Skip to main content

The Containment Problem: Background

  • Chapter
  • First Online:
Ideals of Powers and Powers of Ideals

Part of the book series: Lecture Notes of the Unione Matematica Italiana ((UMILN,volume 27))

  • 540 Accesses

Abstract

The study of ideals underlies both algebra and geometry. For example, the study of homogeneous ideals in polynomial rings is an aspect of both commutative algebra and of algebraic geometry. In both cases, given an ideal, one wants to understand how the ideal behaves. One way in which algebra and geometry differ is in what it means to be “given an ideal”. For an algebraist it typically means being given generators of the ideal. For a geometer it often means being given a locus of points (or a scheme) in projective space, the ideal then being all elements of the polynomial ring which vanish on the given locus or scheme. Determining generators for the ideal defining a scheme sometimes requires significant effort, and if given generators a geometer will usually want to know what vanishing locus they cut out. Thus while both algebraists and geometers study ideals, their starting points are different.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.V. Chudnovsky, Singular points on complex hypersurfaces and multidimensional Schwarz lemma, in Seminar on Number Theory, Paris 1979–1980. Progress in Mathematics, vol. 12 (Birkhäuser, Boston, MA, 1981), pp. 29–69

    Google Scholar 

  2. L. Ein, R. Lazarsfeld, K. Smith, Uniform behavior of symbolic powers of ideals. Invent. Math. 144, 241–252 (2001)

    Article  MathSciNet  Google Scholar 

  3. H. Esnault, E. Viehweg. Sur une minoration du degré d’hypersurfaces s’annulant en certains points. Math. Ann. 263(1), 75–86 (1983)

    Article  MathSciNet  Google Scholar 

  4. H. Fekete, Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganzzahligen Koeffizienten. Math. Z. 17, 228–249 (1923)

    Article  MathSciNet  Google Scholar 

  5. A.V. Geramita, P. Maroscia, The ideal of forms vanishing at a finite set of points in \(\mathbb {P}^n\). J. Algebra 90, 528–555 (1984)

    Google Scholar 

  6. B. Harbourne, Global aspects of the geometry of surfaces. Ann. Univ. Paed. Cracov. Stud. Math. 9, 5–41 (2010)

    MathSciNet  MATH  Google Scholar 

  7. B. Harbourne, Asymptotics of linear systems, with connections to line arrangements. Phenomenological Approach to Algebraic Geometry, vol. 116 (Banach Center Publication, Polish Academy of Sciences Institute of Mathematics, Warsaw, 2018), pp. 87–135

    Google Scholar 

  8. B. Harbourne, C. Huneke, Are symbolic powers highly evolved? J. Ramanujan Math. Soc. 28(Special Issue-2013, 3), 311–330

    Google Scholar 

  9. B. Harbourne, J. Roé, Extendible estimates of multipoint Seshadri constants (2013). Preprint. arXiv:math/0309064

    Google Scholar 

  10. R. Hartshorne, Algebraic Geometry. Graduate Texts in Mathematics, vol. 52 (Springer, New York, 1977)

    Google Scholar 

  11. M. Hochster, C. Huneke, Comparison of symbolic and ordinary powers of ideals. Invent. Math. 147(2), 349–369 (2002)

    Article  MathSciNet  Google Scholar 

  12. R. Lazarsfeld, Positivity in Algebraic Geometry I.–II. Ergebnisse der Mathematik und ihrer Grenzgebiete, vols. 48–49 (Springer, Berlin, 2004)

    Google Scholar 

  13. G. Malara, T. Szemberg, J. Szpond, On a conjecture of Demailly and new bounds on Waldschmidt constants in \({\mathbb P}^N\). J. Number Theory 189, 211–219 (2018)

    Google Scholar 

  14. M. Nagata, On the 14-th problem of Hilbert. Am. J. Math. 81, 766–772 (1959)

    Article  MathSciNet  Google Scholar 

  15. H. Skoda, Estimations L 2 pour l’opérateur \(\widehat {\partial }\) et applications arithmétiques, in Séminaire P. Lelong (Analyse), 1975/76. Lecture Notes Mathematics, vol. 578 (Springer, New York, 1977), pp. 314–323

    Google Scholar 

  16. M. Waldschmidt, Propriétés arithmétiques de fonctions de plusieurs variables. II, in Séminaire P. Lelong (Analyse), 1975/76. Lecture Notes Mathematics, vol. 578 (Springer, New York, 1977), pp. 108–135

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Carlini, E., Tài Hà, H., Harbourne, B., Van Tuyl, A. (2020). The Containment Problem: Background. In: Ideals of Powers and Powers of Ideals. Lecture Notes of the Unione Matematica Italiana, vol 27. Springer, Cham. https://doi.org/10.1007/978-3-030-45247-6_8

Download citation

Publish with us

Policies and ethics