Skip to main content

Emergency Networks for Post-Disaster Scenarios

  • Chapter
  • First Online:
Guide to Disaster-Resilient Communication Networks

Abstract

The focus of this chapter is on communication (and partially, computing) solutions which allow satisfying demands from the immediate aftermath of a disaster until full restoration of pre-disaster communication infrastructure and services. As traffic demand might differ substantially from the one in the pre-disaster scenario, due to the specific needs of post-disaster scenarios, it appears evident that a simple restoration of existing infrastructure and services might not be sufficient to satisfy it, and that specific solutions are required. This chapter reviews the most relevant post-disaster scenarios, outlining a set of reference use cases and their communication requirements. Then, it presents an overview of the state of the art for emergency and post-disaster communications. Finally, it focuses on a set of specific solutions of special relevance for disaster scenarios, outlining the main research challenges which are open to date.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alam F, Ofli F, Imran M (2018) A Twitter tale of three hurricanes: Harvey, Irma, and Maria. arXiv preprint:1805.05144

    Google Scholar 

  2. Ali S, Rizzo G, Mancuso V, Marsan MA (2015) Persistence and availability of floating content in a campus environment. In: IEEE INFOCOM, pp 2326–2334

    Google Scholar 

  3. Ali S, Rizzo G, Marsan MA, Mancuso V (2013) Impact of mobility on the performance of context-aware applications using floating content. In: ICCASA, pp 198–208. Springer, Berlin

    Google Scholar 

  4. Ali S, Rizzo G, Rengarajan B, Marsan MA (2013) A simple approximate analysis of floating content for context-aware applications. In: IEEE INFOCOM, pp 21–22

    Google Scholar 

  5. Anastasiades C, Schmid T, Weber J, Braun T (2016) Information-centric content retrieval for delay-tolerant networks. Comput Netw 107:194–207

    Article  Google Scholar 

  6. Anastasiades C, Weber J, Braun T (2016) Dynamic unicast: information-centric multi-hop routing for mobile ad-hoc networks. Comput Netw 107:208–219

    Article  Google Scholar 

  7. Aschenbruck N, Gerhards-Padilla E, Gerharz M, Frank M, Martini P (2007) Modelling mobility in disaster area scenarios. In: MSWiM, pp 4–12

    Google Scholar 

  8. Becker SM (2011) Risk communication and radiological/nuclear terrorism: a strategic view. Health Phys 101(5):551–558

    Article  Google Scholar 

  9. Bircher E, Braun T (2004) An agent-based architecture for service discovery and negotiation in wireless networks. In: WWIC, pp 295–306. Springer, Berlin

    Google Scholar 

  10. Borsetti D, Fiore M, Casetti C, Chiasserini CF (2009) Cooperative support for localized services in VANETs. In: ACM MSWiM, pp 1–10

    Google Scholar 

  11. Briante O, Loscrí V, Pace P, Ruggeri G, Zema NR (2015) Comvivor: an evolutionary communication framework based on survivors’ devices reuse. Wirel Pers Commun 85:2021–2040

    Article  Google Scholar 

  12. Brucker P, Jurisch B, Sievers B (1994) A branch and bound algorithm for the job-shop scheduling problem. Discrete Appl Math 49(1–3):107–127

    Article  MathSciNet  MATH  Google Scholar 

  13. Castro AAV, Serugendo GDM, Konstantas D (2009) Hovering information—self-organizing information that finds its own storage. In: Autonomic Communication, pp 111–145. Springer, Berlin

    Google Scholar 

  14. Chipara O, Griswold WG, Plymoth AN, Huang R, Liu F, Johansson P, Rao RR, Chan TC, Buono C (2012) WIISARD: a measurement study of network properties and protocol reliability during an emergency response. In: MobiSys, pp 407–420

    Google Scholar 

  15. Cinque M, Cotroneo D, Esposito C, Fiorentino M (2017) Secure crisis information sharing through an interoperability framework among first responders: the SECTOR practical experience. In: IEEE WiMob, pp 316–323

    Google Scholar 

  16. Cinque M, Esposito C, Fiorentino M, Carrasco FJP, Matarese F (2015) A collaboration platform for data sharing among heterogeneous relief organizations for disaster management. In: ISCRAM

    Google Scholar 

  17. Cojocaru S, Gaindric C, Secrieru I, Puiu S, Popcova O (2016) Multilayered knowledge base for triage task in mass casualty situations. Comput Sci J Mold 24(2):202–212

