Skip to main content

Crosslinking of Polymers: Rubber Vulcanization

  • Chapter
  • First Online:
Reactive and Functional Polymers Volume Two

Abstract

Crosslinking is a process whereby the polymer segments from different polymer chains are interconnected by covalent (and sometimes ionic) linkages. Crosslinks can be formed either during the polymer synthesis process, or additionally by reaction leading to the connection of already finished macromolecules. The crosslinking agent is necessary for the crosslinking of the finished polymer. Given the great length of the macromolecules, only a small amount of crosslinking agent is necessary to produce huge spatially arranged macromolecules. The increase in the degree of branching and polymerization and the growth of the polymer are observed at the beginning of the crosslinking reaction. The branched polymer gradually passes into an infinite structure that is represented by the network of polymers. The polymer with a small number of crosslinking sites contains part of the soluble portion (sol) and part of the insoluble portion (gel). The portion of soluble (extractible) polymer is decreased along with the growth of crosslinking density. Crosslinking of polymers leads, on the one hand, to the reduction of solubility and fusibility and, on the other hand, the increase of thermal stability and resistance to chemicals. The most frequently used crosslinking reaction in technological practice is the rubber vulcanization. Formerly, the plastic material is changed during vulcanization in highly elastic vulcanized rubber. Vulcanization resides in the reaction of elemental sulphur, organic sulphur compounds or organic peroxides with linear polymer chains, when crosslinks are forming. The most important and at the same time the oldest vulcanizing agent of polydiene rubbers is sulphur. Polymers can also construct crosslinks by peroxides. The main objective of this chapter was to analyze the crosslinking processes associated with vulcanization reactions between rubber macromolecules, as well as the types of crosslinking and the determination of crosslinking density.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baig, R. B. N., & Varma, R. S. (2012). Alternative energy input: Mechanochemical, microwave and ultrasound-assisted organic synthesis. Chemical Society Reviews, 41(4), 1559–1584. https://doi.org/10.1039/c1cs15204a.

    Article  CAS  Google Scholar 

  • Casassa, E. Z., Sarquis, A. M., & Van Dyke, C. (1986). The gelation of polyvinyl alcohol with borax: A novel class participation experiment involving the preparation and properties of a “slime.”. Journal of Chemical Education, 63(1), 57. https://doi.org/10.1021/ed063p57.

    Article  CAS  Google Scholar 

  • Cleland, M. R. (1983). Radiation processing: Basic concepts and practical aspects. Journal of Industrial Irradiation Technology, 1(3), 191–218.

    CAS  Google Scholar 

  • Collazo-Bigliardi, S., Ortega-Toro, R., & Chiralt, A. (2018). Properties of micro-and nano-reinforced biopolymers for food applications. In T. J. Gutiérrez (Ed.), Polymers for food applications (pp. 61–99). Cham: Springer. https://doi.org/10.1007/978-3-319-94625-2_4.

    Chapter  Google Scholar 

  • Drobny, J. G. (Ed.). (2007). Handbook of thermoplastic elastomers (p. 736). Norwich: William Andrew. isbn:978-0-8155-1549-4.

    Google Scholar 

  • Drobny, J. G. (Ed.). (2010). Radiation technology for polymers. Second Edition. CRC Press. Pp. 307. eBook ISBN 9780429148019. https://doi.org/10.1201/b10304

  • Flory, P. J. (1953). Principles of polymer chemistry. Ithaca/New York: Cornell University Press.

    Google Scholar 

  • Gutiérrez, T. J. (2017a). Effects of exposure to pulsed light on molecular aspects of edible films made from cassava and taro starch. Innovative Food Science & Emerging Technologies, 41, 387–396. https://doi.org/10.1016/j.ifset.2017.04.014.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J. (2017b). Surface and nutraceutical properties of edible films made from starchy sources with and without added blackberry pulp. Carbohydrate Polymers, 165, 169–179. https://doi.org/10.1016/j.carbpol.2017.02.016.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J. (2018). Active and intelligent films made from starchy sources/blackberry pulp. Journal of Polymers and the Environment, 26(6), 2374–2391. https://doi.org/10.1007/s10924-017-1134-y.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., & Alvarez, V. A. (2017a). Data on physicochemical properties of active films derived from plantain flour/PCL blends developed under reactive extrusion conditions. Data in Brief, 15, 445–448. https://doi.org/10.1016/j.dib.2017.09.071.

    Article  Google Scholar 

  • Gutiérrez, T. J., & Alvarez, V. A. (2017b). Eco-friendly films prepared from plantain flour/PCL blends under reactive extrusion conditions using zirconium octanoate as a catalyst. Carbohydrate Polymers, 178, 260–269. https://doi.org/10.1016/j.carbpol.2017.09.026.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., & Alvarez, V. A. (2017c). Properties of native and oxidized corn starch/polystyrene blends under conditions of reactive extrusion using zinc octanoate as a catalyst. Reactive and Functional Polymers, 112, 33–44. https://doi.org/10.1016/j.reactfunctpolym.2017.01.002.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., & González, G. (2016). Effects of exposure to pulsed light on surface and structural properties of edible films made from cassava and taro starch. Food and Bioprocess Technology, 9(11), 1812–1824. https://doi.org/10.1007/s11947-016-1765-3.

    Article  CAS  Google Scholar 

  • Gutiérrez, T. J., & González, G. (2017). Effect of cross-linking with Aloe vera gel on surface and physicochemical properties of edible films made from plantain flour. Food Biophysics, 12(1), 11–22. https://doi.org/10.1007/s11483-016-9458-z.

    Article  Google Scholar 

  • Gutiérrez, T. J., González Seligra, P., Medina Jaramillo, C., Famá, L., & Goyanes, S. (2017). Chapter 14. Effect of filler properties on the antioxidant response of thermoplastic starch composites. In V. K. Thakur, M. K. Thakur, & M. R. Kessler (Eds.), Handbook of composites from renewable materials (pp. 337–370). EE.UU: WILEY-Scrivener Publisher. https://doi.org/10.1002/9781119441632.ch14. isbn:978-1-119-22362-7.

    Chapter  Google Scholar 

  • Gutiérrez, T. J., Morales, N. J., Pérez, E., Tapia, M. S., & Famá, L. (2015a). Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Packaging and Shelf Life, 3, 1–8. https://doi.org/10.1016/j.fpsl.2014.09.002.

    Article  Google Scholar 

  • Gutiérrez, T. J., Tapia, M. S., Pérez, E., & Famá, L. (2015b). Edible films based on native and phosphated 80: 20 waxy: Normal corn starch. Starch-Stärke, 67(1–2), 90–97. https://doi.org/10.1002/star.201400164.

    Article  CAS  Google Scholar 

  • Joseph, A., George, B., Madhusoodanan, K., & Alex, R. (2015). Current status of Sulphur vulcanization and devulcanization chemistry: Process of vulcanization. Rubber Sci, 28(1), 82–121.

    Google Scholar 

  • Jovanović, S., Samaržija-Jovanović, S., Marković, G., Jovanović, V., Adamović, T., & Marinović-Cincović, M. (2016). Mechanical properties and thermal aging behaviour of polyisoprene/polybutadiene/styrene-butadiene rubber ternary blend reinforced with carbon black. Composites Part B: Engineering, 98, 126–133. https://doi.org/10.1016/j.compositesb.2016.04.060.

    Article  CAS  Google Scholar 

  • Jovanović, S., Samaržija-Jovanović, S., Marković, G., Jovanović, V., Adamović, T., & Marinović-Cincović, M. (2018). Ternary NR/BR/SBR rubber blend nanocomposites. Journal of Thermoplastic Composite Materials, 31(2), 265–287. https://doi.org/10.1177/0892705717697778.

    Article  CAS  Google Scholar 

  • Jovanović, V., & Samaržija-Jovanović, S. (2013). Nanokompoziti na osnovu različitih prekursora mreža. Beograd: Akademska misao.

    Google Scholar 

  • Kruželák, J., Sýkora, R., & Hudec, I. (2016). Sulphur and peroxide vulcanisation of rubber compounds-overview. Chemical Papers, 70(12), 1533–1555. https://doi.org/10.1515/chempap-2016-0093.

    Article  CAS  Google Scholar 

  • Lien, S.-M. M., Te Li, W.-T., & Huang, T.-J. J. (2008). Genipin-crosslinked gelatin scaffolds for articular cartilage tissue engineering with a novel crosslinking method. Materials Science and Engineering: C, 28(1), 36–43. https://doi.org/10.1016/j.msec.2006.12.015.

    Article  CAS  Google Scholar 

  • Marinović-Cincović, M., Janković, B., Jovanović, V., Samaržija-Jovanović, S., & Marković, G. (2013). The kinetic and thermodynamic analyses of non-isothermal degradation process of acrylonitrile–butadiene and ethylene–propylene–diene rubbers. Composites Part B: Engineering, 45(1), 321–332. https://doi.org/10.1016/j.compositesb.2012.08.006.

    Article  CAS  Google Scholar 

  • Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić, J. (2016). Polymer characterization (II). In S. A. Méndez-Vilas A (Ed.), Polymer science: Research advances, practical applications and educational aspects (pp. 397–403). Formatex Research Center. Retrieved from http://www.formatex.org/polymerscience1/.

  • Marković, G., Radovanović, B., Cincović-Marinović, M., & Budinski-Simendić, J. (2008a). Swelling properties of cross linking systems based on wood flour filled polyisoprene and chlorosulphonated polyethylene rubber blends. Svet Polimera, 11(3), 77–80.

    Google Scholar 

  • Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić, J. (2014). Modeling of non-linear viscoelastic behavior of filled rubbers. In D. Ponnamma & S. Thomas (Eds.), Non-linear viscoelasticity of rubber composites and nanocomposites, Advances in Polymer Science (Vol. 264). Cham: Springer. https://doi.org/10.1007/978-3-319-08702-3_8.

    Chapter  Google Scholar 

  • Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić, J. (2013a). NR/CSM/biogenic silica rubber blend composites. Composites Part B: Engineering, 55, 368–373. https://doi.org/10.1016/j.compositesb.2013.06.045.

    Article  CAS  Google Scholar 

  • Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić, J. (2017). Chlorosulfonated rubber-based nanoblends: Preparation, characterization and applications. In G. Marković & P. M. Visakh (Eds.), Rubber nano blends (pp. 105–153). Springer. https://doi.org/10.1007/978-3-319-48720-5_5.

  • Marković, G., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić. (2012). Hybrid materials based on brominated copolymer isobutylene isoprene/chlorosulfonated polyethylene rubber blends reinforced by nano and micro silica. Journal of Elastomers and Plastics, 44(4), 335–351. https://doi.org/10.1177/0095244311428895.

    Article  CAS  Google Scholar 

  • Marković, G., Marinović-Cincović, M., Radovanović, B., & Budinski-Simendić, J. (2008b). NR/CSM rubber blends reinforced by silica and carbon black. Svet Polimera, 11(5), 179–182.

    Google Scholar 

  • Marković, G., Radovanović, B., Marinović-Cincović, M., & Budinski-Simendić, J. (2009). The effect of accelerators on curing characteristics and properties of natural rubber/chlorosulphonated polyethylene rubber blend. Materials and Manufacturing Processes, 24(10–11), 1224–1228. https://doi.org/10.1080/10426910902967087.

    Article  CAS  Google Scholar 

  • Marković, G., Veljković, O., Marinović-Cincović, M., Jovanović, V., Samaržija-Jovanović, S., & Budinski-Simendić, J. (2013b). Composites based on waste rubber powder and rubber blends: BR/CSM. Composites Part B: Engineering, 45(1), 178–184. https://doi.org/10.1016/j.compositesb.2012.08.013.

    Article  CAS  Google Scholar 

  • Marković, G. S., Stojčeva-Radovanović, B., Marinović-Cincović, M., Babić, D., & N. J. (2002). Parameters of dry and swelling network of nano-- and micro filled crosslinked systems based on butadiene acrylonitrile and chlorosulphonated polyethylene rubbers. Svet Polimera, 5(4), 171–176.

    Google Scholar 

  • Merino, D., Gutiérrez, T. J., & Alvarez, V. A. (2019). Potential agricultural mulch films based on native and phosphorylated corn starch with and without surface functionalization with chitosan. Journal of Polymers and the Environment, 27(1), 97–105. https://doi.org/10.1007/s10924-018-1325-1.

    Article  CAS  Google Scholar 

  • Merino, D., Mansilla, A. Y., Gutiérrez, T. J., Casalongué, C. A., & Alvarez, V. A. (2018). Chitosan coated-phosphorylated starch films: Water interaction, transparency and antibacterial properties. Reactive and Functional Polymers, 131, 445–453. https://doi.org/10.1016/j.reactfunctpolym.2018.08.012.

    Article  CAS  Google Scholar 

  • Stojčeva-Radovanović, B., & Marković, G. S. (2001). Testing of the influence of medium on changes in the physical and mechanical properties of NR/CSM compounds. Hemijska Industrija, 55(11), 514–518.

    Google Scholar 

  • Stojceva-Radovanovic, B., Markovic, G., Marinovic-Cincovic, M., Babic, D., & Nedeljkovic, J. (2002). Effect of fillers on parameters of dry and swollen polymer matrix networks. Hemijska Industrija, 56(10), 415–421. https://doi.org/10.2298/hemind0210415s.

    Article  Google Scholar 

  • Vasile, C., & Butnaru, E. (2017). Chapter 5. Radiation chemistry of organic solids. In S. Yongxia & A. G. Chmielewski (Eds.), Applications of ionizing radiation in materials processing (pp. 117–141). Warszawa: Institute of Nuclear Chemistry and Technology. Available in: http://www.ichtj.waw.pl/ichtj/publ/monogr/sun2017/sun-chapter5.pdf.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support (Projects Numbers 45022, and 45020).

Conflicts of Interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Marković, G., Marinović-Cincović, M., Samaržija-Jovanović, S., Jovanović, V., Budinski-Simendić, J. (2020). Crosslinking of Polymers: Rubber Vulcanization. In: Gutiérrez, T.J. (eds) Reactive and Functional Polymers Volume Two. Springer, Cham. https://doi.org/10.1007/978-3-030-45135-6_5

Download citation

Publish with us

Policies and ethics