Skip to main content

Abstract

Coconut farming is sometimes constrained by low productivity and poor returns on investment. Breeding for desirable traits and higher productivity is one of the most efficient options to overcome these challenges. This chapter discusses the strategies presently applied toward the production of desirable coconut varieties using conventional breeding and the possible applications of modern biotechnological tools to overcome some biological constraints. The analysis presented hereunder shows that most conventional coconut breeding programs are currently facing both material and methodological impasses. The budgets and experimental areas allocated to these programs often remain insufficient to reach substantial genetic progress. The improvement of hybrids is neglected and often methodologically limited. The integration of new biotechnologies will help improve the situation. In vitro culture of various coconut tissues and explants gives promising results in embryo rescue, somatic embryogenesis, and doubled haploid production. Molecular marker technology has been applied to describe the genetic diversity of conserved accessions and to genome mapping for marker-assisted selection. The coconut genome was recently published enabling genomics and bioinformatics research. Certain groups have reported their attempts on genetic transformation studies. Development of strategies through capacity building and promotion of research collaboration is required to strengthen coconut breeding. The authors recommend an international team to audit major genetic improvement programs with special attention to funding issues for the various breeding operations and to the balance between field trials and use of new technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Andrade-Torres A, Oropeza C, Sáenz L et al (2011) Transient genetic transformation of embryogenic callus of Cocos nucifera. Biologia 66:790–800

    Google Scholar 

  • Armendariz BHC, Orapeza C, Chan JL et al (2006) Pollen fertility and female flower anatomy of micropropagated coconut palms. Rev Fitotec Mex 29:373–378

    Google Scholar 

  • Ashburner GR, Thompson WK, Halloran GM (1997) RADP analysis of South Pacific coconut palm populations. Crop Sci 37:992–997

    Article  Google Scholar 

  • Breiman A, Rotem-Abarbanell A, Karp A et al (1987) Heritable somaclonal variation in wild barley (Hordeum spontaneum). Theor Appl Genet 74(1): 104–112

    Google Scholar 

  • Bandaranayake CK, Kearsey MJ (2005) Genome mapping, QTL analysis and MAS: importance, principle, constraints and application in coconut. Int Plant Genet Resour Newsl 142:47–54

    Google Scholar 

  • Bandupriya HDD, Fernando SC, Vidhanaarachchi VRM (2016) Micropropagation and androgenesis in coconut: an assessment of Sri Lankan implication. Cocos 22:31–47

    Google Scholar 

  • Bandupriya HDD, Iroshini WWMA, Vidhanaarachchi VRM et al (2017) Genetic fidelity testing using SSR marker assay confirms trueness to type of micropropagated coconut (Cocos nucifera L.) plantlets derived from unfertilized ovaries. Open Plant Sci J 10:46–54

    Google Scholar 

  • Baudouin L, Lebrun P (2002) The development of a microsatellite kit and dedicated software use with coconuts. Burotrop Bull 17:16–20

    Google Scholar 

  • Baudouin L, Lebrun P, Konan JL et al (2006) QTL analysis of fruit components in the progeny of a Rennell Island Tall coconut (Cocos nucifera L.) individual. Theor Appl Genet 112:258–268

    Google Scholar 

  • Bourdeix R (1988) Effectiveness of mass selection on the yield component of coconut. Oleagineux 43:283–295

    Google Scholar 

  • Bourdeix R, Santos G, Labouisse JP et al (2005) Useful definition of terms and nomenclature. In: Batugal P, Ramanatha Rao V, Oliver J (eds) Coconut genetic resources. IPGRI, Rome, pp 9–10

    Google Scholar 

  • Brown WL (1983) Genetic diversity and genetic vulnerability – an appraisal. Econ Bot 37:4–12

    Article  Google Scholar 

  • Batugal P, Bourdeix R, Baudouin L (2009) Coconut breeding. In: Jain SM, Priyadarshan PM (eds) Breeding plantation tree crops: Tropical species. Springer, New York, pp. 327–375

    Google Scholar 

  • Batugal P, Konan JL, Sanaoussi A et al (2005) Multilocation coconut hybrid trials in three African and three LAC countries. Coconut Genetic Resources, 326

    Google Scholar 

  • Bourdeix R, Kumar V (2018) Compact and “super” dwarf varieties. Coconut planting material for the Pacific region. Retreived from : http://replantcoconut.blogspot.com/2017/12/compact-dwarf-varieties.html

  • Bourdeix R, Baudouin L, Santos GA (2018a) 2.1.3 International Coconut nomenclature - Chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 39–40

    Google Scholar 

  • Bourdeix R, Yace G, Sileye T (2018b) 3.7.1 Global objectives in terms of planting material - Chapter 3. Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds.) A global strategy for the conservation and use of coconut genetic resources 2018-2028. Bioversity International, Montpellier, France, pp 155–156

    Google Scholar 

  • Bourdeix R, Meunier J, N'Cho YP (1991a) Coconut (Cocos nucifera L.) selection strategy Il - lmprovement of Tall x Tall hybrids. Oléagineux 46(7):267–282

    Google Scholar 

  • Bourdeix R, Meunier J, N'Cho YP (1991b) Coconut (Cocos nucifera L.) selection strategy III- lmprovement of Dwarf x Tall hybrids. Oléagineux 46(10):361–374

    Google Scholar 

  • Bourdeix R, N’Cho YP, Le Saint JPOF (1990) A coconut (Cocos nucifera L.) selection strategy. I. Rundown of achievements. Oléagineux 45:359–371

    Google Scholar 

  • Bourdeix R, Sangare A, Le Saint JP et al (1989) Efficacité des tests hybrides d'aptitude individuelle à la combinaison chez le cocotier: premiers résultats. Oléagineux 44(5):209–214

    Google Scholar 

  • Bourdeix R (1999) Selection and breeding. In: Olher JG (ed) Modern coconut management: palm cultivation and products. Intermediate Technology Publications, London, United Kingdom, pp 117–195

    Google Scholar 

  • Cardena R, Ashburner GR, Oropeza C (2003) Identification of RAPDs associated with resistance to lethal yellowing of the coconut (Cocos nucifera L.) palm. Scientia Horticulturae 98:257–263

    Article  CAS  Google Scholar 

  • Comstock RE, Robinson HF, Harvey PH (1949) A breeding procedure to make maximum use of both general and specific combining ability. Agron J 41:360–367

    Article  Google Scholar 

  • Dasanayake PN, Everard JMDT, Karunanayake EH et al (2003) Characterization of coconut germplasm by microsatellite markers. Trop Agric Res 15:51–61

    Google Scholar 

  • Day A, Ellis TH (1985) Deleted forms of plastid DNA in albino plants from cereal anther culture. Curr Genet 9:671–678

    Article  CAS  Google Scholar 

  • Duran Y, Rohde W, Kullaya A et al (1997) Molecular analysis of East African tall coconut genotypes by DNA marker technology. J Genet Breed 51:185–193

    Google Scholar 

  • Duong NTK, Yace G, Pereira MG (2018) 3.7.4 International breeding experiments - Chapter 3. Where we need to be to secure diversity and promote use In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 159–162

    Google Scholar 

  • Everard JMDT (1996) Use of molecular markers for breeding of the coconut palm (Cocos nucifera L.). University of New England, Armidale

    Google Scholar 

  • Fernando SC, Weerakonn LK, Perera PIP et al (2004) Genetic fidelity and ex vitro performance of tissue cultured coconut plants. In: Peiris TSG, Ranasinghe CS (eds) Proceedings of the international conference of the coconut research Institute of Sri Lanka- Part II. CRI, Lunuwila

    Google Scholar 

  • Guiderdoni E, Galinato E, Luistro J et al (1992) Anther culture of tropical japonica × indica hybrids of rice (Oryza sativa L.). Euphytica 62:219–224

    Google Scholar 

  • Herran A, Estioko L, Becker D et al (2000) Linkage mapping and QTL analysis in coconut (Cocos nucifera L.). Theor Appl Genet 101:292–300

    Google Scholar 

  • Iroshini WWMA (2017) Studies on cryopreservation of embryogenic callus from unfertilized ovaries using the encapsulation- dehydration technique and post thaw plant regeneration in coconut (Cocos nucifera L.). Department of Plant Sciences. University of Colombo, Colombo

    Google Scholar 

  • Iroshini WWMA, Jayasekera GAU, Perera SACN et al (2017) Genetic stability of coconut embryogenic calli after cryopreservation by encapsulation-dehydration technique. In: Proceedings of the 6th YSF symposium Peradeniya, Sri Lanka

    Google Scholar 

  • Jaccoud D, Peng K, Feinstein D et al (2001) Diversity arrays: a solid state technology for sequence information independent genotyping. Nucleic Acids Res 29:25e

    Google Scholar 

  • Konan KJN, Koffi KE, Konan JL et al (2007) Microsatellite gene diversity in coconut (Cocos nucifera L.) accessions resistants to lethal yellowing disease. Afr J Biotechnol 6:341–347

    Google Scholar 

  • Lebrun P, N'Cho YP, Seguin M et al (1998) Genetic diversity in coconut (Cocos nucifera L) revealed by restriction fragment length polymorphism (RFLP) markers. Euphytica 101:103–108

    Google Scholar 

  • Lebrun P, Baudouin L, Bourdeix R et al (2001) Construction of a linkage map of the Rennell Island tall coconut type (Cocos nucifera L.) and QTL analysis for yield characters. Genome 44:962–970

    Google Scholar 

  • Ledo AS, Passos EEM, Fontes HR et al (2019) Advances in Coconut palm propagation. Rev Bras Frutic 41

    Google Scholar 

  • Liyanage DV (1954) Controlled pollination of coconut palms. Ceylon Coconut Q 5:135–138

    Google Scholar 

  • Liyanage DV (1958) Varieties and forms of coconut palms grown in Ceylon. Ceylon Coconut Q 9:1–10

    Google Scholar 

  • Liyanage DV, Wickramaratne MRT, Jayasekara C (1988) Coconut breeding in Sri Lanka: a review. Cocos 6 (1): 1 – 26

    Google Scholar 

  • Marechal H (1926) Observations and preliminary experiments on the coconut with a view to developing improved seednuts for Fiji. Agri J Fiji 1:16–45

    Google Scholar 

  • Maskromo I (2015) Karakterisasi dan pemanfaatan plasma nutfah melalui pendekatan pemuliaan dan molekuler untuk peningkatan hasil buah kopyor dan kualitas benih kopyor. Bogor Agricultural University, Bogor

    Google Scholar 

  • Meerow AW, Wisser RJ, Brown JS et al (2003) Analysis of genetic diversity and population structure within Florida coconut (Cocos nucifera L.) using microsatellite DNA, with special emphasis on the Fiji Dwarf cultivar. Theor Appl Genet 106:715–726

    Google Scholar 

  • Moore D, Alexander L, Hall RA (1989) The coconut mite, Eriophyes guerreronis Keifer in St. Lucia: yield losses and attempts to control it with acaricide, polybutene and Hirsutella fungus. Trop Pest Manag 35:83–89

    Article  CAS  Google Scholar 

  • Maluszynska J (2003) Cytogenetic tests for ploidy level analyses: Chromosome counting. In: Maluszynski M, Kasha KJ, Forster BP, Szarejko I (eds) Doubled haploid production in crop plants. Springer, Netherlands, pp 391–395

    Google Scholar 

  • Nair RV, Thomas RJ, Jacob PM (2010) Breeding for resistance to coconut root (wilt) disease. In: Thomas GV, Chandramohanan R, Jacob PM, Krishnakumar V (eds) Coconut root (wilt) management. CPCRI, Kasaragod, pp 58–71

    Google Scholar 

  • Nair RV, Jerard BA, Thomas RJ (2016) Coconut breeding in India. In: Al-Khayri JM, Jain SM (eds) Advances in plant breeding strategies: agronomic, abiotic and biotic stress traits. Springer, Dordrecht, pp 257–279

    Chapter  Google Scholar 

  • Nejat N, Cahill DM, Vadamalai G et al (2015) Transcriptomics-based analysis using RNA-Seq of the coconut (Cocos nucifera) leaf in response to yellow decline phytoplasma infection. Mol Genet Genomics 290:1899–1910

    Google Scholar 

  • Nguyen QT, Bandupriya HDD, Villalobo AL et al (2015) Tissue culture and associated biotechnological interventions for the improvement of coconut (Cocos nucifera L.): a review. Planta 242:1059–1076

    Google Scholar 

  • Nguyen QT, Bandupriya HDD, Foale M et al (2016) Biology, propagation and utilization of elite coconut varieties (makapuno and aromatics). Plant Physiol Biochem 109:579–589

    Google Scholar 

  • Nuce de Lamothe MD, Rognon F (1986) Cocotiers hybrides ou cocotiers grands, un choix basé sur des résultats. Oléagineux (France) 41:549–555

    Google Scholar 

  • Nunez TC, de Paz VM (2004) Growth and development of F2 pure macapuno palms. Philipp J Crop Sci 19:69

    Google Scholar 

  • Oropeza C, Engelman F, Cueto CA et al (2018) 2.2.4 In vitro culture and cryopreservation – Chapter 2. Where we are today. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, pp 50–53

    Google Scholar 

  • Patel JS (1938) The coconut: a monograph. Government Press, Madras

    Google Scholar 

  • Perera L (2018) Where we need to be to secure diversity and promote use. In: Bourdeix R, Prades A (eds) A global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier

    Google Scholar 

  • Perera L, Russell JR, Provan J et al (1998) Evaluating genetic relationships between indigenous coconut (Cocos nucifera L.) accessions from Sri Lanka by means of AFLP profiling. Theor Appl Genet 96:545–550

    Google Scholar 

  • Perera L, Russell JR, Provan J et al (1999) Identification and characterization of microsatellite loci in coconut (Cocos nucifera L.) and the analysis of coconut populations in Sri Lanka. Mol Ecol 8:344–346

    Google Scholar 

  • Perera L, Russell JR, Provan J et al (2000) Use of microsatellite DNA markers to investigate the level of genetic diversity and population genetic structure of coconut (Cocos nucifera L). Genome 43:15–21

    Google Scholar 

  • Perera L, Russell JR, Provan J et al (2003) Studying the genetic relationships among coconut varieties/populations using microsatellite markers. Euphytica 132:121–128

    Google Scholar 

  • Perera PIP, Hocher V, Verdeil JL et al (2008a) Androgenic potential of coconut (Cocos nucifera L.). Plant Cell Tissue Org Cult 92:293–302

    Google Scholar 

  • Perera PIP, Perera L, Hocher V et al (2008b) Use of SSR markers to determine the anther-derived homozygous lines in coconut. Plant Cell Rep 27:1697–1703

    Google Scholar 

  • Perera PIP, Yakandawala DMY, Hocher V et al (2009) Effect of growth regulators on microspore embryogenesis in coconut anthers. Plant Cell Tissue Org Cult 96:171–180

    Google Scholar 

  • Perera L, Manimekalai R, Sudarsono S et al (2016) Coconut. Biotechnology of Plantation Crops. Central Plantation Crop Research Institute, Kasaragod, pp 219–239

    Google Scholar 

  • Perez-Nunez MT, Chan JL, Saenz L et al (2006) Improved somatic embryogenesis from coconut (Cocos nucifera L.) plumule explants cultured in vitro. In vitro cellular & developmental biology. Plant 42:37–43

    Google Scholar 

  • Petchpiroon C, Thirakul A (1994) Coconut breeding programme in Thailand. Workshop on standardization of coconut breeding research techniques. IPGRI/COGENT, GTZ, Marc Delorme Coconut Station, Port Bouet, Cote d’Ivoire

    Google Scholar 

  • Phoeurk C, Somana J, Sornwatana T et al (2018)Three novel mutations in α-galactosidase gene involving in galactomannan degradation in endosperm of curd coconut. Phytochemistry 156:33–42

    Google Scholar 

  • Preethi P, Rajesh MK, Rahul CU et al (2016) Identification and utilization of informative EST-SSR markers for genetic purity testing of coconut hybrids. J Plant Crop 44:77–84

    Google Scholar 

  • Perera PIP, Hocher V, Verdeil JL et al (2007) Unfertilized ovary: a novel explant for coconut (Cocos nucifera L.) somatic embryogenesis. Plant Cell Rep 26(1): 21–28

    Google Scholar 

  • Rachana KR, Naganeeswaran SA et al (2016) Cloning, characterization and expression analysis of NBS-LRR-type resistance gene analogues (RGAs) in coconut. Acta Bot Croat 75:1–10

    Google Scholar 

  • Rajesh MK, Sabana AA, Rachana KE et al (2015) Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through scot analysis. Biotechnology 5:999–1006

    Google Scholar 

  • Rivera R, Edwards KJ, Barker JHA et al (1999) Isolation and characterization of polymorphic microsatellites in Cocos nucifera L. Genome 42:668–675

    Google Scholar 

  • Rohde W, Becker D, Kullaya A et al (1999) Analysis of coconut germplasm biodiversity by DNA marker technologies and construction of a first genetic linkage map. In: Oropeza C, Verdeil JL, Ashburner GR, Cardena R, Santamaria JM (eds) Current advances in coconut biotechnology. Kluwer Academic Publishers, Dordrecht, pp 99–120

    Google Scholar 

  • Ruas M (2018) Genetic resources information management – chapter 2. Where we are today. In: Prades RBA (ed) a global strategy for the conservation and use of coconut genetic resources 2018–2028. Bioversity International, Montpellier, France, pp 68–74

    Google Scholar 

  • Mishra R, Rao GJN (2016) In-vitro Androgenesis in Rice: Advantages, Constraints and Future Prospects. Rice Science 23 (2):57–68

    Google Scholar 

  • Sisunandar A, Sopade PA, Yohannes MS et al (2010) Dehydration improves cryopreservation of coconut (Cocos nucifera L.). Cryobiology 61(3):289–296

    Google Scholar 

  • Saensuk C, Wanchana S, Choowongkomon K et al (2016) De novo transcriptome assembly and identification of the gene conferring a “pandan-like” aroma in coconut (Cocos nucifera L.). Plant Sci 252:324–334

    Google Scholar 

  • Santos GA (1990) Activities in coconut genetic resources collection, conservation and genetic improvement in the Philippines. Philipp J Coconut Stud 15:16–20

    Google Scholar 

  • Santos PHAD (2016) Melhoramento Genético Do Coqueiro (Cocos nucifera L.): Capacidade Combinatória E Diversidade Genética Via Rad-Sequencing. Campos dos Goytacazes – RJ. Universidade Estadual do Norte Fluminense Darcy Ribeiro

    Google Scholar 

  • Santos GA, Rivera RL (1994) Coconut breeding programme of the Philippines. Workshop on standardization of coconut breeding research techniques. IPGRI/COGENT, GTZ, Marc Delorme Coconut Station, Port Bouet, Cote d’Ivoire

    Google Scholar 

  • Shalini KV, Manjunantha S, Lebrun P et al (2007) Identification of molecular markers associated with mite resistance in coconut (Cocos nucifera L.). Genome 50:35–42

    Google Scholar 

  • Shimada T (1981) Haploid plants regenerated from the pollen callus of wheat (Triticum aestivum L.). Jpn J Genet 56:581–588

    Article  Google Scholar 

  • Sisunandar A, Alkhikmah A, Husin A et al (2018) Ex vitro rooting using a mini growth chamber increases root induction and accelerates acclimatization of Kopyor coconut (Cocos nucifera L.) embryo culture-derived seedlings. In Vitro Cell Dev Biol Plant 54:508–517

    Google Scholar 

  • Soh AC, Wong G, Tan CC et al (2011) Commercial-scale propagation and planting of elite oil palm clones: research and development towards realization. J Oil Palm Res 23:935–952

    Google Scholar 

  • Santos GA, Batugal P, Othman A et al (1996) Manual on standardized research techniques in coconut breeding (STANTECH). COGENT/IPGRI–APO, Serdang, Selangor, Malaysia pp 46

    Google Scholar 

  • Teulat B, Aldam C, Trehin R et al (2000) An analysis of genetic diversity in coconut (Cocos nucifera L.) populations from across the geographic range using sequence-tagged microsatellites (SSRs) and AFLPs. Theor Appl Genet 100:764–771

    Google Scholar 

  • Vargas AG, Cabanos CS, Garcia RN et al (2018) Cloning, molecular analysis, and developmental expression of 3 oleosin cDNA isoforms in coconut (Cocos nucifera L.). J Hortic Sci Biotechnol 93:255–263

    Google Scholar 

  • Vidhanaarachchi VRM, Fernando SC, Perera PIP et al (2013) Application of un-fertilized ovary culture to identify elite mother palms of Cocos nucifera L. with regenerative potential. J Natl Sci Found Sri 41(1)

    Google Scholar 

  • Xiao Y, Xu P, Fan H et al (2017) The genome draft of coconut (Cocos nucifera). Giga Sci 6:1–11

    Google Scholar 

  • Yan W, Liu L, Li CX et al (2015) Transcriptome sequencing and analysis of the coconut leaf beetle, Brontispa longissima. Genet Mol Res 14:8359–8365

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Dharshani Bandupriya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bandupriya, H.D.D., Perera, C., Pereira, M.G., Bourdeix, R. (2020). Towards Innovative Coconut Breeding Programs. In: Adkins, S., Foale, M., Bourdeix, R., Nguyen, Q., Biddle, J. (eds) Coconut Biotechnology: Towards the Sustainability of the ‘Tree of Life’. Springer, Cham. https://doi.org/10.1007/978-3-030-44988-9_12

Download citation

Publish with us

Policies and ethics