Skip to main content

Nephrolithiasis

  • Chapter
  • First Online:
Nutrition in Kidney Disease

Part of the book series: Nutrition and Health ((NH))

  • 916 Accesses

Abstract

Nephrolithiasis (kidney stones, urolithiasis) is the formation of stone-like concretions in the urinary system caused by the precipitation of calcium, phosphate, urate, and other molecules. The incidence and prevalence of nephrolithiasis among adults in the USA have been increasing for 30 years. According to the National Health and Nutrition Examination Survey (NHANES 2007–2010), current prevalence is estimated at 8.8% among adults as compared to a prevalence of 5.2% in 1994. More than $5.3billion is spent directly and indirectly on treatment for nephrolithiasis annually in the USA. Kidney stones are more prevalent in men than women with a lifetime risk of 12% in men and 6% in women. As many as 20% of patients present with renal colic and require urological intervention.

The editors acknowledge Julian L. Seifter’s contribution to this chapter in Nutrition in Kidney Disease, Second Edition, Nutrition and Health, DOI: https://doi.org/10.1007/978-1-62703-685-6_1, © Springer Science+Business Media, New York, 2014.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America Project. Prevalence of kidney stones in the United States. Eur Urol. 2012;62(1):160–5.

    PubMed  PubMed Central  Google Scholar 

  2. Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC. Time trends in reported prevalence of kidney stones in the United States: 1976-1994. Kidney Int. 2003;63(5):1817–23.

    PubMed  Google Scholar 

  3. Saigal CS, Joyce G, Timilsina AR, Urologic Diseases in America Project. Direct and indirect costs of nephrolithiasis in an employed population: opportunity for disease management? Kidney Int. 2005;68(4):1808–14.

    PubMed  Google Scholar 

  4. Curhan GC. Epidemiology of stone disease. Urol Clin N Am. 2007;34(3):287–+.

    Google Scholar 

  5. Worcester EM, Coe FL. Nephrolithiasis. Prim Care. 2008;35(2):369–91, vii.

    PubMed  PubMed Central  Google Scholar 

  6. Taylor EN, Stampfer MJ, Curhan GC. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int. 2005;68(3):1230–5.

    PubMed  Google Scholar 

  7. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293(4):455–62.

    CAS  PubMed  Google Scholar 

  8. Carbone A, Al Salhi Y, Tasca A, et al. Obesity and kidney stone disease: a systematic review. Minerva Urol Nefrol. 2018;70(4):393–400.

    PubMed  Google Scholar 

  9. Kelly C, Geraghty RM, Somani BK. Nephrolithiasis in the obese patient. Curr Urol Rep. 2019;20(7):36.

    Google Scholar 

  10. Brikowski TH, Lotan Y, Pearle MS. Climate-related increase in the prevalence of urolithiasis in the United States. Proc Natl Acad Sci U S A. 2008;105(28):9841–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Pearle MS, Calhoun EA, Curhan GC, Urologic Diseases of America Project. Urologic diseases in America project: urolithiasis. J Urol. 2005;173(3):848–57.

    PubMed  Google Scholar 

  12. Coe FL, Evan A, Worcester E. Kidney stone disease. J Clin Invest. 2005;115(10):2598–608.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Costa-Bauza A, Ramis M, Montesinos V, et al. Type of renal calculi: variation with age and sex. World J Urol. 2007;25(4):415–21.

    PubMed  Google Scholar 

  14. Lieske JC, Rule AD, Krambeck AE, et al. Stone composition as a function of age and sex. Clin J Am Soc Nephrol. 2014;9(12):2141–6.

    PubMed  PubMed Central  Google Scholar 

  15. Daudon M, Frochot V, Bazin D, Jungers P. Drug-induced kidney stones and crystalline nephropathy: pathophysiology. Prev Treat Drugs. 2018;78(2):163–201.

    CAS  Google Scholar 

  16. Moe OW. Kidney stones: pathophysiology and medical management. Lancet. 2006;367(9507):333–44.

    CAS  PubMed  Google Scholar 

  17. Kato Y, Taniguchi N, Okuyama M, Kakizaki H. Three cases of urolithiasis associated with sarcoidosis: a review of Japanese cases. Int J Urol. 2007;14(10):954–6.

    CAS  PubMed  Google Scholar 

  18. Sharma OP. Hypercalcemia in granulomatous disorders: a clinical review. Curr Opin Pulm Med. 2000;6(5):442–7.

    CAS  PubMed  Google Scholar 

  19. Qiu SR, Wierzbicki A, Orme CA, et al. Molecular modulation of calcium oxalate crystallization by osteopontin and citrate. Proc Natl Acad Sci U S A. 2004;101(7):1811–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Qiu SR, Orme CA. Dynamics of biomineral formation at the near-molecular level. Chem Rev. 2008;108(11):4784–822.

    CAS  PubMed  Google Scholar 

  21. Coe FL, Parks JH, Nakagawa Y. Inhibitors and promoters of calcium oxalate crystallization their relationship to the pathogenesis and treatment of nephrolithiasis. 1992:757–800.

    Google Scholar 

  22. Aggarwal KP, Narula S, Kakkar M, Tandon C. Nephrolithiasis: molecular mechanism of renal stone formation and the critical role played by modulators. Biomed Res Int. 2013;2013:292953.

    PubMed  PubMed Central  Google Scholar 

  23. De Yoreo JJ, Qiu SR, Hoyer JR. Molecular modulation of calcium oxalate crystallization. Am J Physiol Renal Physiol. 2006;291(6):F1123–31.

    PubMed  Google Scholar 

  24. Rimer JD, An Z, Zhu Z, et al. Crystal growth inhibitors for the prevention of L-cystine kidney stones through molecular design. Science. 2010;330(6002):337–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Ingimarsson JP, Krambeck AE, Pais VM Jr. Diagnosis and management of nephrolithiasis. Surg Clin North Am. 2016;96(3):517–32.

    PubMed  Google Scholar 

  26. Lynch M NS. Evaluation of Patients with Nephrolithiasis. In: Han H MW, Nasser S, ed. Nutritional and Medical Management of Kidney Stones. Switzerland: Humana Press/Springer; 2019:63–81.

    Google Scholar 

  27. Brisbane W, Bailey MR, Sorensen MD. An overview of kidney stone imaging techniques. Nat Rev Urol. 2016;13(11):654–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Castle SM, Cooperberg MR, Sadetsky N, Eisner BH, Stoller ML. Adequacy of a single 24-hour urine collection for metabolic evaluation of recurrent nephrolithiasis. J Urol. 2010;184(2):579–83.

    CAS  PubMed  Google Scholar 

  29. Reilly RF, Perazella MA. Nephrology in 30 days. 2nd ed. New York: McGraw-Hill; 2014.

    Google Scholar 

  30. Asplin JR. Evaluation of the kidney stone patient. Semin Nephrol. 2008;28(2):99–110.

    CAS  PubMed  Google Scholar 

  31. Curhan GC, Taylor EN. 24-h uric acid excretion and the risk of kidney stones. Kidney Int. 2008;73(4):489–96.

    CAS  PubMed  Google Scholar 

  32. Asplin JR. Hyperoxaluric calcium nephrolithiasis. Endocrinol Metab Clin N Am. 2002;31(4):927–+.

    Google Scholar 

  33. Vezzoli G, Terranegra A, Arcidiacono T, Soldati L. Genetics and calcium nephrolithiasis. Kidney Int. 2011;80(6):587–93.

    CAS  PubMed  Google Scholar 

  34. Coe FL, Parks JH, Moore ES. Familial idiopathic hypercalciuria. N Engl J Med. 1979;300(7):337–40.

    CAS  PubMed  Google Scholar 

  35. Worcester EM, Gillen DL, Evan AP, et al. Evidence that postprandial reduction of renal calcium reabsorption mediates hypercalciuria of patients with calcium nephrolithiasis. Am J Physiol Renal Physiol. 2007;292(1):F66–75.

    CAS  PubMed  Google Scholar 

  36. Worcester EM, Evan AP, Coe FL, et al. A test of the hypothesis that oxalate secretion produces proximal tubule crystallization in primary hyperoxaluria type I. Am J Physiol Renal Physiol. 2013;305(11):F1574–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Worcester E. Pathophysiology of Kidney Stone Formation. In: Han H MW, Nasser S, ed. Nutritional and Medical Management of Kidney Stones. Switzerland: Humana Press, Springer; 2019:21–42.

    Google Scholar 

  38. Worcester EM, Coe FL, Evan AP, Parks JH. Reduced renal function and benefits of treatment in cystinuria vs other forms of nephrolithiasis. BJU Int. 2006;97(6):1285–90.

    CAS  PubMed  Google Scholar 

  39. Prot-Bertoye C, Lebbah S, Daudon M, et al. CKD and its risk factors among patients with cystinuria. Clin J Am Soc Nephrol. 2015;10(5):842–51.

    PubMed  PubMed Central  Google Scholar 

  40. Soucie JM, Thun MJ, Coates RJ, McClellan W, Austin H. Demographic and geographic variability of kidney stones in the United States. Kidney Int. 1994;46(3):893–9.

    CAS  PubMed  Google Scholar 

  41. Robertson WG, Peacock M, Heyburn PJ, Hanes FA. Epidemiological risk factors in calcium stone disease. Scand J Urol Nephrol Suppl. 1980;53:15–30.

    CAS  PubMed  Google Scholar 

  42. Soucie JM, Coates RJ, McClellan W, Austin H, Thun M. Relation between geographic variability in kidney stones prevalence and risk factors for stones. Am J Epidemiol. 1996;143(5):487–95.

    CAS  PubMed  Google Scholar 

  43. Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J Urol. 1996;155(3):839–43.

    CAS  PubMed  Google Scholar 

  44. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Beverage use and risk for kidney stones in women. Ann Intern Med. 1998;128(7):534–+.

    Google Scholar 

  45. Curhan GC, Willett WC, Knight EL, Stampfer MJ. Dietary factors and the risk of incident kidney stones in younger women – nurses’ health study II. Arch Intern Med. 2004;164(8):885–91.

    PubMed  Google Scholar 

  46. Curhan GC, Willett WC, Rimm EB, Spiegelman D, Stampfer MJ. Prospective study of beverage use and the risk of kidney stones. Am J Epidemiol. 1996;143(3):240–7.

    CAS  PubMed  Google Scholar 

  47. Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Caffeine intake and the risk of kidney stones. Am J Clin Nutr. 2014;100(6):1596–603.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ferraro PM, Taylor EN, Gambaro G, Curhan GC. Soda and other beverages and the risk of kidney stones. Clin J Am Soc Nephrol. 2013;8(8):1389–95.

    PubMed  PubMed Central  Google Scholar 

  49. Paleerath P, Visith T. Caffeine in kidney stone disease: risk or benefit? Adv Nutr. 2018;9(4):419–24.

    Google Scholar 

  50. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective-study of dietary calcium and other nutrients and the risk of symptomatic kidney-stones. N Engl J Med. 1993;328(12):833–8.

    CAS  PubMed  Google Scholar 

  51. Curhan GC, Willett WC, Speizer FE, Spiegelman D, Stampfer MJ. Comparison of dietary calcium with supplemental calcium and other nutrients as factors affecting the risk for kidney stones in women. Ann Intern Med. 1997;126(7):497–+.

    Google Scholar 

  52. Taylor EN, Stampfer MJ, Curhan GC. Dietary factors and the risk of incident kidney stones in men: new insights after 14 years of follow-up. J Am Soc Nephrol. 2004;15(12):3225–32.

    PubMed  Google Scholar 

  53. Bataille P, Charransol G, Gregoire I, et al. Effect of calcium restriction on renal excretion of oxalate and the probability of stones in the various pathophysiological groups with calcium stones. J Urol. 1983;130(2):218–23.

    CAS  PubMed  Google Scholar 

  54. Borghi L, Schianchi T, Meschi T, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med. 2002;346(2):77–84.

    CAS  PubMed  Google Scholar 

  55. Holmes RP, Assimos DG. The impact of dietary oxalate on kidney stone formation. Urol Res. 2004;32(5):311–6.

    CAS  PubMed  Google Scholar 

  56. Fink HA, Akornor JW, Garimella PS, et al. Diet, fluid, or supplements for secondary prevention of nephrolithiasis: a systematic review and meta-analysis of randomized trials. Eur Urol. 2009;56(1):72–80.

    PubMed  PubMed Central  Google Scholar 

  57. Wong YV, Cook P, Somani BK. The association of metabolic syndrome and urolithiasis. Int J Endocrinol. 2015;2015:570674.

    PubMed  PubMed Central  Google Scholar 

  58. Worcester EM. Stones from bowel disease. Endocrinol Metab Clin N Am. 2002;31(4):979–+.

    Google Scholar 

  59. Siener R, Honow R, Voss S, Seidler A, Hesse A. Oxalate content of cereals and cereal products. J Agric Food Chem. 2006;54(8):3008–11.

    CAS  PubMed  Google Scholar 

  60. Lemann J, Piering WF, Lennon EJ. Possible role of carbohydrate-induced calciuria in calcium oxalate kidney-stone formation. N Engl J Med. 1969;280(5):232–&.

    Google Scholar 

  61. Muldowney FP, Freaney R, Moloney MF. Importance of dietary-sodium in the hypercalciuria syndrome. Kidney Int. 1982;22(3):292–6.

    CAS  PubMed  Google Scholar 

  62. Coe F, Worcester EM. Idiopathic hypercalciuria. In: Coe F, Worcester EM, Lingeman JE, Evan AP, editors. Kidney stones: medical and surgical management. 2nd ed. New Delhi: Jaypee Brother Medical Publishers; 2018. p. 276–302.

    Google Scholar 

  63. Cameron MA, Maalouf NM, Adams-Huet B, Moe OW, Sakhaee K. Urine composition in type 2 diabetes: predisposition to uric acid nephrolithiasis. J Am Soc Nephrol. 2006;17(5):1422–8.

    CAS  PubMed  Google Scholar 

  64. Massey LK, Kynast-Gales SA. Diets with either beef or plant proteins reduce risk of calcium oxalate precipitation in patients with a history of calcium kidney stones. J Am Diet Assoc. 2001;101(3):326–31.

    CAS  PubMed  Google Scholar 

  65. Sorensen MD, Kahn AJ, Reiner AP, et al. Impact of nutritional factors on incident kidney stone formation: a report from the WHI OS. J Urol. 2012;187(5):1645–9.

    PubMed  PubMed Central  Google Scholar 

  66. Moran ME. Uric acid stone disease. Front Biosci Landmark. 2003;8:S1339–55.

    CAS  Google Scholar 

  67. Maiuolo J, Oppedisano F, Gratteri S, Muscoli C, Mollace V. Regulation of uric acid metabolism and excretion. Int J Cardiol. 2016;213:8–14.

    PubMed  Google Scholar 

  68. Kessler T, Hesse A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br J Nutr. 2000;84(6):865–71.

    CAS  PubMed  Google Scholar 

  69. Kessler T, Jansen B, Hesse A. Effect of blackcurrant-, cranberry- and plum juice consumption on risk factors associated with kidney stone formation. Eur J Clin Nutr. 2002;56(10):1020–3.

    CAS  PubMed  Google Scholar 

  70. Kenny J-ES, Goldfarb DS. Update on the pathophysiology and management of uric acid renal stones. Curr Rheumatol Rep. 2010;12(2):125–9.

    CAS  PubMed  Google Scholar 

  71. Fink HA, Wilt TJ, Eidman KE, Garimella PS, MacDonald R, Rutks IR. Medical management to prevent recurrent nephrolithiasis in adults: a systematic review for an American College of Physicians Clinical Guideline (vol 158, pg 535, 2013). Ann Intern Med. 2013;159(3):230.

    Google Scholar 

  72. Lemann J, Pleuss JA, Gray RW, Hoffmann RG. Potassium administration increases and potassium deprivation reduces urinary calcium excretion in healthy-adults. Kidney Int. 1991;39(5):973–83.

    PubMed  Google Scholar 

  73. Taylor EN, Fung TT, Curhan GC. DASH-style diet associates with reduced risk for kidney stones. J Am Soc Nephrol. 2009;20(10):2253–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Taylor EN, Stampfer MJ, Mount DB, Curhan GC. DASH-style diet and 24-hour urine composition. Clin J Am Soc Nephrol. 2010;5(12):2315–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Grases F, Garcia-Gonzalez R, Torres JJ, Llobera A. Effects of phytic acid on renal stone formation in rats. Scand J Urol Nephrol. 1998;32(4):261–5.

    CAS  PubMed  Google Scholar 

  76. Grases F, March JG, Prieto RM, et al. Urinary phytate in calcium oxalate stone formers and healthy people – dietary effects on phytate excretion. Scand J Urol Nephrol. 2000;34(3):162–4.

    CAS  PubMed  Google Scholar 

  77. Traxer O, Huet B, Poindexter J, Pak CYC, Pearle MS. Effect of ascorbic acid consumption on urinary stone risk factors. J Urol. 2003;170(2):397–401.

    CAS  PubMed  Google Scholar 

  78. Ferraro PM, Curhan GC, Gambaro G, Taylor EN. Total, dietary, and supplemental vitamin C intake and risk of incident kidney stones. Am J Kidney Dis. 2016;67(3):400–7.

    CAS  PubMed  Google Scholar 

  79. Curhan GC, Willett WC, Speizer FE, Stampfer MJ. Intake of vitamins B6 and C and the risk of kidney stones in women. J Am Soc Nephrol. 1999;10(4):840–5.

    CAS  PubMed  Google Scholar 

  80. Curhan GC, Willett WC, Rimm EB, Stampfer MJ. A prospective study of the intake of vitamins C and B6, and the risk of kidney stones in men. J Urol. 1996;155(6):1847–51.

    CAS  PubMed  Google Scholar 

  81. Penniston KL, Nakada SY, Hansen KE. Vitamin D repletion does not alter urinary calcium excretion in postmenopausal women. J Urol. 2008;179(4):504–5.

    Google Scholar 

  82. Gupta M, Korets R, Leaf DE, et al. Vitamin D repletion does not increase calcium excretion among patients with kidney stones. J Endourol. 2011;25:A245–6.

    Google Scholar 

  83. Letavernier E, Daudon M. Vitamin D, hypercalciuria and kidney stones. Nutrients. 2018;10(3):366.

    Google Scholar 

  84. Kasote DM, Jagtap SD, Thapa D, Khyade MS, Russell WR. Herbal remedies for urinary stones used in India and China: a review. J Ethnopharmacol. 2017;203:55–68.

    PubMed  Google Scholar 

  85. Kieley S, Dwivedi R, Monga M. Ayurvedic medicine and renal calculi. J Endourol. 2008;22(8):1613–6.

    PubMed  Google Scholar 

  86. Miyaoka R, Monga M. Use of traditional chinese medicine in the management of urinary stone disease. Int Braz J Urol. 2009;35(4):396–405.

    PubMed  Google Scholar 

  87. Assimos D, Krambeck A, Miller NL, et al. Surgical management of stones: American Urological Association/Endourological Society guideline, part I. J Urol. 2016;196(4):1153–60.

    PubMed  Google Scholar 

  88. Smith-Bindman R, Aubin C, Bailitz J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014;371(12):1100–10.

    CAS  PubMed  Google Scholar 

  89. Alivizatos G, Skolarikos A. Is there still a role for open surgery in the management of renal stones? Curr Opin Urol. 2006;16(2):106–11.

    PubMed  Google Scholar 

  90. Pearle MS, Goldfarb DS, Assimos DG, et al. Medical management of kidney stones: AUA guideline. J Urol. 2014;192(2):316–24.

    PubMed  Google Scholar 

  91. Strohmaier WL. Course of calcium stone disease without treatment. What can we expect? Eur Urol. 2000;37(3):339–44.

    CAS  PubMed  Google Scholar 

  92. Bergsland KJ, Worcester EM, Coe FL. Role of proximal tubule in the hypocalciuric response to thiazide of patients with idiopathic hypercalciuria. Am J Physiol Renal Physiol. 2013;305(4):F592–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Phillips R, Hanchanale VS, Myatt A, Somani B, Nabi G, Biyani CS. Citrate salts for preventing and treating calcium containing kidney stones in adults. Cochrane Database Syst Rev. 2015;10.

    Google Scholar 

  94. Pinheiro VB, Baxmann AC, Tiselius H-G, Heilberg IP. The effect of sodium bicarbonate upon urinary citrate excretion in calcium stone formers. Urology. 2013;82(1):33–7.

    PubMed  Google Scholar 

  95. Pachaly MA, Baena CP, Buiar AC, de Fraga FS, Carvalho M. Effects of non-pharmacological interventions on urinary citrate levels: a systematic review and meta-analysis. Nephrol Dial Transplant. 2016;31(8):1203–11.

    CAS  PubMed  Google Scholar 

  96. Lieske JC. Probiotics for prevention of urinary stones. Ann Transl Med. 2017;5(2):29.

    Google Scholar 

  97. Kaufman DW, Kelly JP, Curhan GC, et al. Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Urol. 2009;181(2):676.

    Google Scholar 

  98. Adnan W NS. Calcium Stone: Pathophysiology, Prevention and Medical Management. In: Han H MW, Nasser S, ed. Nutritional and Medical Management of Kidney Stones. Switzerland: Humana Press/Springer; 2019:93–106.

    Google Scholar 

  99. Hoppe B, Beck B, Gatter N, et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006;70(7):1305–11.

    CAS  PubMed  Google Scholar 

  100. Milliner D, Hoppe B, Groothoff J. A randomised Phase II/III study to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Urolithiasis. 2018;46(4):313–23.

    CAS  PubMed  Google Scholar 

  101. Kang DE, Sur RL, Haleblian GE, Fitzsimons NJ, Borawski KM, Preminger GM. Long-term lemonade based dietary manipulation in patients with hypocitraturic nephrolithiasis. J Urol. 2007;177(4):1358–62.

    PubMed  Google Scholar 

  102. Jackson RD, LaCroix AZ, Gass M, et al. Calcium plus vitamin D supplementation and the risk of fractures. N Engl J Med. 2006;354(7):669–83.

    CAS  PubMed  Google Scholar 

  103. Wallace RB, Wactawski-Wende J, O’Sullivan MJ, et al. Urinary tract stone occurrence in the Women’s Health Initiative (WHI) randomized clinical trial of calcium and vitamin D supplements. Am J Clin Nutr. 2011;94(1):270–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Nouvenne A, Meschi T, Prati B, et al. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: a 3-mo randomized controlled trial. Am J Clin Nutr. 2010;91(3):565–70.

    CAS  PubMed  Google Scholar 

  105. Noori N, Honarkar E, Goldfarb DS, et al. Urinary lithogenic risk profile in recurrent stone formers with hyperoxaluria: a randomized controlled trial comparing DASH (dietary approaches to stop hypertension)-style and low-oxalate diets. Am J Kidney Dis. 2014;63(3):456–63.

    CAS  PubMed  Google Scholar 

  106. Rebholz CM, Crews DC, Grams ME, et al. DASH (dietary approaches to stop hypertension) diet and risk of subsequent kidney disease. Am J Kidney Dis. 2016;68(6):853–61.

    PubMed  PubMed Central  Google Scholar 

  107. Attalla K, De S, Monga M. Oxalate content of food: a tangled web. Urology. 2014;84(3):555–9.

    PubMed  Google Scholar 

  108. Massey LK. Food oxalate: factors affecting measurement, biological variation, and bioavailability. J Am Diet Assoc. 2007;107(7):1191–4.

    PubMed  Google Scholar 

  109. Taylor EN, Curhant GC. Oxalate intake and the risk for nephrolithiasis. J Am Soc Nephrol. 2007;18(7):2198–204.

    CAS  PubMed  Google Scholar 

  110. Taylor EN, Curhan GC. Determinants of 24-hour urinary oxalate excretion. Clin J Am Soc Nephrol. 2008;3(5):1453–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Hylander E, Jarnum S, Nielsen K. Calcium treatment of enteric hyperoxaluria after jejunoileal bypass for morbid-obesity. Scand J Gastroenterol. 1980;15(3):349–52.

    CAS  PubMed  Google Scholar 

  112. Baxmann AC, Mendonca CDG, Heilberg IP. Effect of vitamin C supplements on urinary oxalate and pH in calcium stone-forming patients. Kidney Int. 2003;63(3):1066–71.

    CAS  PubMed  Google Scholar 

  113. Tang M, Larson-Meyer DE, Liebman M. Effect of cinnamon and turmeric on urinary oxalate excretion, plasma lipids, and plasma glucose in healthy subjects. Am J Clin Nutr. 2008;87(5):1262–7.

    CAS  PubMed  Google Scholar 

  114. Terris MK, Issa MM, Tacker JR. Dietary supplementation with cranberry concentrate tablets may increase the risk of nephrolithiasis. Urology. 2001;57(1):26–9.

    CAS  PubMed  Google Scholar 

  115. Zuckerman JM, Assimos DG. Hypocitraturia: pathophysiology and medical management. Rev Urol. 2009;11(3):134–44.

    PubMed  PubMed Central  Google Scholar 

  116. Ryall RL. Urinary inhibitors of calcium oxalate crystallization and their potential role in stone formation. World J Urol. 1997;15(3):155–64.

    CAS  PubMed  Google Scholar 

  117. Adeva MM, Souto G. Diet-induced metabolic acidosis. Clin Nutr. 2011;30(4):416–21.

    CAS  PubMed  Google Scholar 

  118. Remer T, Manz F. Potential renal acid load of foods and its influence on urine pH. J Am Diet Assoc. 1995;95(7):791–7.

    CAS  PubMed  Google Scholar 

  119. Trinchieri A, Lizzano R, Marchesotti F, Zanetti G. Effect of potential renal acid load of foods on urinary citrate excretion in calcium renal stone formers. Urol Res. 2006;34(1):1–7.

    CAS  PubMed  Google Scholar 

  120. Meschi T, Maggiore U, Fiaccadori E, et al. The effect of fruits and vegetables on urinary stone risk factors. Kidney Int. 2004;66(6):2402–10.

    CAS  PubMed  Google Scholar 

  121. Sakhaee K, Alpern R, Poindexter J, Pak CYC. Citraturic response to oral citric-acid load. J Urol. 1992;147(4):975–6.

    CAS  PubMed  Google Scholar 

  122. Aras B, Kalfazade N, Tugcu V, et al. Can lemon juice be an alternative to potassium citrate in the treatment of urinary calcium stones in patients with hypocitraturia? A prospective randomized study. Urol Res. 2008;36(6):313–7.

    CAS  PubMed  Google Scholar 

  123. Bobulescu A, Moe OW. Renal transport of uric acid: evolving concepts and uncertainties. Adv Chronic Kidney Dis. 2012;19(6):358–71.

    PubMed  PubMed Central  Google Scholar 

  124. Bushinsky DA, Asplin JR. Thiazides reduce brushite, but not calcium oxalate, supersaturation, and stone formation in genetic hypercalciuric stone-forming rats. J Am Soc Nephrol. 2005;16(2):417–24.

    CAS  PubMed  Google Scholar 

  125. Coe FL, Kassirer JP, Shields M, et al. Uric-acid and calcium-oxalate nephrolithiasis. Kidney Int. 1983;24(3):392–403.

    CAS  PubMed  Google Scholar 

  126. Wang L, Cui Y, Zhang J, Zhang Q. Safety of potassium-bearing citrate in patients with renal transplantation: a case report. Medicine. 2017;96(42):e6933.

    Google Scholar 

  127. Mitra S CR. Medical Management of Uric Acid Stone. In: Han H MW, Nasser S, ed. Nutritional and Medical Management of Kidney Stones. Switzerland: Humana Press, Springer; 2019:117–22.

    Google Scholar 

  128. Pak CYC, Sakhaee K, Fuller C. SUccessful management of uric-acid nephrolithiasis with potassium citrate. Kidney Int. 1986;30(3):422–8.

    CAS  PubMed  Google Scholar 

  129. Cameron M, Maalouf NM, Poindexter J, Adams-Huet B, Sakhaee K, Moe OW. The diurnal variation in urine acidification differs between normal individuals and uric acid stone formers. Kidney Int. 2012;81(11):1123–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Riese RJ, Sakhaee K. Uric-acid nephrolithiasis – pathogenesis and treatment. J Urol. 1992;148(3):765–71.

    CAS  PubMed  Google Scholar 

  131. McKenzie DC. Changes in urinary ph following bicarbonate loading. Can J Sport Sci Revue Canadienne Des Sciences Du Sport. 1988;13(4):254–6.

    CAS  PubMed  Google Scholar 

  132. Anderson EE, Rundles RW, Silberman HR, Metz EN. Allopurinol control of hyperuricosuria – a new concept in prevention of uric acid stones. J Urol. 1967;97(2):344–+.

    Google Scholar 

  133. Becker MA, Schumacher HR, Wortmann RL, et al. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N Engl J Med. 2005;353(23):2450–61.

    CAS  PubMed  Google Scholar 

  134. Han H, Segal AM, Seifter JL, Dwyer JT. Nutritional management of kidney stones (nephrolithiasis). Clin Nutr Res. 2015;4(3):137–52.

    PubMed  PubMed Central  Google Scholar 

  135. Yu K-H, See L-C, Huang Y-C, Yang C-H, Sun J-H. Dietary factors associated with hyperuricemia in adults. Semin Arthritis Rheum. 2008;37(4):243–50.

    CAS  PubMed  Google Scholar 

  136. Choi HK, Liu SM, Curhan G. Intake of purine-rich foods, protein, and dairy products and relationship to serum levels of uric acid – the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2005;52(1):283–9.

    PubMed  Google Scholar 

  137. Odvina CV. Comparative value of orange juice versus lemonade in reducing stone-forming risk. Clin J Am Soc Nephrol. 2006;1(6):1269–74.

    CAS  PubMed  Google Scholar 

  138. Choi HK, Curhan G. Coffee, tea, and caffeine consumption and serum uric acid level: the Third National Health and Nutrition Examination Survey. Arthritis Rheum. 2007;57(5):816–21.

    CAS  PubMed  Google Scholar 

  139. Heilberg IP. Treatment of patients with uric acid stones. Urolithiasis. 2016;44(1):57–63.

    CAS  PubMed  Google Scholar 

  140. Karaguelle O, Smorag U, Candir F, et al. Clinical study on the effect of mineral waters containing bicarbonate on the risk of urinary stone formation in patients with multiple episodes of CaOx-urolithiasis. World J Urol. 2007;25(3):315–23.

    Google Scholar 

  141. Rho YH, Zhu Y, Choi HK. The epidemiology of uric acid and fructose. Semin Nephrol. 2011;31(5):410–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  142. Taylor EN, Curhan GC. Fructose consumption and the risk of kidney stones. Kidney Int. 2008;73(2):207–12.

    CAS  PubMed  Google Scholar 

  143. Daly M. Sugars, insulin sensitivity, and the postprandial state. Am J Clin Nutr. 2003;78(4):865S–72S.

    CAS  PubMed  Google Scholar 

  144. Knoll T, Zollner A, Wendt-Nordahl G, Michel M, Alken P. Cystinuria in childhood and adolescence: recommendations for diagnosis, treatment, and follow-up. Pediatr Nephrol. 2005;20(1):19–24.

    PubMed  Google Scholar 

  145. Eggermann T, Zerres K, Nunes V, et al. Clinical utility gene card for: cystinuria. Eur J Hum Genet. 2012;20(2).

    Google Scholar 

  146. Fattah H, Hambaroush Y, Goldfarb DS. Cystine nephrolithiasis. Transl Androl Urol. 2014;3(3):228–33.

    PubMed  PubMed Central  Google Scholar 

  147. Lambert EH, Asplin JR, Herrell SD, Miller NL. Analysis of 24-hour urine parameters as it relates to age of onset of cystine stone formation. J Endourol. 2010;24(7):1179–82.

    PubMed  Google Scholar 

  148. Cranidis AI, Karayannis AA, Delakas DS, Livadas CE, Anezinis PE. Cystine stones: the efficacy of percutaneous and shock wave lithotripsy. Urol Intern. 1996;56(3):180–3.

    CAS  Google Scholar 

  149. Rhodes HL, Yarram-Smith L, Rice SJ, et al. Clinical and genetic analysis of patients with cystinuria in the United Kingdom. Clin J Am Soc Nephrol. 2015;10(7):1235–45.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Barbey F, Joly D, Rieu P, Mejean A, Daudon M, Jungers P. Medical treatment of cystinuria: critical reappraisal of long-term results. J Urol. 2000;163(5):1419–23.

    CAS  PubMed  Google Scholar 

  151. Mattoo A, Goldfarb DS. Cystinuria. Semin Nephrol. 2008;28(2):181–91.

    CAS  PubMed  Google Scholar 

  152. Agrawal N Z-NK. Cystine Stones. In: Han H MW, Nasser S, ed. Nutritional and Medical Management of Kidney Stones. Switzerland: Humana Press; 2019:141–7.

    Google Scholar 

  153. Torres VE, Chapman AB, Devuyst O, et al. Tolvaptan in patients with autosomal dominant polycystic kidney disease. N Engl Med. 2012;367(25):2407–18.

    CAS  Google Scholar 

  154. Pereira DJ, Schoolwerth AC, Pais VM. Cystinuria: current concepts and future directions. Clin Nephrol. 2015;83(3):138–46.

    CAS  PubMed  Google Scholar 

  155. Andreassen KH, Pedersen KV, Osther SS, Jung HU, Lildal SK, Osther PJ. How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis. 2016;44(1):65–76.

    CAS  PubMed  Google Scholar 

  156. Pak CY, Fuller C, Sakhaee K, Zerwekh JE, Adams BV. Management of cystine nephrolithiasis with alpha-mercaptopropionylglycine. J Urol. 1986;136(5):1003–8.

    CAS  PubMed  Google Scholar 

  157. Moe OW, Pearle MS, Sakhaee K. Pharmacotherapy of urolithiasis: evidence from clinical trials. Kidney Int. 2011;79(4):385–92.

    CAS  PubMed  Google Scholar 

  158. Rogers A, Kalakish S, Desai RA, Assimos DG. Management of cystinuria. Urol Clin N Am. 2007;34(3):347–+.

    Google Scholar 

  159. Rodman JS, Blackburn P, Williams JJ, Brown A, Pospischil MA, Peterson CM. The effect of dietary-protein on cystine excretion in patients with cystinuria. Clin Nephrol. 1984;22(6):273–8.

    CAS  PubMed  Google Scholar 

  160. Jaeger P, Portmann L, Saunders A, Rosenberg LE, Thier SO. Anticystinuric effects of glutamine and of dietary-sodium restriction. N Engl J Med. 1986;315(18):1120–3.

    CAS  PubMed  Google Scholar 

  161. Gnessin E, Mandeville JA, Handa SE, Lingeman JE. Changing composition of renal calculi in patients with musculoskeletal anomalies. J Endourol. 2011;25(9):1519–23.

    PubMed  Google Scholar 

  162. Healy KA, Ogan K. Pathophysiology and management of infectious staghorn calculi. Urol Clin N Am. 2007;34(3):363–+.

    Google Scholar 

  163. Resnick MI, Boyce WH. Bilateral staghorn calculi – patient-evaluation and management. J Urol. 1980;123(3):338–41.

    CAS  PubMed  Google Scholar 

  164. Viprakasit DP, Sawyer MD, Herrell SD, Miller NL. Changing composition of staghorn calculi. J Urol. 2011;186(6):2285–90.

    PubMed  Google Scholar 

  165. Chamberlin JD, Clayman RV. Medical treatment of a staghorn calculus: the ultimate noninvasive therapy. J Endourol Case Rep. 2015;1(1):21–3.

    PubMed  PubMed Central  Google Scholar 

  166. Sakhaee K. Nephrolithiasis as a systemic disorder. Curr Opin Nephrol Hypertens. 2008;17(3):304–9.

    PubMed  Google Scholar 

  167. Sakhaee K. Epidemiology and clinical pathophysiology of uric acid kidney stones. J Nephrol. 2014;27(3):241–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  168. Daudon M, Lacour B, Jungers P. High prevalence of uric acid calculi in diabetic stone formers. Nephrol Dial Transpl. 2005;20(2):468–9.

    Google Scholar 

  169. Pak CYC, Sakhaee K, Moe O, et al. Biochemical profile of stone-forming patients with diabetes mellitus. Urology. 2003;61(3):523–7.

    PubMed  Google Scholar 

  170. William J. Epidemiology of Kidney Stones in the United States. In: Han H MW, Nasser S, ed. Nutritional and Medical Management of Kidney Stones. Switzerland: Humana Press, Springer; 2019:3–17.

    Google Scholar 

  171. Madore F, Stampfer MJ, Willett WC, Speizer FE, Curhan GC. Nephrolithiasis and risk of hypertension in women. Am J Kidney Dis. 1998;32(5):802–7.

    CAS  PubMed  Google Scholar 

  172. Cutler JA, Brittain E. Calcium and blood-pressure – an epidemiologic perspective. Am J Hypertens. 1990;3(8):S137–46.

    Google Scholar 

  173. McCarron DA, Morris CD, Henry HJ, Stanton JL. Blood-pressure and nutrient intake in the United-States. Science. 1984;224(4656):1392–8.

    CAS  PubMed  Google Scholar 

  174. Strazzullo P, Mancini M. Hypertension, calcium-metabolism, and nephrolithiasis. Am J Med Sci. 1994;307:S102–6.

    PubMed  Google Scholar 

  175. Taylor EN, Mount DB, Forman JP, Curhan GC. Association of prevalent hypertension with 24-hour urinary excretion of calcium, citrate, and other factors. Am J Kidney Dis. 2006;47(5):780–9.

    CAS  PubMed  Google Scholar 

  176. Alper AB, Chen W, Yau L, Srinivasan SR, Berenson GS, Hamm LL. Childhood uric acid predicts adult blood pressure – the Bogalusa Heart Study. Hypertension. 2005;45(1):34–8.

    CAS  PubMed  Google Scholar 

  177. Reiner AP, Kahn A, Eisner BH, et al. Kidney stones and subclinical atherosclerosis in young adults: the CARDIA Study. J Urol. 2011;185(3):920–5.

    PubMed  Google Scholar 

  178. Hamano S, Nakatsu H, Suzuki N, Tomioka S, Tanaka M, Murakami S. Kidney stone disease and risk factors for coronary heart disease. Int J Urol. 2005;12(10):859–63.

    PubMed  Google Scholar 

  179. Rule AD, Roger VL, Melton LJ III, et al. Kidney stones associate with increased risk for myocardial infarction. J Am Soc Nephrol. 2010;21(10):1641–4.

    PubMed  PubMed Central  Google Scholar 

  180. Rule AD, Krambeck AE, Lieske JC. Chronic kidney disease in kidney stone formers. Clin J Am Soc Nephrol. 2011;6(8):2069–75.

    PubMed  PubMed Central  Google Scholar 

  181. El-Zoghby ZM, Lieske JC, Foley RN, et al. Urolithiasis and the risk of ESRD. Clin J Am Soc Nephrol. 2012;7(9):1409–15.

    PubMed  PubMed Central  Google Scholar 

  182. Rule AD, Bergstralh EJ, Melton LJ III, Li X, Weaver AL, Lieske JC. Kidney stones and the risk for chronic kidney disease. Clin J Am Soc Nephrol. 2009;4(4):804–11.

    PubMed  PubMed Central  Google Scholar 

  183. Gillen DL, Worcester EM, Coe FL. Decreased renal function among adults with a history of nephrolithiasis: a study of NHANES III. Kidney Int. 2005;67(2):685–90.

    PubMed  Google Scholar 

  184. Robijn S, Hoppe B, Vervaet BA, D’Haese PC, Verhulst A. Hyperoxaluria: a gut-kidney axis? Kidney Int. 2011;80(11):1146–58.

    CAS  PubMed  Google Scholar 

  185. Tappenden KA. Pathophysiology of short bowel syndrome considerations of resected and residual anatomy. JPEN J Parenter Enteral Nutr. 2014;38:14S–22S.

    CAS  PubMed  Google Scholar 

  186. Mittal RD, Kumar R, Bid HK, Mittal B. Effect of antibiotics on Oxalobacter formigenes colonization of human gastrointestinal tract. J Endourol. 2005;19(1):102–6.

    CAS  PubMed  Google Scholar 

  187. Nasr SH, D’Agati VD, Said SM, et al. Oxalate nephropathy complicating Roux-en-Y gastric bypass: an underrecognized cause of irreversible renal failure. Clin J Am Soc Nephrol. 2008;3(6):1676–83.

    PubMed  PubMed Central  Google Scholar 

  188. Lieske JC, Kumar R, Collozo-Clovell ML. Nephrolithiasis after bariatric surgery for obesity. Semin Nephrol. 2008;28(2):163–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Canales BK, Gonzalez RD. Kidney stone risk following Roux-en-Y gastric bypass surgery. Transl Androl Urol. 2014;3(3):242–9.

    PubMed  PubMed Central  Google Scholar 

  190. Abegg K, Gehring N, Wagner CA, et al. Roux-en-Y gastric bypass surgery reduces bone mineral density and induces metabolic acidosis in rats. Am J Physiol Regul Integr Comp Physiol. 2013;305(9):R999–R1009.

    CAS  PubMed  Google Scholar 

  191. Froeder L, Arasaki CH, Malheiros CA, Baxmann AC, Heilberg IP. Response to dietary oxalate after bariatric surgery. Clin J Am Soc Nephrol. 2012;7(12):2033–40.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haewook Han .

Editor information

Editors and Affiliations

Appendices

Acknowledgement

Dr. Han is grateful for the contributions and support of Drs. Mutter and Nasser to this chapter.

Case Studies

Case 1

The following 24-h urine values were observed in a 45-year-old man.

 

Volume

Ca

Oxalate

Citrate

Uric acid

pH

Creatinine

Na

Phos

NH4

Results

2.506

364 mg

77 mg

1278 mg

1.806 g

5.1

3040 mg

426 mEq

1.5 g

108 mM

Ref value

>2.5 L

<250

<40

200–1000

<0.8

5.8–6.2

 

<150

<1.2

<60

Case Questions and Answers

  1. 1.

    What type of stone risk does this patient have?

    1. (a)

      Calcium oxalate

    2. (b)

      Uric acid

    3. (c)

      Struvite

    4. (d)

      Cysteine

Answer: The answer is A and B – CaOx and uric acid stone. Calcium and oxalate levels are high. Also, uric acid level is very high with low pH.

  1. 2.

    What would be the preferred treatment strategy for the patient in case 1?

    1. (a)

      Allopurinol

    2. (b)

      Na citrate

    3. (c)

      K citrate and increase urine volume to 3 L

    4. (d)

      Na and protein-restricted and low oxalate diet

    5. (e)

      Thiazide diuretics

Answer: The answer is D – sodium and protein-restricted and low oxalate diet.

  • The patient has a large excretion rate of sodium, which will increase urinary calcium excretion.

  • He also has high urinary oxalate, which increases CaOx stone risk with low urine pH.

  • High protein intake is suggested by the elevated ammonium, uric acid, and phosphate in the urine, as well as by the high creatinine excretion.

  • One would need to confirm that this is not an over-collection.

Case 2

A 45-year-old woman is referred for recurrent oxalate stone formation. The following is her 24-h urine result.

 

Vol

SSCaOx

Ca

Ox

Cit

SSCa

UpH

SSUA

UA

Results

1.52

10.04

40

143

23

0.09

5.5

0.53

0.202

Ref value

>2.5

6–10

<200

20–40

>550

0.5–2

5.8–6.2

0–1

<0.75

Case Questions and Answers

  1. 1.

    What is the likely cause of her disorder?

    1. (a)

      Renal tubular acidosis resulting in hypocitraturia

    2. (b)

      Dietary excess of nuts, chocolate, and berries

    3. (c)

      Hyperparathyroidism

    4. (d)

      Crohn’s disease

    5. (e)

      Oxalosis

Answer: The answer is D – Crohn’s disease causing low urinary calcium excretion.

  • There is low citrate, high oxalate, and low volume in this intestinal malabsorptive condition.

  • RTA does not explain increased urine oxalate.

  • Nuts, etc., do not explain the degree of hyperoxaluria.

  • Oxalosis does not explain low urine citrate and low urine calcium.

  1. 2.

    The preferred treatment for the patient in case 2 would include all except the following:

    1. (a)

      Na citrate

    2. (b)

      Ca supplementation with meals

    3. (c)

      Cholestyramine

    4. (d)

      K citrate

    5. (e)

      Dietary oxalate restriction

Answer: The answer is D. K citrate is not ideal.

  • In this case of volume depletion associated with intestinal disorders, alkali therapy with sodium salts is preferable as it may increase the extracellular volume and urine output.

  • Restrict dietary oxalate.

  • Use cholestyramine to bind intestinal oxalate.

  • Calcium with meals binds intestinal oxalate.

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Han, H. (2020). Nephrolithiasis. In: Burrowes, J., Kovesdy, C., Byham-Gray, L. (eds) Nutrition in Kidney Disease. Nutrition and Health. Humana, Cham. https://doi.org/10.1007/978-3-030-44858-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44858-5_25

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-44857-8

  • Online ISBN: 978-3-030-44858-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics