    Google Scholar 

  • Wu G, Chung-Bok M, Vincent N, Kowalski TJ, Choi YH, Watford M (1998) Distribution of phosphate-activated glutaminase isozymes in the chicken: absence from liver but presence of high activity in pectoralis muscle. Comp Biochem Physiol B 120:285–290

    CAS  PubMed  Google Scholar 

  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND (2004) Glutathione metabolism and its implications for health. J Nutr 134:489–492

    CAS  PubMed  Google Scholar 

  • Wu ZL, Hou YQ, Hu SD, Bazer FW, Meininger CJ, McNeal CJ, Wu G (2016) Catabolism and safety of supplemental L-arginine in animals. Amino Acids 48:1541–1552

    CAS  PubMed  Google Scholar 

  • Wu Z, Hou Y, Dai Z, Hu CA, Wu G (2019) Metabolism, nutrition, and redox signaling of hydroxyproline. Antioxid Redox Signal 30:674–682

    CAS  PubMed  Google Scholar 

  • Yi D, Hou YQ, Wang L, Ding BY, Yang ZG, Li J, Long MH, Liu YL, Wu G (2014) Dietary N-acetylcysteine supplementation alleviates liver injury in lipopoly-saccharide-challenged piglets. Br J Nutr 11:46–54

    Google Scholar 

  • Zhu Y, Evans MI (2001) Estrogen modulates the expression of L-arginine:glycine amidinotransferase in chick liver. Mol Cell Biochem 221:139–145

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported, in part, by Hubei Provincial Foundation of Natural Science (2016CFA070; Y. Hou), the Program of National Agricultural Research Outstanding Talents of China (2015; Y. Hou), and Texas A&M AgriLife Research (H-8200; G. Wu). We thank students and research assistants in our laboratories for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyao Wu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, Y., Hu, S., Li, X., He, W., Wu, G. (2020). Amino Acid Metabolism in the Liver: Nutritional and Physiological Significance. In: Wu, G. (eds) Amino Acids in Nutrition and Health. Advances in Experimental Medicine and Biology, vol 1265. Springer, Cham. https://doi.org/10.1007/978-3-030-45328-2_2

Download citation

Publish with us

Policies and ethics