    MathSciNet  Google Scholar 

  18. Dikbiyik F, Tornatore M, Mukherjee B (2014) Minimizing the risk from disaster failures in optical backbone networks. J Lightwave Technol 32(18):3175–3183

    Article  Google Scholar 

  19. Esposito C, Ciampi M (2013) A hierarchical event-based architecture for the notification of medical document availability. In: IWBBIO, pp 585–592

    Google Scholar 

  20. Esposito C, Cotroneo D, Russo S (2010) An investigation on flexible communications in publish/subscribe services. In: SEUS, pp 204–215

    Google Scholar 

  21. Fujiwara T, Watanabe T (2005) An ad hoc networking scheme in hybrid networks for emergency communications. Ad Hoc Netw 3:607–620

    Article  Google Scholar 

  22. Gamma G (2016) Fake captive portal with an Android phone. URL https://null-byte.wonderhowto.com/how-to/fake-captive-portal-with-android-phone-0167030/

  23. George SM, Zhou W, Chenji H, Won M, Lee YO, Pazarloglou A, Stoleru R, Barooah P (2010) DistressNet: a wireless ad hoc and sensor network architecture for situation management in disaster response. IEEE Commun Mag 48(3):128–136

    Article  Google Scholar 

  24. Goscien R, Walkowiak K, Klinkowski M, Rak J (2015) Protection in elastic optical networks. IEEE Netw 29(6):88–96

    Article  Google Scholar 

  25. Gurman TA, Ellenberger N (2015) Reaching the global community during disasters: findings from a content analysis of the organizational use of Twitter after the 2010 Haiti earthquake. J Health Commun 20(6):687–696

    Article  Google Scholar 

  26. Gusev M, Dustdar S (2018) Going back to the roots-the evolution of edge computing, an IoT perspective. IEEE Internet Comput 22(2):5–15

    Article  Google Scholar 

  27. Gusev M, Ristov S, Prodan R, Dzanko M, Bilic I (2017) Resilient IoT eHealth solutions in case of disasters. In: RNDM, pp 1–7

    Google Scholar 

  28. Houston JB, Hawthorne J, Perreault MF, Park EH, Goldstein Hode M, Halliwell MR, Turner McGowen SE, Davis R, Vaid S, McElderry JA et al (2015) Social media and disasters: a functional framework for social media use in disaster planning, response, and research. Disasters 39(1):1–22

    Article  Google Scholar 

  29. Hristidis V, Chen SC, Li T, Luis S, Deng Y (2010) Survey of data management and analysis in disaster situations. J Syst Softw 83(10):1701–1714

    Article  Google Scholar 

  30. Hyytiä E, Virtamo J, Lassila P, Kangasharju J, Ott J (2011) When does content float? Characterizing availability of anchored information in opportunistic content sharing. In: IEEE INFOCOM, pp 3123–3131. Shanghai, China

    Google Scholar 

  31. Islam HMA, Lukyanenko A, Tarkoma S, Yla-Jaaski A (2015) Towards disruption tolerant ICN. In: IEEE ISCC, pp 212–219

    Google Scholar 

  32. Johnson SM (1954) Optimal two-and three-stage production schedules with setup times included. Naval Res Logist (NRL) 1(1):61–68

    Article  MATH  Google Scholar 

  33. Kangasharju J, Ott J, Karkulahti O (2010) Floating content: Information availability in urban environments. In: IEEE PERCOM Workshops, pp 804–808. IEEE, New York

    Google Scholar 

  34. Khazai B, Kunz-Plapp T, Büscher C, Wegner A (2014) VuWiki: an ontology-based semantic wiki for vulnerability assessments. Int J Disaster Risk Sci 5(1):55–73

    Article  Google Scholar 

  35. Król M, Ji Y, Yamada S, Borcea C, Zhong L, Takano K (2016) Extending network coverage by using static and mobile relays during natural disasters. In: WAINA, pp 681–686

    Google Scholar 

  36. Krug S, Seitz J (2016) Challenges of applying DTN routing protocols in realistic disaster scenarios. In: ICUFN, pp 784–789

    Google Scholar 

  37. Manzo G, Marsan MA, Rizzo G (2017) Performance modeling of vehicular floating content in urban settings. In: IEEE ITC 29, vol 1, pp 99–107

    Google Scholar 

  38. Manzo G, Soua R, Di Maio A, Engel T, Palattella MR, Rizzo G (2017) Coordination mechanisms for floating content in realistic vehicular scenarios. In: IEEE MobiWorld

    Google Scholar 

  39. Matarese F, Di Crescenzo D, Strano A, Aligne F, Mattioli J (2012) An interoperable reconstruction and recovery decision support tool for complex crises situations. In: IEEE SoSE, pp 525–530

    Google Scholar 

  40. Medford-Davis LN, Kapur GB (2014) Preparing for effective communications during disasters: lessons from a World Health Organization quality improvement project. Int J Emerg Med 7(15):1–7

    Google Scholar 

  41. Minh QT, Nguyen K, Borcea C, Yamada S (2014) On-the-fly establishment of multihop wireless access networks for disaster recovery. IEEE Commun Mag 52:60–66

    Article  Google Scholar 

  42. Minh QT, Shibata Y, Borcea C, Yamada S (2016) On-site configuration of disaster recovery access networks made easy. Ad Hoc Netw 40:46–60

    Article  Google Scholar 

  43. MIP: The joint c3 information exchange data model metamodel (jc3iedm metamodel), jc3iedm-metamodel-specification-3.1.4.pdf. https://public.mip-interop.org/. Accessed on 25/02/2019

  44. Molinari D, Menoni S, Aronica G, Ballio F, Berni N, Pandolfo C, Stelluti M, Minucci G (2014) Ex post damage assessment: an Italian experience. Nat Hazards Earth Syst Sci 14(4):901–916

    Article  Google Scholar 

  45. Monticelli E, Schubert BM, Arumaithurai M, Fu X, Ramakrishnan KK (2014) An information centric approach for communications in disaster situations. In: IEEE LANMAN, pp 1–6. https://doi.org/10.1109/LANMAN.2014.7028630

  46. Morreale P, Goncalves A, Silva C (2015) Mobile ad hoc network communication for disaster recovery. Int J Space-Based Situated Comput 5(3):178–186. https://doi.org/10.1504/IJSSC.2015.070949. URL https://doi.org/10.1504/IJSSC.2015.070949

  47. Narayanan RGL, Ibe OC (2012) A joint network for disaster recovery and search and rescue operations. Comput Netw 56:3347–3373

    Article  Google Scholar 

  48. Nastic S, Rausch T, Scekic O, Dustdar S, Gusev M, Koteska B, Kostoska M, Jakimovski B, Ristov S, Prodan R (2017) A serverless real-time data analytics platform for edge computing. IEEE Internet Comput 21(4):64–71. https://doi.org/10.1109/MIC.2017.2911430

    Article  Google Scholar 

  49. Ordille JJ, Tendick P, Yang Q (2009) Publish-subscribe services for urgent and emergency response. In: ACM Comsware, pp 8:1–8:10

    Google Scholar 

  50. Ott J, Hyytiä E, Lassila P, Vaegs T, Kangasharju J (2011) Floating content: information sharing in urban areas. In: IEEE PerCom, Seattle, USA, pp 136–146

    Google Scholar 

  51. Pawelczak P, Prasad RV, Xia L, Niemegeers IG (2005) Cognitive radio emergency networks-requirements and design. In: IEEE DySPAN, pp 601–606

    Google Scholar 

  52. Perko T (2011) Importance of risk communication during and after a nuclear accident. Integr Environ Assess Manag 7(3):388–392

    Article  Google Scholar 

  53. Petersen H, Baccelli E, Wählisch M, Schmidt TC, Schiller J (2014) The role of the Internet of Things in network resilience. In: International Internet of Things Summit, pp 283–296. Springer, Berlin

    Google Scholar 

  54. Psaras I, Saino L, Arumaithurai M, Ramakrishnan KK, Pavlou G (2014) Name-based replication priorities in disaster cases. In: 2014 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp 434–439. https://doi.org/10.1109/INFCOMW.2014.6849271

  55. Radianti J, Gonzalez JJ, Granmo OC (2014) Publish-subscribe smartphone sensing platform for the acute phase of a disaster: a framework for emergency management support. In: IEEE PerCom Workshops, pp 285–290

    Google Scholar 

  56. Rafaeli S, Hutchison D (2003) A survey of key management for secure group communication. ACM Comput Surv (CSUR) 35(3):309–329

    Article  Google Scholar 

  57. Rak J (2015) Resilient routing in communication networks. Springer, Berlin

    Google Scholar 

  58. Rak J, Hutchison D, Calle E, Gomes T, Gunkel M, Smith P, Tapolcai J, Verbrugge S, Wosinska L (2016) RECODIS: resilient communication services protecting end-user applications from disaster-based failures. In: ICTON, pp 1–4

    Google Scholar 

  59. Ray NK, Turuk AK (2017) A framework for post-disaster communication using wireless ad hoc networks. Integrat VLSI J 58:274–285

    Article  Google Scholar 

  60. Ristov S, Cvetkov K, Gusev M (2016) Implementation of a horizontal scalable balancer for dew computing services. Scalable Comput Pract Exp 17(2):79–90

    Google Scholar 

  61. Rizzo G, Neukirchen H (2017) Geo-based content sharing for disaster relief applications. In: IMIS, pp 894–903. Springer, Berlin

    Google Scholar 

  62. Rubin GJ, Amlôt R, Page L (2011) The London polonium incident: lessons in risk communications. Health Phys 101(5):545–550

    Article  Google Scholar 

  63. Neves dos Santos F, Ertl B, Barakat C, Spyropoulos T, Turletti T (2013) CEDO: content-centric dissemination algorithm for delay-tolerant networks. In: MSWiM, pp 377–386. ACM

    Google Scholar 

  64. Sellnow TL, Sellnow DD, Lane DR, Littlefield RS (2012) The value of instructional communication in crisis situations: restoring order to chaos. Risk Anal Int J 32(4):633–643

    Article  Google Scholar 

  65. Sicuranza M, Ciampi M, Pietro GD, Esposito C (2013) Secure healthcare data sharing among federated health information systems. IJCCBS 4(4):349–373. https://doi.org/10.1504/IJCCBS.2013.059023

  66. Sugerman DE, Keir JM, Dee DL, Lipman H, Waterman SH, Ginsberg M, Fishbein DB (2012) Emergency health risk communication during the 2007 San Diego wildfires: comprehension, compliance, and recall. J Health Commun 17(6):698–712

    Article  Google Scholar 

  67. Thompson N, Crepaldi R, Kravets R (2010) Locus: a location-based data overlay for disruption-tolerant networks. In: CHANTS, pp 47–54. ACM

    Google Scholar 

  68. Tyson G, Bigham J, Bodanese E (2013) Towards an information-centric delay-tolerant network. In: 2013 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), pp 387–392. https://doi.org/10.1109/INFCOMW.2013.6970723

  69. Tyson G, Bodanese E, Bigham J, Mauthe A (2014) Beyond content delivery: can ICNs help emergency scenarios? IEEE Netw 28(3):44–49. https://doi.org/10.1109/MNET.2014.6843231

    Article  Google Scholar 

  70. Velev D, Zlateva P (2012) Use of social media in natural disaster management. In: International Proceedings of Economic Development and Research, vol 39, pp 41–45

    Google Scholar 

  71. Wang J, Wu Y, Yen N, Guo S, Cheng Z (2016) Big data analytics for emergency communication networks: a survey. IEEE Commun Surv Tutor 18(3):1758–1778. https://doi.org/10.1109/COMST.2016.2540004

    Article  Google Scholar 

  72. Wi-Fi Alliance: Wi-Fi peer-to-peer (P2P) technical specification

    Google Scholar 

  73. Yi S, Hao Z, Zhang Q, Zhang Q, Shi W, Li Q (2017) Lavea: latency-aware video analytics on edge computing platform. In: IEEE ICDCS, pp 2573–2574

    Google Scholar 

  74. Yu Y, Joy J, Fan R, Lu Y, Gerla M, Sanadidi MY (2014) DT-ICAN: a disruption-tolerant information-centric ad-hoc network. In: IEEE Military Communications Conference, pp 1021–1026

    Google Scholar 

  75. Zhang L, Afanasyev A, Burke J, Jacobson V, Claffy K, Crowley P, Papadopoulos C, Wang L, Zhang B (2014) Named data networking. In: SIGCOMM, vol 44, pp 66–73. ACM

    Google Scholar 

Download references

Acknowledgements

This chapter is based on work from COST Action CA15127 (“Resilient communication services protecting end-user applications from disaster-based failures—RECODIS”) supported by COST (European Cooperation in Science and Technology).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Rizzo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rizzo, G. et al. (2020). Emergency Networks for Post-Disaster Scenarios. In: Rak, J., Hutchison, D. (eds) Guide to Disaster-Resilient Communication Networks. Computer Communications and Networks. Springer, Cham. https://doi.org/10.1007/978-3-030-44685-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44685-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44684-0

  • Online ISBN: 978-3-030-44685-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics