Skip to main content

Peirce on Mathematical Reasoning and Discovery

  • Living reference work entry
  • First Online:
Handbook of Cognitive Mathematics
  • 84 Accesses

Abstract

Topics pertinent to mathematics concern the modes of reasoning in mathematics and their contribution to the discovery of new mathematical ideas, objects, patterns, and structures. Since the late nineteenth century, Charles S. Peirce developed a comprehensive theory of mathematical reasoning and its logical philosophy. It defines concepts such as abstraction and generalization, the three-stage model of reasoning (abduction, deduction, and induction), and diagrammatic reasoning, which are the cornerstones of the theory of mathematical practice that takes mathematical objects to be hypothetical mental creations of mathematical cognition. This chapter is a survey of Peirce’s notions central to reasoning and discovery in mathematics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. Acta Psychologica, 44(3), 211–233.

    Article  Google Scholar 

  • Bellucci, F., & Pietarinen, A.-V. (2017). Two dogmas of diagrammatic reasoning: A view from existential graphs. In K. Hull & R. K. Atkins (Eds.), Peirce on perception and reasoning: From icons to logic (pp. 174–195). Routledge.

    Google Scholar 

  • Blais, M. J. (2002). A pragmatic analysis of mathematical realism and intuitionism. In D. Jacquette (Ed.), Philosophy of mathematics: An anthology (pp. 322–336). Blackwell.

    Google Scholar 

  • Bobrova, A., & Pietarinen, A.-V. (2020). Two cognitive systems, two implications, and selection tasks. In J. Camara & M. Steffen (Eds.), Software engineering and formal methods. Lecture notes in computer science (p. 12226). Springer.

    Google Scholar 

  • Brady, G. (2000). From Peirce to Skolem: A neglected chapter in the history of logic. Elsevier.

    MATH  Google Scholar 

  • Brodie, S. E. (2000). The exterior angle theorem—an appreciation. http://www.cut-the-knot.org/fta/Eat/EAT.shtml

  • Brown, R., & Porter, T. (2006). Category theory: An abstract setting for analogy and comparison. In G. Sica (Ed.), What is category theory? (Vol. 2006, pp. 257–274). Polimetrica.

    MATH  Google Scholar 

  • Champagne, M. (2015). Sound reasoning (Literally): Prospects and challenges of current acoustic logics. Logica Universalis, 9(3), 331–343.

    Article  MathSciNet  MATH  Google Scholar 

  • Champagne, M., & Pietarinen, A.-V. (2019). Why images cannot be arguments, but moving ones might. Argumentation, 34, 207–236.

    Article  Google Scholar 

  • Changeaux, J.-P., & Connes, A. (1995). Conversations on mind, matter, and mathematics. Princeton University Press.

    Google Scholar 

  • Cleeremans, A., & Jiménez, L. (2002). Implicit learning and consciousness: A graded, dynamical perspective. In R. M. French & A. Cleeremans (Eds.), Implicit learning and consciousness: An empirical, philosophical and computational consensus in the making (pp. 1–40). Psychology Press.

    Google Scholar 

  • Connes, A. (1995). Noncommutative geometry. Academic Press.

    MATH  Google Scholar 

  • Cooke, E. F. (2003). Peirce, fallibilism, and the science of mathematics. Philosophia Mathematica, 11, 158–175.

    Article  MathSciNet  MATH  Google Scholar 

  • Cooke, E. F. (2010). Understanding peirce’s mathematical inquiry as a practice: Some ontological implication. Chinese Semiotic Studies, 3(1), 245–262.

    Google Scholar 

  • Crowe, M. J. (1988). Ten misconceptions about mathematics and its history. In W. Aspray & P. Kitcher (Eds.), History and philosophy of modern mathematics (pp. 260–277). Minneapolis: University of Minnesota Press.

    Google Scholar 

  • Dipert, R. (2004). Peirce’s deductive logic: Its development, influence, and philosophical significance. In C. Misak (Ed.), The Cambridge companion to Peirce (pp. 287–324). Cambridge University Press.

