Skip to main content

Long Non-coding RNAs and Cancer Cells’ Drug Resistance: An Unexpected Connection

  • Chapter
  • First Online:
The Chemical Biology of Long Noncoding RNAs

Part of the book series: RNA Technologies ((RNATECHN,volume 11))

Abstract

Emerging evidence indicates that long non-coding RNAs (lncRNAs) regulate key cellular phenotypes, including proliferation, survival, and epithelial-to-mesenchymal transition (EMT). Specific lncRNAs have been described as oncogenic and oncosuppressive in a variety of solid and haematological malignancies. The expression of some of these transcripts correlates with disease burden and adverse clinical outcomes. More recently, some lncRNAs have been mechanistically implicated in the resistance to specific anti-cancer drugs. In this chapter, we will briefly summarize the main mechanisms by which lncRNAs affect cancer cells’ transformation. We will then review specific examples of interactions between lncRNAs and clinically employed anti-cancer treatments (chemotherapy, biological therapies, radiotherapy). These examples will demonstrate that lncRNAs regulate most aspects of treatment resistance, including DNA repair, apoptotic programmes, and drug efflux. Finally, we will discuss promising strategies to translate these discoveries into the clinical setting, with the final aim of developing personalized anti-cancer treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-Dimassi S, Abou-Antoun T, El-Sibai M (2014) Cancer cell resistance mechanisms: a mini review. Clin Transl Oncol 16:511–516

    CAS  PubMed  Google Scholar 

  • Al-Rugeebah A, Alanazi M, Parine NR (2019) MEG3: an oncogenic long non-coding RNA in different cancers. Pathol Oncol Res 25:859–874

    CAS  PubMed  Google Scholar 

  • Ambrosini G, Adida C, Altieri DC (1997) A novel anti-apptosis gene, survivin, expressed in cancer and lymphoma. Nat Med 3:917–921

    CAS  PubMed  Google Scholar 

  • Arora A, Scholar EM (2005) Role of tyrosine kinase inhibitors in cancer therapy. J Pharmacol Exp Ther 315:971–979

    CAS  PubMed  Google Scholar 

  • Asao T, Takahashi F, Takahashi K (2019) Resistance to molecularly targeted therapy in non-small-cell lung cancer. Respir Investig 57:20–26

    PubMed  Google Scholar 

  • Baker S, Dahele M, Lagerwaard FJ et al (2016) A critical review of recent developments in radiotherapy for non-small cell lung cancer. Radiat Oncol 11:115

    PubMed  PubMed Central  Google Scholar 

  • Bao S, Wu Q, McLendon RE et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    CAS  PubMed  Google Scholar 

  • Bao B, Azmi A, Li Y et al (2013) Targeting CSCs in tumor microenvironment: the potential role of ROS-associated miRNAs in tumor aggressiveness. Curr Stem Cell Res Ther 9:22–35

    Google Scholar 

  • Bartel DP, Ulitsky I (2012) lincRNAs: genomics, evolution, and mechanisms. Changes 29:997–1003

    Google Scholar 

  • Basak P, Chatterjee S, Bhat V et al (2018) Long non-coding RNA H19 acts as an estrogen receptor modulator that is required for endocrine therapy resistance in ER + breast cancer cells. Cell Physiol Biochem 51:1518–1532

    CAS  PubMed  Google Scholar 

  • Bekele RT, Venkatraman G, Liu RZ et al (2016) Oxidative stress contributes to the tamoxifen-induced killing of breast cancer cells: implications for tamoxifen therapy and resistance. Sci Rep 6:1–17

    Google Scholar 

  • Bhosle J, Hall G (2009) Principles of cancer treatment by chemotherapy. Surgery 27:173–177

    Google Scholar 

  • Block M, Gründker C, Fister S et al (2012) Inhibition of the AKT/mTOR and erbB pathways by gefitinib, perifosine and analogs of gonadotropin-releasing hormone I and II to overcome tamoxifen resistance in breast cancer cells. Int J Oncol 41:1845–1854

    CAS  PubMed  Google Scholar 

  • Carnero A, Lleonart M (2016) The hypoxic microenvironment: a determinant of cancer stem cell evolution. BioEssays 38:65–74

    Google Scholar 

  • Caudell JJ, Torres-Roca JF, Gillies RJ et al (2017) The future of personalised radiotherapy for head and neck cancer. Lancet Oncol 18:e266–e273

    PubMed  Google Scholar 

  • Ceppi P, Volante M, Novello S et al (2006) ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 17:1818–1825

    CAS  PubMed  Google Scholar 

  • Chakravarty D, Sboner A, Nair SS et al (2014) The oestrogen receptor alpha-regulated lncRNA NEAT1 is a critical modulator of prostate cancer. Nat Commun 5:1–16

    Google Scholar 

  • Chen M, Xia Z, Chen C et al (2018) LncRNA MALAT1 promotes epithelial-to-mesenchymal transition of esophageal cancer through Ezh2-Notch1 signaling pathway. Anti-Cancer Drugs 29:767–773

    CAS  PubMed  Google Scholar 

  • Cheng N, Cai W, Ren S et al (2015) Long non-coding RNA UCA1 induces non-T790M acquired resistance to EGFR-TKIs by activating the AKT/mTOR pathway in EGFR-mutant non-small cell lung cancer. Oncotarget 6:23582–23593

    PubMed  PubMed Central  Google Scholar 

  • Chery J (2016) RNA therapeutics: RNAi and antisense mechanisms and clinical applications. Postdoc J 4:35–50

    PubMed  PubMed Central  Google Scholar 

  • Chi KN, Higano CS, Blumenstein B et al (2017) Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. Lancet Oncol 18:473–485

    CAS  PubMed  Google Scholar 

  • Citrin DE (2017) Recent developments in radiotherapy. N Engl J Med 377:1065–1075

    CAS  PubMed  Google Scholar 

  • Coppola S, Carnevale I, Danen EHJ et al (2017) A mechanopharmacology approach to overcome chemoresistance in pancreatic cancer. Drug Resist Updat 31:43–51

    PubMed  Google Scholar 

  • Crea F, Danesi R, Farrar WL (2009) Cancer stem cell epigenetics and chemoresistance. Epigenomics 1:63–79

    CAS  PubMed  Google Scholar 

  • Crea F, Hurt EM, Mathews LA et al (2011) Pharmacologic disruption of polycomb repressive complex 2 inhibits tumorigenicity and tumor progression in prostate cancer. Mol Cancer 10:1–10

    Google Scholar 

  • Crea F, Watahiki A, Quagliata L et al (2014) Identification of a long non-coding RNA as a novel biomarker and potential therapeutic target for metastatic prostate cancer. Oncotarget 5:764–774

    PubMed  PubMed Central  Google Scholar 

  • Crea F, Quagliata L, Michael A et al (2016a) Integrated analysis of the prostate cancer small-nucleolar transcriptome reveals SNORA55 as a driver of prostate cancer progression. Mol Oncol 10:693–703

    CAS  PubMed  Google Scholar 

  • Crea F, Venalainen E, Ci X et al (2016b) The role of epigenetics and long noncoding RNA MIAT in neuroendocrine prostate cancer. Epigenomics 8:721–731

    CAS  PubMed  Google Scholar 

  • Damiani D, Tiribelli M, Calistri E et al (2006) The prognostic value of P-glycoprotein (ABCB) and breast cancer resistance protein (ABCG2) in adults with de novo acute myeloid leukemia with normal karyotype. Haematologica 91:825–828

    CAS  PubMed  Google Scholar 

  • Delaney G, Jacob S, Featherstone C et al (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137

    PubMed  Google Scholar 

  • Diamantopoulos MA, Tsiakanikas P, Scorilas A (2018) Non-coding RNAs: the riddle of the transcriptome and their perspectives in cancer. Ann Transl Med 6:241–241

    PubMed  PubMed Central  Google Scholar 

  • Dong S, Qu X, Li W et al (2015) The long non-coding RNA, GAS5, enhances gefitinib-induced cell death in innate EGFR tyrosine kinase inhibitor-resistant lung adenocarcinoma cells with wide-type EGFR via downregulation of the IGF-1R expression. J Hematol Oncol 8:1–13

    Google Scholar 

  • Dong X, Fang Z, Yu M et al (2018) Knockdown of long noncoding RNA HOXA-AS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 Axis. Cell Physiol Biochem 51:886–896

    CAS  PubMed  Google Scholar 

  • Du B, Shim JS (2016) Targeting epithelial-mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules 21:1–15

    Google Scholar 

  • Duffy AG, Ulahannan SV, Rahma OE et al (2016) Modulation of tumor eIF4E by antisense inhibition: a phase I/II translational clinical trial of ISIS 183750—an antisense oligonucleotide against eIF4E-in combination with irinotecan in solid tumors and irinotecan-refractory colorectal cancer. Int J Cancer 139:1648–1657

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eastlack SC, Dong S, Mo YY et al (2018) Expression of long noncoding RNA MALAT1 correlates with increased levels of Nischarin and inhibits oncogenic cell functions in breast cancer. PLoS One 13:1–13

    Google Scholar 

  • Eun K, Ham SW, Kim H (2017) Cancer stem cell heterogeneity: origin and new perspectives on CSC targeting. BMB Rep 50:117–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fayda M, Isin M, Tambas M et al (2016) Do circulating long non-coding RNAs (lncRNAs) (LincRNA-p21, GAS 5, HOTAIR) predict the treatment response in patients with head and neck cancer treated with chemoradiotherapy? Tumor Biol 37:3969–3978

    CAS  Google Scholar 

  • Feng X, Liu H, Zhang Z et al (2017) Annexin A2 contributes to cisplatin resistance by activation of JNK-p53 pathway in non-small cell lung cancer cells. J Exp Clin Cancer Res 36:1–14

    CAS  Google Scholar 

  • Fletcher JI, Williams RT, Henderson MJ et al (2016) ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat 26:1–9

    PubMed  Google Scholar 

  • Galadari S, Rahman A, Pallichankandy S et al (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Radic Biol Med 104:144–164

    CAS  PubMed  Google Scholar 

  • Gao S, Wang P, Hua Y et al (2016) ROR functions as a ceRNA to regulate Nanog expression by sponging miR-145 and predicts poor prognosis in pancreatic cancer. Oncotarget 7:1608–1618

    PubMed  Google Scholar 

  • Gene Therapy of Cancer (Third Edition)

    Google Scholar 

  • Ghisolfi L, Keates AC, Hu X et al (2012) Ionizing radiation induces stemness in cancer cells. PLoS One 7:1–11

    Google Scholar 

  • Godinho MFE, Sieuwerts AM, Look MP et al (2010) Relevance of BCAR4 in tamoxifen resistance and tumour aggressiveness of human breast cancer. Br J Cancer 103:1284–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Godinho MFE, Wulfkuhle JD, Look MP et al (2012) BCAR4 induces antioestrogen resistance but sensitises breast cancer to lapatinib. Br J Cancer 107:947–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gordon MA, Babbs B, Cochrane DR et al (2019) The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol Carcinog 58:196–205

    CAS  PubMed  Google Scholar 

  • Gottesman MMAS (2001) Overview: ABC transporters and human disease. J Bioenerg Biomembr 33:453–458

    CAS  PubMed  Google Scholar 

  • Grdina DJ, Murley JS, Miller RC et al (2013) Survivin-associated adaptive response in radiation therapy. Cancer Res 73:4418–4428

    CAS  PubMed  PubMed Central  Google Scholar 

  • Haber M, Smith J, Bordow SB et al (2006) Association of high-level MRP1 expression with poor clinical outcome in a large prospective study of primary neuroblastoma. J Clin Oncol 24:1546–1553

    CAS  PubMed  Google Scholar 

  • He X, Tan X, Wang X et al (2014) C-Myc-activated long noncoding RNA CCAT1 promotes colon cancer cell proliferation and invasion. Tumour Biol 35:12181–12188

    CAS  PubMed  Google Scholar 

  • Housman G, Byler S, Heerboth S et al (2014) Drug resistance in cancer: an overview. Cancers (Basel) 6:1769–1792

    Google Scholar 

  • Hu X, Ding D, Zhang J et al (2019) Knockdown of lncRNA HOTAIR sensitizes breast cancer cells to ionizing radiation through activating miR-218. Biosci Rep 29:1–9

    Google Scholar 

  • Huang H, Jiang R, Lian Z et al (2019) miR-222/GAS5 is involved in DNA damage and cytotoxic effects induced by temozolomide in T98G cell line. J Appl Toxicol 39:726–734

    CAS  PubMed  Google Scholar 

  • Iaccarino I (2017) LncRNAs and MYC: an intricate relationship. Int J Mol Sci 18:1–14

    Google Scholar 

  • Iyer MK, Niknafs YS, Malik R et al (2015) The landscape of long noncoding RNAs in the human transcriptome. Nat Genet 47:199–208

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jaiyesimi IA, Buzdar AU, Decker DA et al (1995) Use of tamoxifen for breast cancer: twenty-eight years later. J Clin Oncol 13:513–529

    CAS  PubMed  Google Scholar 

  • Jin W, Chen L, Cai X et al (2017) Long non-coding RNA TUC338 is functionally involved in sorafenib-sensitized hepatocarcinoma cells by targeting RASAL1. Oncol Rep 37:273–280

    PubMed  Google Scholar 

  • Jokic M, Vlasic I, Rinneburger M et al (2016) Ercc1 deficiency promotes tumorigenesis and increases cisplatin sensitivity in a Tp53 context-specific manner. Mol Cancer Res 14:1110–1123

    CAS  PubMed  Google Scholar 

  • Kayl AE, Meyers CA (2006) Side-effects of chemotherapy and quality of life in ovarian and breast cancer patients. Curr Opin Obstet Gynecol 18:24–28

    PubMed  Google Scholar 

  • Kim J, Piao H, Kim B et al (2018) Long non-coding RNA MALAT1 suppresses breast cancer metastasis. Nat Genet 50:1705–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koirala P, Huang J, Ho TT et al (2017) LncRNA AK023948 is a positive regulator of AKT. Nat Commun 8:1–10

    Google Scholar 

  • Kong Y, Lu Z, Liu P et al (2019) Long noncoding RNA: genomics and relevance to physiology. Compr Physiol 9:933–946

    PubMed  Google Scholar 

  • Kotake Y, Goto T, Naemura M et al (2017) Long noncoding RNA PANDA positively regulates proliferation of osteosarcoma cells. Anticancer Res 37:81–86

    PubMed  Google Scholar 

  • Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62:50–60

    CAS  PubMed  Google Scholar 

  • Kumar MM, Goyal R (2017) LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem 17:1750–1757

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lavalou P, Eckert H, Damy L et al (2019) Strategies for genetic inactivation of long noncoding RNAs in zebrafish. RNA 25:897–904

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SY, Jeong EK, Ju MK et al (2017) Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation. Mol Cancer 16:1–25

    Google Scholar 

  • Li Z, Li X, Wu S et al (2014) Long non-coding RNA UCA1 promotes glycolysis by upregulating hexokinase 2 through the mTOR-STAT3/microRNA143 pathway. Cancer Sci 105:951–955

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li W, Zhai L, Wang H et al (2016a) Downregulation of LncRNA GAS5 causes trastuzumab resistance in breast cancer. Oncotarget 7:27778–27786

    PubMed  PubMed Central  Google Scholar 

  • Li X, Wu Y, Liu A, Tang X (2016b) Long non-coding RNA UCA1 enhances tamoxifen resistance in breast cancer cells through a miR-18a-HIF1α feedback regulatory loop. Tumor Biol 37:14733–14743

    CAS  Google Scholar 

  • Liang WC, Fu WM, Wong CW et al (2015) The LncRNA H19 promotes epithelial to mesenchymal transition by functioning as MiRNA sponges in colorectal cancer. Oncotarget 6:22513–22525

    PubMed  PubMed Central  Google Scholar 

  • Liang XH, Sun H, Nichols JG et al (2017) RNase H1-dependent antisense oligonucleotides are robustly active in directing RNA cleavage in both the cytoplasm and the nucleus. Mol Ther 25:2075–2092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Wan L, Lu K et al (2015) The long noncoding RNA MEG3 contributes to cisplatin resistance of human lung adenocarcinoma. PLoS One 10:1–16

    Google Scholar 

  • Liu J, Sun X, Zhu H et al (2016a) Long noncoding RNA POU6F2-AS2 is associated with esophageal squamous cell carcinoma. J Biochem 160:195–204

    CAS  PubMed  Google Scholar 

  • Liu Y, Xu N, Liu B et al (2016b) Long noncoding RNA RP11-838N2.4 enhances the cytotoxic effects of temozolomide by inhibiting the functions of miR-10a in glioblastoma cell lines. Oncotarget 7:43835–43851

    PubMed  PubMed Central  Google Scholar 

  • Liu R, Zeng Y, Zhou CF et al (2017a) Long noncoding RNA expression signature to predict platinum-based chemotherapeutic sensitivity of ovarian cancer patients. Sci Rep 7:1–10

    Google Scholar 

  • Liu X, Li F, Huang Q et al (2017b) Self-inflicted DNA double-strand breaks sustain tumorigenicity and stemness of cancer cells. Cell Res 27:764–783

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Ayllon BD, Moncho-Amor V, Abarrategi A et al (2014) Cancer stem cells and cisplatin-resistant cells isolated from non-small-lung cancer cell lines constitute related cell populations. Cancer Med 3:1099–1111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luengo A, Gui DY, Vander Heiden MG (2017) Targeting metabolism for cancer therapy. Cell Chem Biol 24:1161–1180

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyakhovich A, Lleonart ME (2016) Bypassing mechanisms of mitochondria-mediated Cancer stem cells resistance to chemo- and radiotherapy. Oxidative Med Cell Longev 2016:1–10

    Google Scholar 

  • Ma P, Zhang M, Nie F et al (2017) Transcriptome analysis of EGFR tyrosine kinase inhibitors resistance associated long noncoding RNA in non-small cell lung cancer. Biomed Pharmacother 87:20–26

    CAS  PubMed  Google Scholar 

  • Ma Y, Bu D, Long J et al (2019) LncRNA DSCAM-AS1 acts as a sponge of miR-137 to enhance Tamoxifen resistance in breast cancer. J Cell Physiol 234:2880–2894

    CAS  PubMed  Google Scholar 

  • Mahmoodi Chalbatani G, Dana H, Gharagouzloo E et al (2019) Small interfering RNAs (siRNAs) in cancer therapy: a nano-based approach. Int J Nanomedicine 14:3111–3128

    PubMed  PubMed Central  Google Scholar 

  • Mao Z, Bozzella M, Seluanov A et al (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells. Cell Cycle 7:2902–2906

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin LP, Hamilton TC, Shilder RJ (2008) Platinum resistance: the role of DNA repair pathways. Clin Cancer Res 14:1291–1295

    CAS  PubMed  Google Scholar 

  • Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat Rev Genet 10:155–159

    CAS  PubMed  Google Scholar 

  • Merry CR, McMahon S, Forrest ME et al (2016) Transcriptome-wide identification of mRNAs and lincRNAs associated with trastuzumab-resistance in HER2-positive breast cancer. Oncotarget 7:53230–53244

    PubMed  PubMed Central  Google Scholar 

  • Molina J, Adjei A (2006) The Ras/Raf/MAPK pathway. J Thorac Oncol 1:7–9

    PubMed  Google Scholar 

  • Mustacchi G, De Laurentiis M (2015) The role of taxanes in triple-negative breast cancer: literature review. Drug Des Devel Ther 9:4303–4318

    CAS  PubMed  PubMed Central  Google Scholar 

  • National Cancer Institute. In: Target Cancer Ther. https://www.cancer.gov/about-cancer/treatment/types/targeted-therapies/targeted-therapies-fact-sheet

  • Nikolaou M, Pavlopoulou A, Georgakilas AG et al (2018) The challenge of drug resistance in cancer treatment: a current overview. Clin Exp Metastasis 35:309–318

    CAS  PubMed  Google Scholar 

  • Ning L, Li Z, Wei D et al (2017) LncRNA, NEAT1 is a prognosis biomarker and regulates cancer progression via epithelial-mesenchymal transition in clear cell renal cell carcinoma. Cancer Biomark 19:75–83

    CAS  PubMed  Google Scholar 

  • Panda S, Setia M, Kaur N et al (2018) Noncoding RNA Ginir functions as an oncogene by associating with centrosomal proteins. PLoS Biol 16:1–50

    Google Scholar 

  • Pao W, Miller VA, Politi KA et al (2005) Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med 2:0225–0235

    CAS  Google Scholar 

  • Parolia A, Venalainen E, Xue H et al (2019) The long noncoding RNA HORAS5 mediates castration-resistant prostate cancer survival by activating the androgen receptor transcriptional program. Mol Oncol 13:1121–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peng C, Hu W, Weng X et al (2017) Over expression of long non-coding RNA PANDA promotes hepatocellular carcinoma by inhibiting senescence associated inflammatory factor IL8. Sci Rep 7:1–11

    Google Scholar 

  • Pérez-Herrero E, Fernández-Medarde A (2015) Advanced targeted therapies in cancer: drug nanocarriers, the future of chemotherapy. Eur J Pharm Biopharm 93:52–79

    PubMed  Google Scholar 

  • Ponjavic J, Ponting CP, Lunter G (2007) Functionality or transcriptional noise? Evidence for selection within long noncoding RNAs. Genome Res 17:556–565

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pratt AJ, MacRae IJ (2009) The RNA-induced silencing complex: a versatile gene-silencing machine. J Biol Chem 284:17897–17901

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pucci P, Rescigno P, Sumanasuriya S et al (2018) Hypoxia and noncoding RNAs in Taxane resistance. Trends Pharmacol Sci 39:695–709

    CAS  PubMed  Google Scholar 

  • Pucci P, Venalainen E, Alborelli I et al (2019) 1986PD HORAS5 promotes cabazitaxel resistance in castration resistant prostate cancer via a BCL2A1-dependent survival mechanism. Ann Oncol 30:v798

    Google Scholar 

  • Puvvula PK, Desetty RD, Pineau P et al (2014) Long noncoding RNA PANDA and scaffold-attachment-factor SAFA control senescence entry and exit. Nat Commun 5:1–16

    Google Scholar 

  • Qin S, Zhang B, Xiao G et al (2016) Fibronectin protects lung cancer cells against docetaxel-induced apoptosis by promoting Src and caspase-8 phosphorylation. Tumor Biol 37:13509–13520

    CAS  Google Scholar 

  • Qu Z, Adelson DL (2012) Evolutionary conservation and functional roles of ncRNA. Front Genet 3:1–11

    Google Scholar 

  • Sanchez Calle A, Kawamura Y, Yamamoto Y et al (2018) Emerging roles of long non-coding RNA in cancer. Cancer Sci 109:2093–2100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sarkadi B, Homolya L, Szakács G, Váradi A (2006) Human multidrug resistance ABCB and ABCG transporters: participation in a chemoimmunity defense system. Physiol Rev 86:1179–1236

    CAS  PubMed  Google Scholar 

  • Schaich M, Soucek S, Thiede C et al (2005) MDR1 and MRP1 gene expression are independent predictors for treatment outcome in adult acute myeloid leukaemia. Br J Haematol 128:324–332

    CAS  PubMed  Google Scholar 

  • Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29:452–463

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shachar S, Jolly T, Jones E et al (2018) Management of triple-negative breast cancer in older patients: how is it different? Oncology 32:58–63

    PubMed  Google Scholar 

  • Shah MY, Martinez-Garcia E, Phillip JM et al (2016) MMSET/WHSC1 enhances DNA damage repair leading to an increase in resistance to chemotherapeutic agents. Oncogene 35:5905–5915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sherlach KS, Roepe PD (2014) Drug resistance associated membrane proteins. Front Physiol 5:1–4

    Google Scholar 

  • Si X, Zang R, Zhang E et al (2016) LncRNA H19 confers chemoresistance in ERα-positive breast cancer through epigenetic silencing of the pro-apoptotic gene BIK. Oncotarget 7:81452–81462

    PubMed  PubMed Central  Google Scholar 

  • Somaiah N, Block MS, Kim JW et al (2019) First-in-class, first-in-human study evaluating LV305, a dendritic-cell tropic lentiviral vector, in sarcoma and other solid tumors expressing NY-ESO-1. Clin Cancer Res:1–11

    Google Scholar 

  • Srivastava M, Raghavan SC (2015) DNA double-strand break repair inhibitors as cancer therapeutics. Chem Biol 22:17–29

    CAS  PubMed  Google Scholar 

  • Su Y, Lu J, Chen X et al (2019) Long non-coding RNA HOTTIP affects renal cell carcinoma progression by regulating autophagy via the PI3K/Akt/Atg13 signaling pathway. J Cancer Res Clin Oncol 145:573–588

    CAS  PubMed  Google Scholar 

  • Sun L, Su Y, Liu X et al (2018) Serum and exosome long non coding RNAs as potential biomarkers for hepatocellular carcinoma. J Cancer 9:2631–2639

    PubMed  PubMed Central  Google Scholar 

  • Sun F, Liang W, Qian J (2019) The identification of CRNDE, H19, UCA1 and HOTAIR as the key lncRNAs involved in oxaliplatin or irinotecan resistance in the chemotherapy of colorectal cancer based on integrative bioinformatics analysis. Mol Med Rep 20:3583–3596

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yan IK, Haga H et al (2014a) Modulation of hypoxia-signaling pathways by extracellular linc-RoR. J Cell Sci 127:1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi K, Yan IK, Kogure T et al (2014b) Extracellular vesicle-mediated transfer of long non-coding RNA ROR modulates chemosensitivity in human hepatocellular cancer. FEBS Open Bio 4:458–467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takezawa K, Pirazzoli V, Arcila ME et al (2012) HER2 amplification: a potential mechanism of acquired resistance to egfr inhibition in EGFR -mutant lung cancers that lack the second-site EGFR T790M mutation. Cancer Discov 2:922–933

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang Q, Hann SS (2018) HOTAIR: an oncogenic long non-coding RNA in human cancer. Cell Physiol Biochem 47:893–913

    CAS  PubMed  Google Scholar 

  • Thomas D, Majeti R (2017) Biology and relevance of human acute myeloid leukemia stem cells. Blood 129:1577–1585

    CAS  PubMed  PubMed Central  Google Scholar 

  • Toraih EA, Ellawindy A, Fala SY et al (2018) Oncogenic long noncoding RNA MALAT1 and HCV-related hepatocellular carcinoma. Biomed Pharmacother 102:653–669

    CAS  PubMed  Google Scholar 

  • Trock BJ, Leonessa F, Clarke R (1997) Multidrug resistance in breast cancer: a meta-analysis of MDR1/gp170 expression and its possible functional significance. J Natl Cancer Inst 89:917–931

    CAS  PubMed  Google Scholar 

  • Vivanco I, Sawyers CL (2002) The phosphatidylinositol 3-kinase-AKT pathway in humancancer. Nat Rev Cancer 2:489–501

    CAS  PubMed  Google Scholar 

  • Wallace SS, Murphy DL, Sweasy JB (2012) Base excision repair and cancer Susan. Cancer Lett 327:73–89

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang D, Lippard SJ (2005) Cellular processing of platinum anticancer drugs. Nat Rev Drug Discov 4:307–320

    CAS  PubMed  Google Scholar 

  • Wang W, Tse-Ding Y (2019) Recent advances in use of topoisomerase inhibitors in combination cancer therapy. Curr Top Med Chem 19:730–740

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhang M, Xu H et al (2017) Discovery and validation of the tumor-suppressive function of long noncoding RNA PANDA in human diffuse large B-cell lymphoma through the inactivation of MAPK/ERK signaling pathway. Oncotarget 8:72182–72196

    PubMed  PubMed Central  Google Scholar 

  • Wang N, Yu Y, Xu B et al (2019) Pivotal prognostic and diagnostic role of the long non-coding RNA colon cancer-associated transcript 1 expression in human cancer (Review). Mol Med Rep 19:771–782

    CAS  PubMed  Google Scholar 

  • Wei J, Gan Y, Peng D et al (2018) Long non-coding RNA H19 promotes TDRG1 expression and cisplatin resistance by sequestering miRNA-106b-5p in seminoma. Cancer Med 7:6247–6257

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Luo J (2016) Long non-coding RNA (lncRNA) urothelial carcinoma-associated 1 (UCA1) enhances tamoxifen resistance in breast cancer cells via inhibiting mTOR signaling pathway. Med Sci Monit 22:3860–3867

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wu Y, Wang H (2018) LncRNA NEAT1 promotes dexamethasone resistance in multiple myeloma by targeting miR-193a/MCL1 pathway. J Biochem Mol Toxicol 32:1–6

    Google Scholar 

  • Wu Y, Yu DD, Hu Y et al (2016) Genome-wide profiling of long non-coding RNA expression patterns in the EGFR-TKI resistance of lung adenocarcinoma by microarray. Oncol Rep 35:3371–3386

    CAS  PubMed  Google Scholar 

  • Wu KF, Liang WC, Feng L et al (2017) H19 mediates methotrexate resistance in colorectal cancer through activating Wnt/β-catenin pathway. Exp Cell Res 350:312–317

    CAS  PubMed  Google Scholar 

  • Wu C, Yang L, Qi X et al (2018) Inhibition of long non-coding RNA HOTAIR enhances radiosensitivity via regulating autophagy in pancreatic cancer. Cancer Manag Res 10:5261–5271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong T, Li J, Chen F et al (2019) PCAT-1: a novel oncogenic long non-coding RNA in human cancers. Int J Biol Sci 15:847–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu CG, Yang MF, Ren YQ et al (2016) Exosomes mediated transfer of lncRNA UCA1 results in increased tamoxifen resistance in breast cancer cells. Eur Rev Med Pharmacol Sci 20:4362–4368

    PubMed  Google Scholar 

  • Yang HZ, Ma Y, Zhou Y et al (2015) Autophagy contributes to the enrichment and survival of colorectal cancer stem cells under oxaliplatin treatment. Cancer Lett 361:128–136

    CAS  PubMed  Google Scholar 

  • Yang B, Gao G, Wang Z et al (2018a) Long non-coding RNA HOTTIP promotes prostate cancer cells proliferation and migration by sponging miR-216a-5p. Biosci Rep 38:1–9

    Google Scholar 

  • Yang W, Redpath RE, Zhang C et al (2018b) Long non-coding RNA h19 promotes the migration and invasion of colon cancer cells via MAPK signaling pathway. Oncol Lett 16:3365–3372

    PubMed  PubMed Central  Google Scholar 

  • Yang X, Zhang W, Cheng S-Q et al (2018c) High expression of lncRNA GACAT3 inhibits invasion and metastasis of non-small cell lung cancer to enhance the effect of radiotherapy. Eur Rev Med Pharmacol Sci 22:1315–1322

    CAS  PubMed  Google Scholar 

  • Yang YN, Zhang R, Du JW et al (2018d) Predictive role of UCA1-containing exosomes in cetuximab-resistant colorectal cancer 11 medical and health sciences 1112 oncology and carcinogenesis. Cancer Cell Int 18:1–11

    CAS  Google Scholar 

  • Yang J, Hao T, Sun J et al (2019a) Long noncoding RNA GAS5 modulates α-Solanine-induced radiosensitivity by negatively regulating miR-18a in human prostate cancer cells. Biomed Pharmacother 112:1–8

    CAS  Google Scholar 

  • Yang Y, Wang F, Huang H et al (2019b) LncRNA SLCO4A1-AS1 promotes growth and invasion of bladder cancer through sponging miR-335-5p to upregulate OCT4. Onco Targets Ther 12:1351–1358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ying L, Chen Q, Wang Y et al (2012) Upregulated MALAT-1 contributes to bladder cancer cell migration by inducing epithelial-to-mesenchymal transition. Mol BioSyst 8:2289–2294

    CAS  PubMed  Google Scholar 

  • Yu M, Ting DT, Stott SL et al (2012) RNA sequencing of pancreatic circulating tumour cells implicates WNT signaling in metastasis. Nature 487:510–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu L, Gu C, Zhong D et al (2014) Induction of autophagy counteracts the anticancer effect of cisplatin in human esophageal cancer cells with acquired drug resistance. Cancer Lett 355:34–45

    CAS  PubMed  Google Scholar 

  • Yu J, Han Z, Sun Z et al (2018) LncRNA SLCO4A1-AS1 facilitates growth and metastasis of colorectal cancer through β-catenin-dependent Wnt pathway. J Exp Clin Cancer Res 37:1–12

    Google Scholar 

  • Yuan SX, Yang F, Yang Y et al (2012) Long noncoding RNA associated with microvascular invasion in hepatocellular carcinoma promotes angiogenesis and serves as a predictor for hepatocellular carcinoma patients’ poor recurrence-free survival after hepatectomy. Hepatology 56:2231–2241

    CAS  PubMed  Google Scholar 

  • Yue B, Cai D, Liu C et al (2016) Linc00152 functions as a competing endogenous RNA to confer oxaliplatin resistance and holds prognostic values in colon cancer. Mol Ther 24:2064–2077

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai W, Zhu R, Ma J et al (2019) A positive feed-forward loop between LncRNA-URRCC and EGFL7/P-AKT/FOXO3 signaling promotes proliferation and metastasis of clear cell renal cell carcinoma. Mol Cancer 18:1–15

    Google Scholar 

  • Zhan T, Rindtorff N, Betge J et al (2019) CRISPR/Cas9 for cancer research and therapy. Semin Cancer Biol 55:106–119

    CAS  PubMed  Google Scholar 

  • Zhang B, Lu HY, Xia YH et al (2018) Long non-coding RNA EPIC1 promotes human lung cancer cell growth. Biochem Biophys Res Commun 503:1342–1348

    CAS  PubMed  Google Scholar 

  • Zhang PF, Wu J, Wu Y et al (2019) The lncRNA SCARNA2 mediates colorectal cancer chemoresistance through a conserved microRNA-342-3p target sequence. J Cell Physiol 234:10157–10165

    CAS  PubMed  Google Scholar 

  • Zhao J (2016) Cancer stem cells and chemoresistance: the smartest survives the raid. Pharmacol Ther 160:145–158

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao Q, Zhao S, Li J et al (2019) TCF7L2 activated HOXA-AS2 decreased the glucocorticoid sensitivity in acute lymphoblastic leukemia through regulating HOXA3/EGFR/Ras/Raf/MEK/ERK pathway. Biomed Pharmacother 109:1640–1649

    CAS  PubMed  Google Scholar 

  • Zhu H, Wang D, Liu Y et al (2013) Role of the Hypoxia-inducible factor-1 alpha induced autophagy in the conversion of non-stem pancreatic cancer cells into CD133 + pancreatic cancer stem-like cells. Cancer Cell Int 13:1–8

    Google Scholar 

  • Zhu QN, Wang G, Guo Y et al (2017) LncRNA H19 is a major mediator of doxorubicin chemoresistance in breast cancer cells through a cullin4A-MDR1 pathway. Oncotarget 8:91990–92003

    PubMed  PubMed Central  Google Scholar 

  • Zhu HY, Bai WD, Ye XM et al (2018) Long non-coding RNA UCA1 desensitizes breast cancer cells to trastuzumab by impeding miR-18a repression of Yes-associated protein 1. Biochem Biophys Res Commun 496:1308–1313

    CAS  PubMed  Google Scholar 

  • Zuckerman JE, Davis ME (2015) Clinical experiences with systemically administered siRNA-based therapeutics in cancer. Nat Rev Drug Discov 14:843–856

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Crea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pucci, P., Yuen, W., Venalainen, E., Carles, D.R., Wang, Y., Crea, F. (2020). Long Non-coding RNAs and Cancer Cells’ Drug Resistance: An Unexpected Connection. In: Jurga, S., Barciszewski, J. (eds) The Chemical Biology of Long Noncoding RNAs. RNA Technologies, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-030-44743-4_7

Download citation

Publish with us

Policies and ethics