Skip to main content

Recent Advances on Nanostructured Materials for Drug Delivery and Release

  • Chapter
  • First Online:
Nanopharmaceuticals: Principles and Applications Vol. 2

Abstract

Nanomedicine has become a hot field of research, as it has the potential for developing several innovations in healthcare and, in particular, new pharmaceutical formulations. The need of innovative ways for drug transportation and delivery has accelerated the advances in the field of nanomaterials for pharmaceutical applications. The ultimate purpose of designing nanomaterials for drug delivery must be to ensure that the drug to be released exerts its pharmacological effect at the lowest possible dose, with the least number of side effects and equal benefits to a high dose. These so-called “nanopharmaceuticals” may possess distinctive features useful to improve the stability of the drugs, extend their systemic half-lives, enhance efficiency, increase bioavailability, and delay clearance. There is no doubt that nanopharmaceuticals are a promising strategy to overcome traditional pharmacokinetic limitations. Researchers around the world have been making important efforts to design and test novel nanoformulations, especially in in vitro and in vivo model studies. Virtually, all routes of drug administration have been investigated at this level. Compared to the high number of nanoformulations that are currently in the discovery and preclinical stages of the development pipeline, there are still very few nanopharmaceuticals in clinical trials and even less already in the market. This current scenario points to the need to accelerate nanomedicine endeavors in order to spur these formulations through the drug discovery pipeline.

In this chapter, we will present some of the several opportunities for the design and use of nanomaterials (nanoliposomes, micelles, carbon nanostructures, dendrimers, polymeric, and inorganic nanoparticles) for pharmaceutical formulations. The experimental challenges, associated with moving from bench to bedside, will be addressed, as well as concerns about the precise control of drug release, their biodistribution or fate, and their toxicity, especially when they do not biodegrade. The need to validate and standardize protocols for early detection of toxicity, as well as an in depth understanding of the interaction among nanoparticles and tissues, organs, cells, and biomolecules, will be stated. Finally, the importance of developing a close interaction between scientists, regulators, institutions, and industry in order to help accelerate the efforts in the field will be indicated. The application of several innovative approaches to the design of new nanopharmaceuticals may allow achieving innovation and disruptive advances, providing safe, convenient, and cost-effective drug formulations to patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal V, Bajpai M, Sharma A (2018) Patented and approval scenario of nanopharmaceuticals with relevancy to biomedical application, manufacturing procedure and safety aspects. Recent Pat Drug Deliv Formul 12(1):40–52

    CAS  PubMed  Google Scholar 

  • Ahmad J, Singhal M, Amin S, Rizwanullah M, Akhter S, Kamal MA, Haider N, Midoux P, Pichon C (2017) Bile salt stabilized vesicles (bilosomes): a novel nano-pharmaceutical design for oral delivery of proteins and peptides. Curr Pharm Des 23(11):1575–1588

    CAS  PubMed  Google Scholar 

  • Ahmad N, Ahmad R, Alam MA, Ahmad FJ (2018) Enhancement of oral bioavailability of doxorubicin through surface modified biodegradable polymeric nanoparticles. Chem Cent J 12:65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ahmed K, Kren BT, Abedin MJ, Vogel RI, Shaughnessy DP, Nacusi L, Korman VL, Li YM, Dehm SM, Zimmerman CL, Niehans GA, Unger GM, Trembley JH (2016) CK2 targeted RNAi therapeutic delivered via malignant cell-directed tenfibgen nanocapsule: dose and molecular mechanisms of response in xenograft prostate tumors. Oncotarget 7(38):61789–61805

    PubMed  PubMed Central  Google Scholar 

  • Anitha A, Sreeranganathan M, Chennazhi KP, Lakshmanan VK, Jayakumar R (2014) In vitro combinatorial anticancer effects of 5-fluorouracil and curcumin loaded N,O-carboxymethyl chitosan nanoparticles toward colon cancer and in vivo pharmacokinetic studies. Eur J Pharm Biopharm 88:238–251

    CAS  PubMed  Google Scholar 

  • Asadian-Birjand M, Sousa-Herves A, Steinhilber D, Cuggino JC, Calderon M (2012) Functional nanogels for biomedical applications. Curr Med Chem 19(29):5029–5043

    CAS  PubMed  Google Scholar 

  • Askarian S, Abnous K, Ayatollahi S, Farzad SA, Oskuee RK, Ramezani M (2017) PAMAM-pullulan conjugates as targeted gene carriers for liver cell. Carbohydr Polym 157:929–937

    CAS  PubMed  Google Scholar 

  • Badea G, Lacatusu I, Ott C, Badea N, Grafu I, Meghea A (2015) Integrative approach in prevention and therapy of basal cellular carcinoma by association of three actives loaded into lipid nanocarriers. J Photochem Photobiol B 147:1–8

    CAS  PubMed  Google Scholar 

  • Bahreini E, Aghaiypour K, Abbasalipourkabir R, Mokarram AR, Goodarzi MT, Saidijam M (2014) Preparation and nanoencapsulation of L-asparaginase II in chitosan-tripolyphosphate nanoparticles and in vitro release study. Nanoscale Res Lett 9:340

    PubMed  PubMed Central  Google Scholar 

  • Bajpai A, Shukla S, Saini R, Tiwari A (2010) Stimuli responsive drug delivery systems: from introduction to application. Rapra-Smithers Press, Shawbury

    Google Scholar 

  • Bak A, Leung D, Barrett SE, Forster S, Minnihan EC, Leithead AW, Cunningham J, Toussaint N, Crocker LS (2015) Physicochemical and formulation developability assessment for therapeutic peptide delivery – a primer. AAPS J 17(1):144–155

    CAS  PubMed  Google Scholar 

  • Benet LZ (2013) The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci 102(1):34–42

    CAS  PubMed  Google Scholar 

  • Benival DM, Devarajan PV (2012) Lipomer of doxorubicin hydrochloride for enhanced oral bioavailability. Int J Pharm 423(2):554–561

    CAS  PubMed  Google Scholar 

  • Beyer S, Xie L, Schmidt M, de Bruin N, Ashtikar M, Ruschenbaum S, Lange CM, Vogel V, Mantele W, Parmham MJ, Wacker MG (2016) Optimizing novel implant formulations for the prolonged release of biopharmaceuticals using in vitro and in vivo imaging techniques. J Control Release 235:352–364

    CAS  PubMed  Google Scholar 

  • Borišev I, Mrđanovic J, Petrovic D, Seke M, Jović D, Srđenović B, Latinovic N, Djordjevic A (2018) Nanoformulations of doxorubicin: how far have we come and where do we go from here? Nanotechnology 29(33):332002

    PubMed  Google Scholar 

  • Bose T, Latawiec D, Mondal PP, Mandal S (2014) Overview of nano-drugs characteristics for clinical application: the journey from the entry to the exit point. J Nanopart Res 16:2527

    Google Scholar 

  • Bruno BJ, Miller GD, Lim CS (2013) Basics and recent advances in peptide and protein drug delivery. Ther Deliv 4(11):1443–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bruschi ML (ed) (2015) Strategies to modify the drug release from pharmaceutical systems. Woodhead Publishing, Cambridge

    Google Scholar 

  • Caizhen G, Yan G, Ronron C, Lirong Y, Panpan C, Xuemei H, Yuanbiao Q, Quinqshan L (2015) Zirconium phosphatidylcholine-based nanocapsules as an in vivo degradable drug delivery system of MAP 30, a momordica anti-HIV protein. Int J Pharm 483:188–199

    CAS  PubMed  Google Scholar 

  • Cassano R, Ferrarelli T, Mauro MV, Cavalcanti P, Picci N, Trombino S (2016) Preparation, characterization and in vitro activities evaluation of solid lipid nanoparticles based on PEG-40 stearate for antifungal drugs vaginal delivery. Drug Deliv 23(3):1047–1056

    PubMed  Google Scholar 

  • Chavda HV, Patel CN, Anand IS (2010) Biopharmaceutics classification system. Sys Rev Pharm 1(1):62–69

    CAS  Google Scholar 

  • Chekman IS (2010) Pharmacological and pharmaceutical foundation of nanodrugs. Likars'ka Sprava/Ministerstvo Okhorony Zdorov'ia Ukrainy 1(2):3–10

    Google Scholar 

  • Chilkwar RN, Nanjwade BK, Nwaji MS, Idris SM, Mohamied AS (2015) Bilosomes based drug delivery system. J Chem Applications 2(1):5

    Google Scholar 

  • ClinicalTrials.gov (2018a) Search term: Arikace. U.S. National Library of Medicine, Bethesda, MD. Last updated 05 July . Available from: https://clinicaltrials.gov/ct2/results?cond=&term=arikace&cntry=&state=&city=&dist=

  • ClinicalTrials.gov (2018b) Search term: SLIT cisplatin. U.S. National Library of Medicine, Bethesda, MD. Last updated 05 July 2018. Available from: https://clinicaltrials.gov/ct2/results?cond=&term=slit&cntry=&state=&city=&dist=

  • Coradini K, Lima FO, Oliveira CM, Chaves PS, Athayde ML, Carvalho LM, Beck RC (2014) Co-encapsulation of resveratrol and curcumin in lipid-core nanocapsules improves their in vitro antioxidant effects. Eur J Pharm Biopharm 88:178–185

    CAS  PubMed  Google Scholar 

  • Coradini K, Friedric RB, Fonseca FN, Vencatto MS, Andrade DF, Oliveira CM, Battistel AP, Guterres SS, da Rocha MI, Pohlmann AR, Beck RC (2015) A novel approach to arthritis treatment based on resveratrol and curcumin co-encapsulated in lipid-core nanocapsules: in vivo studies. Eur J Pharm Sci 78:163–170

    CAS  PubMed  Google Scholar 

  • Cristofoletti R, Chiann C, Dressman JB, Storpirtis S (2013) A comparative analysis of biopharmaceutics classification system and biopharmaceutics drug disposition classification system: a cross-sectional survey with 500 bioequivalence studies. J Pharm Sci 102(9):3136–3144

    CAS  PubMed  Google Scholar 

  • Daeihamed M, Haeri A, Ostad SN, Akhlaghi MF, Dadashzadeh S (2017) Doxorubicin-loaded liposomes: enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine (Lond) 12(10):1187–1202. https://doi.org/10.2217/nnm-2017-0007

    Article  CAS  Google Scholar 

  • Daousani C, Macheras P (2016) Biopharmaceutic classification of drugs revisited. Eur J Pharm Sci 95:82–87

    CAS  PubMed  Google Scholar 

  • Demina NB, Skatkov SA (2013) Development strategies and biopharmaceutical aspects of drug delivery systems. Russ J Gen Chem 83:2519

    CAS  Google Scholar 

  • Dhanapal R, Ratna JV (2012) Nanosuspensions technology in drug delivery. Int J of Pharm Rev Res 2(1):46–52

    Google Scholar 

  • Dorniani D, Saifullah B, Barahuie F, Arulselvan P, Bin Hussein MZ, Fakurazi S, Twyman LJ (2016) Graphene oxide-gallic acid nanodelivery system for cancer therapy. Nanoscale Res Lett 11:491

    PubMed  PubMed Central  Google Scholar 

  • Elkin I, Banguy X, Barret CJ, Hildgen P (2017) Non-covalent formulation of active principles with dendrimers: current state-of-the-art and prospects for further development. J Control Release 264:288–305

    CAS  PubMed  Google Scholar 

  • El-Sherbiny IM, El-Baz NM, Yacoub MH (2015) Inhaled nano- and microparticles for drug delivery. Glob Cardiol Sci Pract 2015:2. https://doi.org/10.5339/gcsp.2015.2

    Article  PubMed  PubMed Central  Google Scholar 

  • Fadeel B, Pietroiusti A, Shvedova A (2012) Adverse effects of engineered nanomaterials. Exposure, toxicology, and impact of human health. Academic Press, Waltham

    Google Scholar 

  • Fan HT, Xing XJ, Yang YH, Li B, Wang CC, Qiu DF (2017) Triple function nanocomposites of porous silica-CoFe2O4-MWCNTs as a carrier for pH-sensitive anti-cancer drug controlled delivery. Dalton Trans 46(43):14831–13838

    CAS  PubMed  Google Scholar 

  • Gagnon J, Clift MJD, Vahnecke D, Widnersson IE, Abram SL, Petri-Fink A, Caruso RA, Rothen-Rutishauser B, Fromm KM (2016) Synthesis, characterization, antibacterial activity and cytotoxicity of hollow TiO2-coated CeO2 nanocontainers encapsulating silver nanoparticles for controlled silver release. J Mater Chem B 4(6):1166–1174

    CAS  PubMed  Google Scholar 

  • Gelperina S, Kisich K, Iseman MD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172(12):1487–1490. https://doi.org/10.1164/rccm.200504-613PP

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghadi R, Dand N (2017) BCS class IV drugs: highly notorious candidates for formulation development. J Control Release 248:71–95

    CAS  PubMed  Google Scholar 

  • Gönüllü U, Şaki D (2017) Formulation and characterization of norethisterone transdermal patch as an alternative route to oral administration. Trop J Pharm Res 16(12):2785–2792

    Google Scholar 

  • Gracssian V (2008) Nanoscience and nanotechnology, environmental and health impact. Wiley, Hoboken

    Google Scholar 

  • Grand View Research (2017) Nanomedicine market analysis by products, (therapeutics, regenerative medicine, diagnostics), by application, (clinical oncology, infectious diseases), by nanomolecule (gold, silver, iron oxide, alumina), & segment forecasts, 2013–2025. Last Updated April 2017. Available from: https://www.mordorintelligence.com/industry-reports/healthcare-nanotechnology-nanomedicine-market

  • Halappanavar S, Vogel U, Wallin H, Yauk C (2018) Promise and peril in nanomedicine: the challenges and needs for integrated systems biology approaches to define health risk. WIREs Nanomed Nanobiotechnol 10(1):e1465. https://doi.org/10.1002/wnan.1465

    Article  Google Scholar 

  • Hamidi M, Azadi A, Rafiei P, Ashrafi H (2013) A pharmacokinetic overview of nanotechnology-based drug delivery systems: an ADME-oriented approach. Crit Rev Ther Drug Carrier Syst 30(5):435–467

    CAS  PubMed  Google Scholar 

  • Hansen S, Lehr CM (2014) Transfollicular delivery takes root: the future for vaccine design? Expert Rev Vacciones 13(1):5–7

    CAS  Google Scholar 

  • Haratifar S, Meckling KA, Corredig M (2014) Antiproliferative activity of tea catechins associated with casein micelles, using HT29 colon cancer cells. J Dairy Sci 97:672–678

    CAS  PubMed  Google Scholar 

  • Hilder TA, Hill JM (2007) Carbon nanotubes as drug delivery nanocapsules. Curr Appl Phys 8:258–261

    Google Scholar 

  • Holden PA, Nisbet RM, Lenuhan HS, Miller RJ, Cherr GN, Schimel JP, Gardea JL (2013) Ecological nanotoxicology: integrating nanomaterial hazard considerations across the subcellular, population, community, and ecosystems levels. Chem Res 46(3):813–822

    CAS  Google Scholar 

  • Horne WS, Johnson LM, Ketas TJ, Klasse PJ, Lu M, Moore JP, Gellman SH (2009) Structural and biological mimicry of protein surface recognition by alpha/beta-peptide foldamers. Proc Natl Acad Sci U S A 106(35):14751–14756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hua S, de Matos MBC, Metselaar JM, Storm G (2018) Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front Pharmacol 9:790. https://doi.org/10.3389/fphar.2018.00790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ibrahim N, Ibrahim H, Sabater AM, Mazier D, Valentin A, Nepveu F (2015) Artemisinin nanoformulation suitable for intravenous injection: preparation, characterization and antimalarial activities. Int J Pharm 495(2):671–679. https://doi.org/10.1016/j.ijpharm.2015.09.020

    Article  CAS  PubMed  Google Scholar 

  • Iqbal N, Vitorino C, Taylor KM (2017) How can lipid nanocarriers improve transdermal delivery of olanzapine? Pharm Dev Technol 22(4):587–596. https://doi.org/10.1080/10837450.2016.1200615

    Article  CAS  PubMed  Google Scholar 

  • Jeetah R, Bhaw-Luximon A, Jhurry D (2014) Nanopharmaceutics: phytochemical-based controlled or sustained drug-delivery systems for cancer treatment. J Bbiomed Nanotech 10(9):1810–1840

    CAS  Google Scholar 

  • Juillerat L, Fjellesbo LM, Dusinska M, Collins AR, Handy R, Riediker M (2015) Biological impact assessment of nanomaterial used in nanomedicine. Introduction to the NanoTEST project. Nanotoxicology 9:5–12

    Google Scholar 

  • Khan AU (2012) Nanodrugs: optimism for emerging trend of multidrug resistance. Int J Nanomedicine 7:4323–4324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Khutale GV, Casey A (2017) Synthesis and characterization of a multifunctional gold-doxorubicin nanoparticle system for pH triggered intracellular anticancer drug release. Eur J Pharm Biopharm 119:372–380

    CAS  PubMed  Google Scholar 

  • Kim YM, Park SC, Jang MK (2017) Targeted gene delivery of polyethyleneimine-grafted chitosan with RGD dendrimer peptide in alpha(v)beta(3) integrin-overexpressing tumor cells. Carbohydr Polym 174:1059–1068

    CAS  PubMed  Google Scholar 

  • Landarani-Isfahani A, Moghadam M, Mohammadi S, Royyaran M, Moshtael-Arani N, Rezaei S, Tangestaninejad S, Mirkhani V, Mohammadpoor-Baltork I (2017) Elegant pH-responsive nanovehicle for drug delivery based on triazine dendrimer modified magnetic nanoparticles. Langmuir 33(34):8503–8515

    CAS  PubMed  Google Scholar 

  • Lee W-H, Loo C-Y, Traini D, Young PM (2015) Inhalation of nanoparticle-based drug for lung cancer treatment: advantages and challenges. Asian J Pharm Sci 10(6):481–489. https://doi.org/10.1016/j.ajps.2015.08.009

    Article  Google Scholar 

  • Lee S, Son SJ, Song SJ, Ha TH, Choi JS (2017) Polyamidoamine (PAMAM) dendrimers modified with cathepsin-B cleavable oligopeptides for enhanced gene delivering. Polymers 9(6):224

    PubMed Central  Google Scholar 

  • Leyva-Gómez G, Piñón-Segundo E, Mendoza-Muñoz N, Zambrano-Zaragoza ML, Mendoza-Elvira S, Quintanar-Guerrero D (2018) Approaches in polymeric nanoparticles for vaginal drug delivery: a review of the state of the art. Int J Mol Sci 19(6):pii: E1549. https://doi.org/10.3390/ijms19061549

    Article  CAS  Google Scholar 

  • Liu J, Cui L, Losic D (2013) Graphene and graphene oxide as new nanocarriers for drug delivery applications. Acta Biomater 9(12):9243–9257

    CAS  PubMed  Google Scholar 

  • Liu J, Abshire C, Carry C, Sholl AB, Mandava SH, Datta A, Ranjan M, Callaghan C, Peralta DV, Williams KS, Lai WR, Abdel-Mageed AB, Tarr M, Lee BR (2017) Nanotechnology combined therapy: tyrosine kinase-bound gold nanorod and laser thermal ablation produce a synergistic higher treatment response of renal cell carcinoma in a murine model. BJU Int 119:342–348

    CAS  PubMed  Google Scholar 

  • Luque-Michel E, Imbuluzqueta E, Sebastian V, Blanco-Prieto MJ (2017) Clinical advances of nanocarrier-based cancer therapy and diagnostics. Expert Opin Drug Deliv 14(1):75–92

    CAS  PubMed  Google Scholar 

  • Mahmoudi M, Lynch I, Ejtehadi MR, Monopoli MP, Bombelli FB, Laurent S (2011) Protein-nanoparticle interactions: opportunities and challenges. Chem Rev 111:5610–5637

    CAS  PubMed  Google Scholar 

  • Marslin G, Selvakesavan RK, Franklin G, Sarmento B, Dias ACP (2015) Antimicrobial activity of cream incorporated with silver nanoparticles biosynthesized from Withania somnifera. Int J Nanomedicine 10:5955–5596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martínez-Pérez B, Quintanar-Guerrero D, Tapia-Tapia M, Cisneros-Tamayo R, Zambrano-Zaragoza ML, Alcalá-Alcalá S, Mendoza-Muñoz N, Piñón-Segundo E (2018) Controlled-release biodegradable nanoparticles: from preparation to vaginal applications. Eur J Pharm Sci 115:185–195. https://doi.org/10.1016/j.ejps.2017.11.029

    Article  CAS  PubMed  Google Scholar 

  • Masoudipour E, Kashanian S, Maleki N (2017) A targeted drug delivery system based on dopamine functionalized nano graphene oxide. Chem Phys Lett 668:56–63

    CAS  Google Scholar 

  • Méndez-Rojas MA, Sánchez-Salas JL, Angulo-Molina A, Palacios-Hernández TJ (2014) Environmental risks of nanotechnology: evaluating the ecotoxicity of nanomaterials. In: Kharisov BI, Kharissova O, Dias RH (eds) Nanomaterials for environmental protection. Wiley, New York

    Google Scholar 

  • Mendez-Rojas MA, Sanchez-Salas JL, Santillán-Urquiza E (2016) Nanotoxicology: toxicology of nanomaterials – the dawn of nanotoxicology. In: Kharisov BI, Kharissova OV, Ortiz-Méndez U (eds) CRC concise encyclopedia of nanotechnology. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Milla P, Dosio F, Cattel L (2012) PEGylation of proteins and liposomes: a powerful and flexible strategy to improve the drug delivery. Curr Drug Metab 13(1):105–119

    CAS  PubMed  Google Scholar 

  • Min Y, Caster JM, Eblan MJ, Wang AZ (2015) Clinical translation of nanomedicine. Chem Rev 115(19):11147–11190. https://doi.org/10.1021/acs.chemrev.5b00116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammadzadeh P, Cohan RA, Ghoreishi SM, Bitarafan-Rajabi A, Ardestani MS (2017) AS1411 aptamer-anionic linear globular dendrimer G2-lohexol selective nano-theranostics. Sci Rep 7:11832

    PubMed  PubMed Central  Google Scholar 

  • Moreno-Sastre M, Pastor M, Salomon CJ, Esquisabel A, Pedraz JL (2015) Pulmonary drug delivery: a review on nanocarriers for antibacterial chemotherapy. J Antimicrob Chemother 70(11):2945–2955

    CAS  PubMed  Google Scholar 

  • Mostafalou S, Hamidreza M, Ali R, Abdollahi M (2013) Different biokinetics of nanomedicines linking to their toxicity; an overview. DARU J Pharm Sci 21:14–18

    CAS  Google Scholar 

  • Naumenko EA, Dzamukova MR, Fakhrullina GI, Akhatova FS, Fakhrullin RF (2014) Nano-labelled cells – a functional tool in biomedical applications. Curr Opin Pharmacol 18:84–90

    CAS  PubMed  Google Scholar 

  • Nigam S, Bahadur D (2017) Dendrimer-conjugated iron oxide nanoparticles as stimuli-responsive drug carriers for thermally-activated chemotherapy of cancer. Colloids Surf B Biointerfaces 155:182–192

    CAS  PubMed  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839

    PubMed  PubMed Central  Google Scholar 

  • Okholm AH, Kjems J (2016) DNA nanovehicles and the biological barriers. Adv Drug Deliv Rev 106:183–191

    CAS  PubMed  Google Scholar 

  • Onoue S, Yamada S, Chan HK (2014) Nanodrugs: pharmacokinetics and safety. Int J Nanomedicine 9:1025–1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Palmer BC, DeLouise LA (2016) Nanoparticle enabled transdermal drug delivery systems for enhanced dose control and tissue targeting. Molecules 21(12):E1719. https://doi.org/10.3390/molecules21121719

    Article  CAS  PubMed  Google Scholar 

  • Pastorino L, Dellacasa E, Dabiri MH, Fabiano B, Erokhina S (2016) Towards the fabrication of polyelectrolyte-based nanocapsules for bio-medical applications. Bionanoscience 6(4):496–501

    Google Scholar 

  • Pescina S, Sonvico F, Santi P, Nicoli S (2015) Therapeutics and carriers: the dual role of proteins in nanoparticles for ocular delivery. Curr Top Med Chem 15(4):369–385

    CAS  PubMed  Google Scholar 

  • Petrenko VA, Jayanna PK (2014) Phage protein-targeted cancer nanomedicines. FEBS Lett 588(2):341–349

    CAS  PubMed  Google Scholar 

  • Puvvada N, Rajput S, Kumar BNP, Sarkar S, Konar S, Brunt KR, Rao RR, Mazumdar A, Das SK, Basu R, Fisher PB, Mandal M, Pathak A (2015) Novel ZnO hollow-nanocarriers containing paclitaxel targeting folate-receptors in a malignant pH-microenvironment for effective monitoring and promoting breast tumor regression. Sci Rep 5:11760

    PubMed  PubMed Central  Google Scholar 

  • Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49(2):137–152

    CAS  PubMed  Google Scholar 

  • Ranjan AP, Mukerjee A, Gdowski A, Helson L, Bouchard A, Majeed M, Vishwanatha JK (2016) Curcumin-ER prolonged subcutaneous delivery for the treatment of non-small cell lung cancer. J Biomed Nanotechnol 12(4):679–688

    CAS  PubMed  Google Scholar 

  • Rigo LA, da Silva CR, de Oliverira SM, Cabreira TN, de Bona da Silva C, Ferreira J, Beck RC (2015) Nanoencapsulation of rice bran oil increases its protective effects against UVB radiation-induced skin injury in mice. Eur J Pharm Biopharm 93:11–17

    CAS  PubMed  Google Scholar 

  • Sachan NK, Bhattacharya A, Pushkar S, Mishra A (2009) Biopharmaceutical classification system: a strategic tool for oral drug delivery technology. Asian J Pharm 3(2):76–81

    Google Scholar 

  • Saiyed MA, Patel RC, Patel SC (2011) Toxicology perspective of nanopharmaceuticals: a critical review. Int J Pharm Sci Nanotech 4(1):1287–1295

    CAS  Google Scholar 

  • Salas-Rojas SG, Angulo-Molina A, Mendez-Rojas MA (2017) Farmacovigilancia de nanomedicamentos. In: Castro-Pastrana LI, Salas Rojas SG (eds) Retos actuales en farmacovigilancia: Una visión integral de los desafíos de la atención sanitaria. Editorial UDLAP, Puebla

    Google Scholar 

  • Sasaki Y, Akiyoshi K (2010) Nanogel engineering for new nanobiomaterials: from chaperoning engineering to biomedical applications. Chem Rec 10(6):366–376

    CAS  PubMed  Google Scholar 

  • Sathler PC, Lourenco AL, Rodrigues CR, da Silva LCRP, Cabral LM, Jordao AK, Cunha AC, Vieira MCB, Ferreira VF, Carvalho-Pinto CE, Kang HC, Castro HC (2014) In vitro and in vivo analysis of the antithrombotic and toxicological profile of new antiplatelets N-acylhydrazone derivatives and development of nanosystems determination of novel NAH derivatives antiplatelet and nanotechnological approach. Thromb Res 134:376–383

    CAS  PubMed  Google Scholar 

  • Schmid D, Jarvis GE, Fay F, Small DM, Greene MK, Majkut J, Spence S, McLaughlin KM, McCloskey KD, Johnston PG, Kissenpfennig A, Longley DB, Scott CJ (2014) Nanoencapsulation of ABT-737 and camptothecin enhances their clinical potential through synergistic antitumor effects and reduction of systemic toxicity. Cell Death Dis 5:e1454

    CAS  PubMed  PubMed Central  Google Scholar 

  • Seabra CL, Nunes C, Gomez-Lazaro M, Correia M, Machado JC, Gonçalves IC, Reis CA, Reis S, Martins MCL (2017) Docosahexaenoic acid loaded lipid nanoparticles with bactericidal activity against helicobacter pylori. Int J Pharm 519:128–137

    CAS  PubMed  Google Scholar 

  • Selen A, Dickinson PA, Müllertz A, Crison JR, Mistry HB, Cruañes MT, Martinez MN, Lennernäs H, Wigal TL, Swinney DC, Polli JE, Serajuddin ATM, Cook JA, Dressman JB (2014) The biopharmaceutics risk assessment roadmap for optimizing clinical drug product performance. J Pharm Sci 103(11):3377–3397

    CAS  PubMed  Google Scholar 

  • Sheikhpour M, Barani L, Kasaeian A (2017) Biomimetics in drug delivery systems: a critical review. J Control Release 253:97–109

    CAS  PubMed  Google Scholar 

  • Tahara K, Karasawa K, Onodera R, Takeuchi H (2017) Feasibility of drug delivery to the eye's posterior segment by topical instillation of PLGA nanoparticles. Asian J Pharm Sci 12(4):394–399

    PubMed  PubMed Central  Google Scholar 

  • Tekade RK, Tekade M, Kesharwani P, D'Emanuele A (2016) RNAi-combined nano-chemotherapeutics to tackle resistant tumors. Drug Discov Today 21(11):1761–1774

    CAS  PubMed  Google Scholar 

  • Trembley JH, Unger GM, Korman VL, Abedin MJ, Nacusi LP, Vogel RI, Slaton JW, Kren BT, Ahmed K (2014) Tenfibgen ligand nanoencapsulation delivers bi-functional anti-CK2 RNAi oligomer to key sites for prostate cancer targeting using human xenograft tumors in mice. PLoS One 9:e109970

    PubMed  PubMed Central  Google Scholar 

  • Tridente G (2014) Adverse events with biomedicines. Prevention through understanding. Springer, Milan

    Google Scholar 

  • Vargas-Gonzalez BA, Castro Pastrana LI, Mendoza-Alvarez ME, Gonzalez-Rodriguez R, Coffer JL, Mendez-Rojas MA (2016) Hollow magnetic iron oxide nanoparticles as sodium meclofenamate drug delivering systems. J Nanomed Res 3(6):00071

    Google Scholar 

  • Vazquez-Muñoz R, Borrego B, Juarez-Moreno K, Garcia-Garcia M, Mota Morales JD, Bogdanchikova N, Huerta-Saquero A (2017) Toxicity of silver nanoparticles in biológica systems: does the complexity of biological systems matter? Toxicol Lett 276:11–20

    PubMed  Google Scholar 

  • Ventola CL (2017) Progress in nanomedicine: approved and investigational nanodrugs. PT 42(12):742–755

    Google Scholar 

  • Viswanath V, Santhakumar K (2017) Perspectives on dendritic architectures and their biological applications: from core to cell. J Photochem Photobiol B 173:61–83

    CAS  PubMed  Google Scholar 

  • Wang X, Wang S, Zhang Y (2016) Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv 23(8):2897–2901

    CAS  PubMed  Google Scholar 

  • WHO Drug Information (2016) A framework for risk-based identification of essential medicine products for local manufacturing in low- and middle-income countries. WHO Drug Inf 30(1):7–12

    Google Scholar 

  • Willem de Vries J, Schnichels S, Hurst J, Strudel L, Gruszka A, Kwak M, Bartz-Schmidt KU, Spitzer MS, Herrmann A (2018) DNA nanoparticles for ophthalmic drug delivery. Biomaterials 157:98–106. https://doi.org/10.1016/j.biomaterials.2017.11.046

    Article  CAS  PubMed  Google Scholar 

  • Xu Q, Kambhampati SP, Kannan RM (2013) Nanotechnology approaches for ocular drug delivery. Middle East Afr J Ophthalmol 20(1):26–37. https://doi.org/10.4103/0974-9233.106384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan D, Yi X, Zhao Y et al (2017) Intranasal delivery of N-terminal modified leptin-pluronic conjugate for treatment of obesity. J Control Release 263:172–184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zawawi NA, Majid ZA, Rashid NAA (2017) Adsorption and desorption of curcumin by poly(vinyl) alcohol-multiwalled carbon nanotubes (PVA-MWCNT). Colloid Polym Sci 295(10):1925–1936

    CAS  Google Scholar 

  • Zhao M, Lei C, Yang Y, Bu X, Ma H, Gong H, Liu J, Fang X, Hu Z, Fang Q (2015) Abraxane, the nanoparticle formulation of paclitaxel can induce drug resistance by up-regulation of P-gp. PLoS One 10(7):e0131429. https://doi.org/10.1371/journal.pone.0131429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, Szlachetka A, Lamberty B, Fox HS, Poluektova L, Gorantla S, McMillan J, Gautam N, Mosley RL, Alnouti Y, Edagwa B, Gendelman HE (2018) Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials 151:53–65. https://doi.org/10.1016/j.biomaterials.2017.10.023

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Ángel Méndez-Rojas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Castro-Pastrana, L.I., Angulo Molina, A., Flood-Garibay, J.A., Quintana-Romero, D.A., Crespo-Morán, P., Méndez-Rojas, M.Á. (2021). Recent Advances on Nanostructured Materials for Drug Delivery and Release. In: Yata, V., Ranjan, S., Dasgupta, N., Lichtfouse, E. (eds) Nanopharmaceuticals: Principles and Applications Vol. 2. Environmental Chemistry for a Sustainable World, vol 47. Springer, Cham. https://doi.org/10.1007/978-3-030-44921-6_9

Download citation

Publish with us

Policies and ethics