    Chapter  Google Scholar 

  • Dutilh Novaes, C. (2012). Formal languages in logic: A philosophical and cognitive analysis. Cambridge University Press.

    Book  MATH  Google Scholar 

  • Evans, J. S. B. T. (2003). In two minds: Dual-process accounts of reasoning. Trends in Cognitive Sciences, 7(10), 454–459.

    Article  Google Scholar 

  • Feynman, R. P., Leighton, R. B., & Sands, M. (1964). The Feynman lectures on physics (Vol. 2). Addison-Wesley.

    MATH  Google Scholar 

  • Friedman, H., & Simpson, S. (2000). Issues and problems in reverse mathematics. Contemporary Mathematics, 257, 127–144.

    Article  MathSciNet  MATH  Google Scholar 

  • Grattan Guinness, I. (1997). Benjamin Peirce’s Linear Associative Algebra (1870): New light on its preparation and ‘publication’. Annals of Science, 54, 597–606.

    Article  MathSciNet  MATH  Google Scholar 

  • Hadamard, J. (1949). The psychology of invention in the mathematical field. Princeton University Press.

    MATH  Google Scholar 

  • Hammer, E. (1995). Logic and visual information (p. 1995). CSLI.

    MATH  Google Scholar 

  • Hintikka, J. (1978). Aristotle’s incontinent logician. Ajatus, 37, 48–65.

    Google Scholar 

  • Hintikka, J. (1980). C. S. Peirce’s ‘first real discovery’ and its contemporary relevance. Monist, 63, 304–315.

    Article  Google Scholar 

  • Hull, K. (1994). Why hanker after logic? mathematical imagination, creativity and perception in Peirce’s systematic philosophy. Transactions of the Charles S. Peirce Society, 30(2), 271–295.

    Google Scholar 

  • Johnson-Laird, P. N. (2013). Inference with mental models. In K. Holyoak & R. Morrison (Eds.), The oxford handbook of thinking and reasoning (pp. 134–154). Oxford University Press.

    Google Scholar 

  • Kahneman, D. (2011). Thinking, fast and slow. Farrar, Straus and Giroux.

    Google Scholar 

  • Kant, I. (1787). Kritik der reinen Vernunft (1st ed.). Hartnoch. 1781 (A/B).

    Google Scholar 

  • Lawvere, W., & Schanuel, S. (2009). Conceptual mathematics: A first introduction to categories (2nd ed.). Cambridge University Press.

    Book  MATH  Google Scholar 

  • Leibniz, G. W. (1901). In L. Couturat (Ed.), Opuscules et fragments inédits de Leibniz. Alcan.

    Google Scholar 

  • Levy, S. H. (1997). Peirce’s Theorematic/Corollarial distinction and the interconnections between mathematics and logic. In N. Houser, D. Roberts, & J. Van Evra (Eds.), Studies in the logic of charles sanders Peirce (pp. 85–110). Indiana University Press.

    Google Scholar 

  • Mancosu, P., Jørgensen, K. F., & Pedersen, S. A. (Eds.). (2005). Visualization, explanation and reasoning styles in mathematics. Springer.

    MATH  Google Scholar 

  • Mayo, D. G. (2005). Peircean induction and the error-correcting Thesis. Transactions of the Charles S. Peirce Society, 41(2), 299–319.

    Google Scholar 

  • Moshman, D. (2000). Diversity in reasoning and rationality: Metacognitive and developmental considerations. Behavioural and Brain Sciences, 23, 689–690.

    Article  Google Scholar 

  • Moyer, R. S., & Landauer, T. K. (1967). Time required for judgements of numerical inequality. Nature, 215, 1519–1520.

    Article  Google Scholar 

  • Osman, M. (2004). An evaluation of dual-process theories of reasoning. Psychonomic Bulletin & Review, 11(6), 988–1010.

    Article  Google Scholar 

  • Peirce, B. (1881). Linear associative algebra. American Journal of Mathematics, 4(1), 221–226.

    MathSciNet  MATH  Google Scholar 

  • Peirce, C. S. (1883). A theory of probable inference. In C. S. Peirce (Ed.), Studies in logic by members of Johns Hopkins university (pp. 126–181). Little, Brown.

    Chapter  Google Scholar 

  • Peirce, C. S. (1931–1966). The collected papers of Charles S. Peirce, 8 Hartshorne, C, Weiss, P. and Burks, A. W. : Harvard University Press. Cited as CP followed by volume and paragraph number.

    Google Scholar 

  • Peirce, C. S. (1967). Manuscripts in the Houghton Library of Harvard University, as identified by Richard Robin. In Annotated catalogue of the papers of Charles S. Peirce. University of Massachusetts Press. Cited as R followed by manuscript number and, when available, page number.

    Google Scholar 

  • Peirce, C. S. (1976). In C. Eisele (Ed.), The new elements of mathematics by Charles S. Peirce (Vol. 4). Mouton. Cited as NEM followed by volume and page number.

    Google Scholar 

  • Peirce, C. S. (1982–2009). Writings of Charles S. Peirce: A chronological edition. Seven volumes. Edited by Max H. Fisch, C. J. W. Kloesel, et al. and the Peirce Edition Project: Indiana University Press. Cited as W followed by volume and page number.

    Google Scholar 

  • Peirce, C. S. (1998). The essential Peirce: Selected philosophical writings. Volume 2 (1893–1913). Edited by the Peirce Edition Project. : Indiana University Press. Cited as EP followed by page number.

    Google Scholar 

  • Peirce, C. S. (2010). M. Moore (Ed.), Philosophy of mathematics: Selected writings. Indiana University Press.

    MATH  Google Scholar 

  • Peirce, C. S. (2019–2021). Logic of the future: Writings on existential graphs. Pietarinen, A.-V. (ed.). Vol.1: History and applications, 2019; Vol. 2/1: The logical tracts; Vol. 2/2: The 1903 Lowell Lectures; Vol. 3/1: Pragmaticism; Vol. 3/2: Correspondence. Boston & Berlin: De Gruyter.

    Google Scholar 

  • Pietarinen, A.-V. (2005). Cultivating habits of reason: Peirce and the Logica Utens vs. Logica Docens distinction. History of Philosophy Quarterly, 22(4), 357–372.

    Google Scholar 

  • Pietarinen, A.-V. (2009). Pragmaticism as an anti-foundationalist philosophy of mathematics. In B. Van Kerkhove, R. Desmet, & J. P. Van Bendegem (Eds.), Philosophical perspectives on mathematical practices (pp. 305–333). College Publications.

    Google Scholar 

  • Pietarinen, A.-V. (2010a). Which philosophy of mathematics is pragmaticism? In M. Moore (Ed.), New essays on peirce’s mathematical philosophy (pp. 59–79). Open Court.

    Google Scholar 

  • Pietarinen, A.-V. (2010b). Is non-visual diagrammatic logic possible? In A. Gerner (Ed.), Diagrammatology and diagram praxis (pp. 73–85). College Publications.

    Google Scholar 

  • Pietarinen, A.-V. (2011). Moving pictures of thought II: Graphs, games, and pragmaticism’s proof. Semiotica, 186, 315–331.

    Google Scholar 

  • Pietarinen, A.-V. (2012). Peirce and the logic of image. Semiotica, 192, 251–261.

    Google Scholar 

  • Pietarinen, A.-V. (2013). Pragmaticism revisited: Co-evolution and the methodology of social sciences. Cognitio, 14(1), 123–136.

    Google Scholar 

  • Pietarinen, A.-V. (2015a). Two papers on existential graphs by Charles Peirce. Synthese, 192(4), 881–922.

    Article  MathSciNet  MATH  Google Scholar 

  • Pietarinen, A.-V. (2015b). Exploring the beta quadrant. Synthese, 192(4), 941–970.

    Article  MathSciNet  MATH  Google Scholar 

  • Pietarinen, A.-V. (2021). Pragmaticism as a logical study of consciousness. Cognitive Semiotics. In press.

    Google Scholar 

  • Pizlo, Z. (2001). Perception viewed as an inverse problem. Vision Research, 41(24), 3145–3161.

    Article  Google Scholar 

  • Poincaré, H. (1902). La Science et l’Hypothèse (Science and Hypothesis, 1905).

    MATH  Google Scholar 

  • Polymath, D. H. J. (2014). The “bounded gaps between primes” Polymath project – a retrospective. https://arxiv.org/abs/1409.8361

  • Reck, E. H. (2003). Dedekind’s structuralism: An interpretation and partial defense. Synthese, 137, 369–419.

    Article  MathSciNet  MATH  Google Scholar 

  • Roberts, D. D. (1973). The existential graphs of Charles S. Peirce. Mouton.

    Book  Google Scholar 

  • Royce, J. (2001). Some psychological problems emphasised by pragmatism. In Royce, J. Josiah Royce’s late writings: A collection of unpublished and scattered works. Volume 1. Oppenheim, F. M. (ed.). : Thoemmes Press, 129-146.

    Google Scholar 

  • Shin, S.-J. (2002). The iconic logic of peirce’s Graphs. MIT Press.

    Book  MATH  Google Scholar 

  • Shin, S.-J. & Hammer, E. (2014). Peirce’s deductive logic. The stanford encyclopedia of philosophy (Fall 2014 Edition), Edward N. Zalta (ed.), URL = <http://plato.stanford.edu/archives/fall2014/entries/peirce-logic/>.

  • Stjernfelt, F. (2014). Natural propositions: The actuality of peirce’s doctrine of dicisigns. Docent Press.

    MATH  Google Scholar 

  • Thayer, H. S. (1973). Meaning and action: A critical exposition of American pragmatism. Indiana University Press.

    Google Scholar 

  • Tremblay, C., Monetta, L., Langlois, M., & Schneider, C. (2016). Intermittent Theta-burst stimulation of the right dorsolateral prefrontal cortex to promote metaphor comprehension in parkinson disease: A case study. Archives of Physical Medicine and Rehabilitation, 97(1), 74–83.

    Article  Google Scholar 

  • Tsujii, T., & Watanabe, S. (2009). Neural correlates of dual-task effect on belief-bias syllogistic reasoning: A near-infrared spectroscopy study. Brain Research, 1287, 118–125.

    Article  Google Scholar 

  • Von Neumann, J. (1958). The computer and the brain. Yale University Press.

    MATH  Google Scholar 

  • Wittgenstein, L. (1921). Tractatus Logico-Philosophicus. Trans. C. K. Ogden & Frank P. Ramsey. London/New York: Routledge.

    Google Scholar 

  • Wolfram, S. (2000). Mathematical notation: Past and future. MathML and Math on the Web: MathML International Conference 2000. https://www.stephenwolfram.com/publications/mathematical-notation-past-future/

  • Yang, J. (2014). the role of the right hemisphere in metaphor comprehension: A meta-analysis of functional magnetic resonance imaging studies. Human Brain Mapping, 35(1), 107–122.

    Article  Google Scholar 

  • Zhang, Y. (2014). Bounded gaps between primes. Annals of Mathematics, 179(3), 1121–1174.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This chapter is an output of a research project implemented as part of the Basic Research Program at the National Research University Higher School of Economics (HSE University).

Fig. 1
figure 1

Base-rate fallacy foiled

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahti-Veikko Pietarinen .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Pietarinen, AV. (2021). Peirce on Mathematical Reasoning and Discovery. In: Danesi, M. (eds) Handbook of Cognitive Mathematics. Springer, Cham. https://doi.org/10.1007/978-3-030-44982-7_51-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44982-7_51-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44982-7

  • Online ISBN: 978-3-030-44982-7

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics