Skip to main content

Power-Stroke-Driven Muscle Contraction

  • Chapter
  • First Online:
The Mathematics of Mechanobiology

Part of the book series: Lecture Notes in Mathematics ((LNMCIME,volume 2260))

  • 738 Accesses

Abstract

To show that acto-myosin contraction can be propelled directly through a conformational change, we present in these lecture notes a review of a recently developed approach to muscle contraction where myosin power-stroke is interpreted as the main active mechanism. By emphasizing the active role of power stroke, the proposed model contributes to building a conceptual bridge between processive and nonprocessive motors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.W. Ahmed, É. Fodor, T. Betz, Active cell mechanics: measurement and theory. Biochim. Biophys. Acta, Mol. Cell Res. 1853(11), 3083–3094 (2015)

    Google Scholar 

  2. R. Ait-Haddou, W. Herzog, Brownian ratchet models of molecular motors. Cell Biochem. Biophys. 38(2), 191–213 (2003)

    Google Scholar 

  3. B. Alberts, Molecular Biology of the Cell, 5th edn. (Garland Science, New York, 2007)

    Google Scholar 

  4. F. Alouges, A. DeSimone, A. Lefebvre, Optimal strokes for low Reynolds number swimmers: an example. J. Nonlinear Sci. 18(3), 277–302 (2008)

    MathSciNet  MATH  Google Scholar 

  5. J. Alvarado, M. Sheinman, A. Sharma, F.C. MacKintosh, G.H. Koenderink, Molecular motors robustly drive active gels to a critically connected state. Nat. Phys. 9, 591—597 (2013)

    Google Scholar 

  6. J.P. Baltanás, L. Lopez, I.I. Blechman, P.S. Landa, A. Zaikin, J. Kurths, M.A.F. Sanjuán, Experimental evidence, numerics, and theory of vibrational resonance in bistable systems. Phys. Rev. E 67(6), 066119 (2003)

    Google Scholar 

  7. C. Barclay, R. Woledge, N. Curtin, Inferring crossbridge properties from skeletal muscle energetics. Prog. Biophys. Mol. Bio. 102(1), 53–71 (2010)

    Google Scholar 

  8. R. Bartussek, Ratchets driven by colored gaussian noise, in Stochastic Dynamics, ed. by L. Schimansky-Geier, T. Pöschel. Lecture Notes in Physics, vol. 484 (Springer, Berlin, 1997), pp. 68–80

    Google Scholar 

  9. U. Basu, C. Maes, K. Netočnỳ, How statistical forces depend on the thermodynamics and kinetics of driven media. Phys. Rev. Lett. 114(25), 250601 (2015)

    Google Scholar 

  10. I. Bena, C. Van den Broeck, R. Kawai, K. Lindenberg, Drift by dichotomous Markov noise. Phys. Rev. E 68(4), 041111 (2003)

    Google Scholar 

  11. L. Berthier, J. Kurchan, Non-equilibrium glass transitions in driven and active matter. Nat. Phys. 9(5), 310–314 (2013)

    Google Scholar 

  12. J. Bialké, J.T. Siebert, H. Löwen, T. Speck, Negative interfacial tension in phase-separated active Brownian particles. Phys. Rev. Lett. 115(9), 098301 (2015)

    Google Scholar 

  13. I.I. Blekhman, Vibrational Mechanics: Nonlinear Dynamic Effects, General Approach, Applications (World Scientific, Singapore, 2000)

    Google Scholar 

  14. J.-P. Bouchaud, A. Georges, Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195(4), 127–293 (1990)

    MathSciNet  Google Scholar 

  15. Z. Bryant, D. Altman, J. Spudich, The power stroke of myosin vi and the basis of reverse directionality. Proc. Nat. Acad. Sci. U.S.A. 104(3), 772–777 (2007)

    Google Scholar 

  16. M. Bukov, L. D’Alessio, A. Polkovnikov, Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering. Adv. Phys. 64(2), 139–226 (2015)

    Google Scholar 

  17. E.I. Butikov, An improved criterion for Kapitza’s pendulum stability. J. Phys. A Math. Theor. 44(29), 295202 (2011)

    Google Scholar 

  18. F.J. Cao, L. Dinis, J.M.R. Parrondo, Feedback control in a collective flashing ratchet. Phys. Rev. Lett. 93(4), 040603 (2004)

    Google Scholar 

  19. M. Caruel, J.-M. Allain, L. Truskinovsky, Muscle is a meta-material operating at a critical point. Phys. Rev. Lett. 110(24), 248103 (2013)

    Google Scholar 

  20. L.F. Cugliandolo, D.R. Grempel, C.A. da Silva Santos, From second to first order transitions in a disordered quantum magnet. Phys. Rev. Lett. 85(12), 2589–2592 (2000)

    Google Scholar 

  21. H.B. da Rocha, L. Truskinovsky, Functionality of disorder in muscle mechanics. Phys. Rev. Lett. 122(8), 088103 (2019)

    Google Scholar 

  22. E. De La Cruz, E. Ostap, Relating biochemistry and function in the myosin superfamily. Curr. Opin. Cell Biol. 16(1):61–67 (2004)

    Google Scholar 

  23. S. Denisov, Particle with internal dynamical asymmetry: chaotic self-propulsion and turning. Phys. Lett. A 296(4), 197–203 (2002)

    MATH  Google Scholar 

  24. I. Derényi, T. Vicsek, The Kinesin walk: A dynamic model with elastically coupled heads. Proc. Nat. Acad. Sci. U.S.A. 93(13), 6775–6779 (1996)

    Google Scholar 

  25. C.R. Doering, W. Horsthemke, J. Riordan, Nonequilibrium fluctuation-induced transport. Phys. Rev. Lett. 72(19), 2984 (1994)

    Google Scholar 

  26. T. Duke, Molecular model of muscle contraction. Proc. Nat. Acad. Sci. U.S.A. 96(6), 2770–2775 (1999)

    Google Scholar 

  27. T. Duke, S. Leibler, Motor protein mechanics: a stochastic model with minimal mechanochemical coupling. Biophys. J. 71(3), 1235–1247 (1996)

    Google Scholar 

  28. B. Dybiec, E. Gudowska-Nowak, I.M. Sokolov, Stationary states in Langevin dynamics under asymmetric Lévy noises. Phys. Rev. E 76(4), 041122 (2007)

    Google Scholar 

  29. B. Dybiec, L. Schimansky-Geier, Emergence of bimodality in noisy systems with single-well potential. Eur. Phys. J. B 57(3), 313–320 (2007)

    Google Scholar 

  30. K.A.P. Edman, Double-hyperbolic force velocity relation in frog-muscle fibers. J. Physiol. Lond. 404, 301–321 (1988)

    Google Scholar 

  31. K.A.P. Edman, A. Månsson, C. Caputo, The biphasic force-velocity relationship in frog muscle fibres and its evaluation in terms of cross-bridge function. J. Physiol. 503(1), 141–156 (1997)

    Google Scholar 

  32. T. Elston, C. Peskin, The role of protein flexibility in molecular motor function: coupled diffusion in a tilted periodic potential. SIAM J. Appl. Math. 60(3), 842–867 (2000)

    MathSciNet  MATH  Google Scholar 

  33. T. Erdmann, U. Schwarz, Stability of adhesion clusters under constant force. Phys. Rev. Lett. 92(10), 108102 (2004)

    Google Scholar 

  34. N. Etemadi, M. Kaminski, Strong law of large numbers for 2-exchangeable random variables. Stat. Probab. Lett. 28(3), 245–250 (1996)

    MathSciNet  MATH  Google Scholar 

  35. M. Feito, J.P. Baltanás, F.J. Cao, Rocking feedback-controlled ratchets. Phys. Rev. E 80(3), 031128 (2009)

    Google Scholar 

  36. M. Feito, F. J. Cao, Time-delayed feedback control of a flashing ratchet. Phys. Rev. E 76(6), 061113 (2007)

    Google Scholar 

  37. É. Fodor, W.W. Ahmed, M. Almonacid, M. Bussonnier, N.S. Gov, M.-H. Verlhac, T. Betz, P. Visco, F. van Wijland, Nonequilibrium dissipation in living oocytes (2015). arXiv:1511.00921

    Google Scholar 

  38. C. Fogle, J. Rudnick, D. Jasnow, Protein viscoelastic dynamics: a model system (2015). arXiv:1502.00343 [cond-mat]

    Google Scholar 

  39. F. Fritzen, D.M. Kochmann, Material instability-induced extreme damping in composites: a computational study. Int. J. Solids Struct. 51(23–24), 4101–4112 (2014)

    Google Scholar 

  40. R. Gallardo, O. Idigoras, P. Landeros, A. Berger, Analytical derivation of critical exponents of the dynamic phase transition in the mean-field approximation. Phys. Rev. E 86(5), 051101 (2012)

    Google Scholar 

  41. L. Gammaitoni, P. Hänggi, P. Jung, F. Marchesoni, Stochastic resonance: a remarkable idea that changed our perception of noise. Eur. Phys. J. B 69(1), 1–3 (2009)

    Google Scholar 

  42. M.A. Geeves, Stretching the lever-arm theory. Nature 415(6868), 129–131 (2002)

    Google Scholar 

  43. B. Geislinger, R. Kawai, Brownian molecular motors driven by rotation-translation coupling. Phys. Rev. E 74(1), 011912 (2006)

    Google Scholar 

  44. A. Grosberg, J.-F. Joanny, Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats. Phys. Rev. E 92(3), 032118 (2015)

    Google Scholar 

  45. T. Guérin, J. Prost, P. Martin, J.-F. Joanny, Coordination and collective properties of molecular motors: theory. Curr. Opin. Cell Biol. 22(1), 14–20 (2010)

    Google Scholar 

  46. T. Guérin, J. Prost, P. Martin, J.-F. Joanny, Dynamical behavior of molecular motor assemblies in the rigid and crossbridge models. Eur. Phys. J. E 34(6), 60 (2011)

    Google Scholar 

  47. A.N. Gupta, A. Vincent, K. Neupane, H. Yu, F. Wang, M.T. Woodside, Experimental validation of free-energy-landscape reconstruction from non-equilibrium single-molecule force spectroscopy measurements. Nat. Phys. 7(8), 631–634 (2011)

    Google Scholar 

  48. P. Hänggi, P. Jung, Colored noise in dynamical-systems, in Advances in Chemical Physics, vol. 89 (Wiley, London, 1995), pp. 239–326

    Google Scholar 

  49. P. Hänggi, F. Marchesoni, Artificial Brownian motors: Controlling transport on the nanoscale. Rev. Mod. Phys. 81(1), 387–442 (2009)

    Google Scholar 

  50. D. Hennig, Current control in a tilted washboard potential via time-delayed feedback. Phys. Rev. E 79(4), 041114 (2009)

    Google Scholar 

  51. A.V. Hill, The heat of shortening and the dynamic constants of muscle. Proc. R. Soc. Lond. B 126, 136–195 (1938)

    Google Scholar 

  52. T. Hill, Theoretical formalism for the sliding filament model of contraction of striated muscle. part I. Prog. Biophys. Mol. Biol. 28, 267–340 (1974)

    Google Scholar 

  53. J. Howard, Mechanics of Motor Proteins and the Cytoskeleton (Sinauer Associates, Sunderland, 2001)

    Google Scholar 

  54. A.F. Huxley, R.M. Simmons, Proposed mechanism of force generation in striated muscle. Nature 233(5321), 533–538 (1971)

    Google Scholar 

  55. A. Ichiki, Y. Tadokoro, M.I. Dykman, Singular response of bistable systems driven by telegraph noise. Phys. Rev. E 85(3), 031106 (2012)

    Google Scholar 

  56. M. Joyeux, E. Bertin, Pressure of a gas of underdamped active dumbbells. Phys. Rev. E 93(3), 032605 (2016)

    Google Scholar 

  57. F. Jülicher, Force and motion generation of molecular motors: a generic description, in Transport and Structure (Springer, Berlin, 1999), pp. 46–74

    Google Scholar 

  58. F. Jülicher, A. Ajdari, J. Prost, Modeling molecular motors. Rev. Mod. Phys. 69(4), 1269–1281 (1997)

    Google Scholar 

  59. F. Jülicher, J. Prost, Spontaneous oscillations of collective molecular motors. Phys. Rev. Lett. 78(23), 4510–4513 (1997)

    Google Scholar 

  60. K. Kawaguchi, S. Ishiwata, Temperature dependence of force, velocity, and processivity of single Kinesin molecules. Biochem. Bioph. Res. Commun. 272(3), 895–899 (2000)

    Google Scholar 

  61. M. Khoury, J.P. Gleeson, J.M. Sancho, A.M. Lacasta, K. Lindenberg, Diffusion coefficient in periodic and random potentials. Phys. Rev. E 80(2), 021123 (2009)

    Google Scholar 

  62. K. Kitamura, M. Tokunaga, S. Esaki, A. Iwane, T. Yanagida, Mechanism of muscle contraction based on stochastic properties of single actomyosin motors observed in vitro. Biophysics 1, 1–19 (2005)

    Google Scholar 

  63. P. Kloeden, E. Platen, Numerical Solution of Stochastic Differential Equations. Applications of Mathematics, vol. 23 (Springer, Berlin, 1992)

    Google Scholar 

  64. V. Klyatskin, Dynamic systems with parameter fluctuations of the telegraphic-process type. Radiofizika 20(4), 562–575 (1977)

    MathSciNet  Google Scholar 

  65. G. Lan, S.X. Sun, Dynamics of myosin-driven skeletal muscle contraction: I. Steady-state force generation. Biophys. J. 88(6), 4107 (2005)

    Google Scholar 

  66. P.S. Landa, P.V.E. McClintock, Nonlinear systems with fast and slow motions. changes in the probability distribution for fast motions under the influence of slower ones. Phys. Rep. 532(1), 1–26 (2013)

    Google Scholar 

  67. A. Lewalle, W. Steffen, O. Stevenson, Z. Ouyang, J. Sleep, Single-molecule measurement of the stiffness of the Rigor myosin head. Biophys. J. 94(6), 2160–2169 (2008)

    Google Scholar 

  68. Y.-X. Li, Brownian motors possessing internal degree of freedom. Phys. A 251(3), 382–388 (1998)

    Google Scholar 

  69. M. Linari, M. Caremani, V. Lombardi, A kinetic model that explains the effect of inorganic phosphate on the mechanics and energetics of isometric contraction of fast skeletal muscle. Proc. Biol. Sci. 277(1678), 19–27 (2010)

    Google Scholar 

  70. B. Lindner, M. Kostur, L. Schimansky-Geier, Optimal diffusive transport in a tilted periodic potential. Fluct. Noise Lett. 1(1), R25–R39 (2001)

    Google Scholar 

  71. V. Lombardi, G. Piazzesi, The contractile response during steady lengthening of stimulated frog-muscle fibers. J. Physiol. Lond. 431, 141–171 (1990)

    Google Scholar 

  72. R. Lymn, E. Taylor, Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10(25), 4617–4624 (1971)

    Google Scholar 

  73. Magnasco, Molecular combustion motors. Phys. Rev. Lett. 72(16), 2656–2659 (1994)

    Google Scholar 

  74. M.O. Magnasco, Forced thermal ratchets. Phys. Rev. Lett. 71(10), 1477–1481 (1993)

    Google Scholar 

  75. Y.A. Makhnovskii, V.M. Rozenbaum, D.-Y. Yang, S.H. Lin, Net transport due to noise-induced internal reciprocating motion. J. Chem. Phys. 130(16), 164101 (2009)

    Google Scholar 

  76. L. Marcucci, L. Truskinovsky, Mechanics of the power stroke in myosin II. Phys. Rev. E 81(5), 051915 (2010)

    Google Scholar 

  77. P. Martin, A.D. Mehta, A.J. Hudspeth, Negative hair-bundle stiffness betrays a mechanism for mechanical amplification by the hair cell. PNAS 97(22), 12026–12031 (2000)

    Google Scholar 

  78. J.L. Mateos, F. Alatriste, Brownian motors and stochastic resonance. Chaos 21(4) (2011)

    Google Scholar 

  79. J. Menche, L. Schimansky-Geier, Two particles with bistable coupling on a ratchet. Phys. Lett. A 359(2), 90–98 (2006)

    Google Scholar 

  80. E. Meyhöfer, J. Howard, The force generated by a single Kinesin molecule against an elastic load. Proc. Nat. Acad. Sci. U.S.A. 92(2), 574–578 (1995)

    Google Scholar 

  81. M.M. Millonas, M.I. Dykman, Transport and current reversal in stochastically driven ratchets. Phys. Lett. A 185(1), 65–69 (1994)

    Google Scholar 

  82. A. Mogilner, A.J. Fisher, R.J. Baskin, Structural changes in the neck linker of Kinesin explain the load dependence of the motor’s mechanical cycle. J. Theor. Biol. 211(2), 143–157 (2001)

    Google Scholar 

  83. A. Månsson, Actomyosin-ADP states, interhead cooperativity, and the force-velocity relation of skeletal muscle. Biophys. J. 98(7), 1237–1246 (2010)

    Google Scholar 

  84. A. Muhlrad, Y.M. Peyser, M. Nili, K. Ajtai, E. Reisler, T.P. Burghardt, Chemical decoupling of ATPase activation and force production from the contractile cycle in myosin by steric hindrance of lever-arm movement. Biophys. J. 84(2), 1047 (2003)

    Google Scholar 

  85. M.A. Muñoz, F.D.L. Santos, M.M.T.D. Gama, Generic two-phase coexistence in nonequilibrium systems. Eur. Phys. J. B 43(1):73–79 (2005)

    Google Scholar 

  86. K.H. Nagai, Y. Sumino, R. Montagne, I.S. Aranson, H. Chaté, Collective motion of self-propelled particles with memory. Phys. Rev. Lett. 114(16), 168001 (2015)

    Google Scholar 

  87. E. Pate, G. Wilson, M. Bhimani, R. Cooke, Temperature-dependence of the inhibitory of effects on orthovanadate on shortening velocity in fast skeletalimuscle. Biophys. J. 66(5), 1554–1562 (1994)

    Google Scholar 

  88. G. Piazzesi, V. Lombardi, A cross-bridge model that is able to explain mechanical and energetic properties of shortening muscle. Biophys. J. 68(5), 1966–1979 (1995)

    Google Scholar 

  89. K.R. Pilkiewicz, J.D. Eaves, Reentrance in an active glass mixture. Soft Matter 10(38), 7495–7501 (2014)

    Google Scholar 

  90. M. Porto, Molecular motor based entirely on the coulomb interaction. Phys. Rev. E 63(3), 030102 (2001)

    Google Scholar 

  91. J. Prost, J.-F. Chauwin, L. Peliti, A. Ajdari, Asymmetric pumping of particles. Phys. Rev. Lett. 72(16), 2652 (1994)

    Google Scholar 

  92. G. Puglisi, L. Truskinovsky, Cohesion-decohesion asymmetry in geckos. Phys. Rev. E 87(3), 032714 (2013)

    Google Scholar 

  93. H. Qian, Vector field formalism and analysis for a class of thermal ratchets. Phys. Rev. Lett. 81(15), 3063–3066 (1998)

    Google Scholar 

  94. P. Recho, L. Truskinovsky, Asymmetry between pushing and pulling for crawling cells. Phys. Rev. E 87(2), 022720 (2013)

    Google Scholar 

  95. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002)

    MathSciNet  MATH  Google Scholar 

  96. P. Reimann, Brownian motors: noisy transport far from equilibrium. Phys. Rep. 361(2–4), 57–265 (2002)

    MathSciNet  MATH  Google Scholar 

  97. P. Reimann, C. Van den Broeck, H. Linke, P. Hänggi, J.M. Rubi, A. Pérez-Madrid, Giant acceleration of free diffusion by use of tilted periodic potentials. Phys. Rev. Lett. 87(1), 010602 (2001)

    Google Scholar 

  98. H. Risken, The Fokker–Planck Equation (Springer, Berlin, 1989)

    MATH  Google Scholar 

  99. V.M. Rozenbaum, Y.A. Makhnovskii, S.-Y. Sheu, D.-Y. Yang, S.H. Lin, Two-state brownian motor driven by synchronously fluctuating unbiased forces. Phys. Rev. E 84(2), 021104 (2011)

    Google Scholar 

  100. P. Sarkar, A.K. Maity, A. Shit, S. Chattopadhyay, J.R. Chaudhuri, S.K. Banik, Controlling mobility via rapidly oscillating time-periodic stimulus. Chem. Phys. Lett. 602, 4–9 (2014)

    Google Scholar 

  101. P. Sarkar, A. Shit, S. Chattopadhyay, S. K. Banik, Profiling the overdamped dynamics of a nonadiabatic system. Chem. Phys. 458, 86–91 (2015)

    Google Scholar 

  102. S. Savel’ev, F. Marchesoni, F. Nori, Stochastic transport of interacting particles in periodically driven ratchets. Phys. Rev. E 70(6), 061107 (2004)

    Google Scholar 

  103. G. Schappacher-Tilp, T. Leonard, G. Desch, W. Herzog, A novel three-filament model of force generation in eccentric contraction of skeletal muscles. PLoS One 10(3), e0117634 (2015)

    Google Scholar 

  104. M.J. Schnitzer, K. Visscher, S.M. Block, Force production by single Kinesin motors. Nat. Cell Biol. 2(10), 718–723 (2000)

    Google Scholar 

  105. K. Sekimoto, Kinetic characterization of heat bath and the energetics of thermal ratchet models. J. Phys. Soc. Jpn. 66(5), 1234–1237 (1997)

    Google Scholar 

  106. M. Sheinman, C.P. Broedersz, F.C. MacKintosh, Actively stressed marginal networks. Phys. Rev. Lett. 109(23), 238101 (2012)

    Google Scholar 

  107. R. Sheshka, P. Recho, L. Truskinovsky, Rigidity generation by nonthermal fluctuations. Phys. Rev. E 93(5), 052604 (2016)

    Google Scholar 

  108. R. Sheshka, L. Truskinovsky, Power-stroke-driven actomyosin contractility. Phys. Rev. E 89(1), 012708 (2014)

    Google Scholar 

  109. D.A. Smith, M.A. Geeves, J. Sleep, S.M. Mijailovich, Towards a unified theory of muscle contraction. I: foundations. Ann. Biomed. Eng. 36(10), 1624–1640 (2008)

    Google Scholar 

  110. A.P. Solon, J. Stenhammar, R. Wittkowski, M. Kardar, Y. Kafri, M.E. Cates, J. Tailleur, Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114(19), 198301 (2015)

    Google Scholar 

  111. H. Sugi, T. Kobayashi, T. Tsuchiya, S. Chaen, S. Sugiura, Evidence for the essential role of myosin head lever arm domain and myosin subfragment-2 in muscle contraction, in Skeletal Muscle—From Myogenesis to Clinical Relations, ed. by J. Cseri, chap. 6 (InTech, 2012), pp. 125–140

    Google Scholar 

  112. H. Sugi, H. Minoda, Y. Inayoshi, F. Yumoto, T. Miyakawa, Y. Miyauchi, M. Tanokura, T. Akimoto, T. Kobayashi, S. Chaen, et al., Direct demonstration of the cross-bridge recovery stroke in muscle thick filaments in aqueous solution by using the hydration chamber. Proc. Nat. Acad. Sci. U.S.A. 105(45), 17396–17401 (2008)

    Google Scholar 

  113. H.L. Sweeney, A. Houdusse, Structural and functional insights into the myosin motor mechanism. Annu. Rev. Biophys. 39, 539–557 (2010)

    Google Scholar 

  114. S.C. Takatori, J.F. Brady, Forces, stresses and the (thermo?) dynamics of active matter. Curr. Opin. Colloid Interface Sci. 21, 24–33 (2016)

    Google Scholar 

  115. T. Tomé, M.J. de Oliveira, Dynamic phase transition in the kinetic Ising model under a time-dependent oscillating field. Phys. Rev. A 41(8), 4251 (1990)

    Google Scholar 

  116. G. Tsiavaliaris, S. Fujita-Becker, D.J. Manstein, Molecular engineering of a backwards-moving myosin motor. Nature 427(6974), 558–561 (2004)

    Google Scholar 

  117. M. Tyska, D. Warshaw, The myosin power stroke. Cell Mot. Cytoskel. 51(1), 1–15 (2002)

    Google Scholar 

  118. C. Van den Broeck, J.M.R. Parrondo, R. Toral, Noise-induced nonequilibrium phase transition. Phys. Rev. Lett. 73(25), 3395 (1994)

    Google Scholar 

  119. C. Veigel, C.F. Schmidt, Moving into the cell: single-molecule studies of molecular motors in complex environments. Nat. Rev. Mol. Cell Bio. 12(3), 163–176 (2011)

    Google Scholar 

  120. A. Vilfan, T. Duke, Instabilities in the transient response of muscle. Biophys. J.85(2), 818–827 (2003)

    Google Scholar 

  121. A. Vilfan, T. Duke, Synchronization of active mechanical oscillators by an inertial load. Phys. Rev. Lett. 91(11), 114101 (2003)

    Google Scholar 

  122. A. Vilfan, E. Frey, F. Schwabl, Force-velocity relations of a two-state crossbridge model for molecular motors. Europhys. Lett. 45(3), 283–289 (1999)

    Google Scholar 

  123. K. Visscher, M.J. Schnitzer, S.M. Block, Single Kinesin molecules studied with a molecular force clamp. Nature 400(6740), 184–189 (1999)

    Google Scholar 

  124. S. von Gehlen, M. Evstigneev, P. Reimann, Dynamics of a dimer in a symmetric potential: Ratchet effect generated by an internal degree of freedom. Phys. Rev. E 77(3), 031136 (2008)

    Google Scholar 

  125. S. Walcott, P. Fagnant, K. Trybus, D. Warshaw, Smooth muscle heavy meromyosin phosphorylated on one of its two heads supports force and motion. J. Biol. Chem. 284(27), 18244–18251 (2009)

    Google Scholar 

  126. H. Wang, G. Oster, Ratchets, power strokes, and molecular motors. Appl. Phys. A 75(2), 315–323 (2002)

    Google Scholar 

  127. H. J. Woo, C.L. Moss, Analytical theory of the stochastic dynamics of the power stroke in nonprocessive motor proteins. Phys. Rev. E 72(5), 051924 (2005)

    Google Scholar 

  128. M.T. Woodside, C. García-García, S.M. Block, Folding and unfolding single rna molecules under tension. Curr. Opin. Chem. Biol. 12(6), 640–646 (2008)

    Google Scholar 

  129. A.A. Zaikin, J. Kurths, L. Schimansky-Geier, Doubly stochastic resonance. Phys. Rev. Lett. 85(2), 227 (2000)

    Google Scholar 

  130. X.-J. Zhang, H. Qian, M. Qian, Stochastic theory of nonequilibrium steady states and its applications. Part I. Phys. Rep. 510(1), 1–86 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lev Truskinovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sheshka, R., Truskinovsky, L. (2020). Power-Stroke-Driven Muscle Contraction. In: Ambrosi, D., Ciarletta, P. (eds) The Mathematics of Mechanobiology. Lecture Notes in Mathematics(), vol 2260. Springer, Cham. https://doi.org/10.1007/978-3-030-45197-4_4

Download citation

Publish with us

Policies and ethics