Skip to main content

Convolutional Neural Networks for Multimodal Brain MRI Images Segmentation: A Comparative Study

  • Conference paper
  • First Online:
Smart Applications and Data Analysis (SADASC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1207))

Included in the following conference series:

Abstract

Manual segmentation of brain tumors from MRI images is very frustrating and time consuming for medical doctors, and relies on accurate segmentation of regions of interests. Convolutional Neural Networks (CNN) based segmentation has gained a huge amount of attention over the last few years due to its speed and automated aspect. As the CNN models are becoming more efficient for image analysis and processing, they increasingly defeat previous state-of-the-art classical machine learning algorithms. Through this study, we provide an overview of CNN-based segmentation models for quantitative brain MRI images segmentation. As this has become a fast expanding field, we will not survey the entire existing landscape of methods but we will focus on the three best outperforming algorithms according to evaluation parameters. Firstly, we review the current conventional methods and deep learning architectures used for segmentation of brain lesions. Next, we perform deep performance comparison based on accuracy and loss function of some relevant selected CNN methods. Finally, a critical analysis of the current study is made to identify all pertinent issues and limitations to work on.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.med.upenn.edu/sbia/.

  2. 2.

    http://www.isles-challenge.org/.

References

  1. Dubey, R.B., Hanmandlu, M., Vasikarla, S.: Evaluation of three methods for MRI brain tumor segmentation. In: 2011 Eighth International Conference on Information Technology: New Generations (2011). https://doi.org/10.1109/itng.2011.92

  2. Parihar, A.S.: A study on brain tumor segmentation using convolution neural network. In: 2017 International Conference on Inventive Computing and Informatics (ICICI) (2017). https://doi.org/10.1109/icici.2017.8365336

  3. Pereira, S., Pinto, A., Alves, V., Silva, C.A.: Brain tumor segmentation using convolutional neural networks in MRI images. IEEE Trans. Med. Imaging 35(5), 1240–1251 (2016). https://doi.org/10.1109/tmi.2016.2538465

    Article  Google Scholar 

  4. Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation. Ann. Rev. Biomed. Eng. 2(1), 315–337 (2000). https://doi.org/10.1146/annurev.bioeng.2.1.315

    Article  Google Scholar 

  5. Zhou, S.K., Greenspan, H., Shen, D.: Deep learning for medical image analysis (2018). https://doi.org/10.4103/jpi.jpi_27_18

  6. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998). https://doi.org/10.1109/5.726791

    Article  Google Scholar 

  7. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating errors. Nature 323(6088), 533–536 (1986). https://doi.org/10.1038/323533a0

    Article  MATH  Google Scholar 

  8. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  10. Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38

    Chapter  Google Scholar 

  11. Kayalibay, B., Jensen, G., van der Smagt, P.: CNN-based segmentation of medical imaging data (2017)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.-A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV) (2016). https://doi.org/10.1109/3dv.2016.79

  14. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: The International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  15. Işın, A., Direkoğlu, C., Şah, M.: Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput. Sci. 102, 317–324 (2016). https://doi.org/10.1016/j.procs.2016.09.407

    Article  Google Scholar 

  16. Dong, H., Yang, G., Liu, F., Mo, Y., Guo, Y.: Automatic brain tumor detection and segmentation using U-Net based fully convolutional networks. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 506–517. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_44

    Chapter  Google Scholar 

  17. Chen, W., Liu, B., Peng, S., Sun, J., Qiao, X.: S3D-UNet: separable 3D U-Net for brain tumor segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 358–368. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bouchaib Cherradi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moujahid, H., Cherradi, B., Bahatti, L. (2020). Convolutional Neural Networks for Multimodal Brain MRI Images Segmentation: A Comparative Study. In: Hamlich, M., Bellatreche, L., Mondal, A., Ordonez, C. (eds) Smart Applications and Data Analysis. SADASC 2020. Communications in Computer and Information Science, vol 1207. Springer, Cham. https://doi.org/10.1007/978-3-030-45183-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-45183-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-45182-0

  • Online ISBN: 978-3-030-45183-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics