Skip to main content

Logic Programming, Argumentation and Human Reasoning

  • Conference paper
  • First Online:
Logic and Argumentation (CLAR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12061))

Included in the following conference series:

Abstract

The weak completion semantics, a computational logic approach, has been shown to adequately model various episodes of human reasoning. Since the inception of abstract argumentation in the 1990s, connections between argumentation semantics and logic programming semantics have been studied, but existing work on this connection has not yet covered the weak completion semantics. In this paper we define a novel translation from logic programs to abstract argumentation frameworks and show that under this translation the weak completion semantics corresponds to the grounded semantics of abstract argumentation. Combining this translation with argumentation semantics other than grounded semantics gives rise to novel logic programming semantics. We discuss the potential relevance of these novel semantics to modeling human reasoning and give an outlook on possible future research on this topic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that there is no argument that needs to represent \(ab_1 \leftarrow \bot \) in \(\mathcal{P}_0\).

  2. 2.

    Again, there are no arguments that need to represent \(ab_1 \leftarrow \bot \) and \(ab_1 \leftarrow \bot \) in \(\mathcal{P}_1\).

References

  1. Baroni, P., Caminada, M., Giacomin, M.: Abstract argumentation frameworks and their semantics. In: Baroni, P., Gabbay, D., Giacomin, M., van der Torre, L. (eds.) Handbook of Formal Argumentation, pp. 159–236. College Publications, London (2018)

    Google Scholar 

  2. Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argumentation semantics. Artif. Intell. 168(1), 162–210 (2005)

    Article  MathSciNet  Google Scholar 

  3. Byrne, R.M.J.: Suppressing valid inferences with conditionals. Cognition 31, 61–83 (1989)

    Article  Google Scholar 

  4. Caminada, M., Sá, S., Alcântara, J., Dvořák, W.: On the equivalence between logic programming semantics and argumentation semantics. Int. J. Approx. Reason. 58, 87–111 (2015)

    Article  MathSciNet  Google Scholar 

  5. Clark, K.L.: Negation as failure. In: Gallaire, H., Minker, J. (eds.) Logic and Data Bases, vol. 1, pp. 293–322. Plenum Press, New York (1978)

    Chapter  Google Scholar 

  6. Costa, A., Dietz Saldanha, E.A., Hölldobler, S., Ragni, M.: A computational logic approach to human syllogistic reasoning. In: Gunzelmann, G., Howes, A., Tenbrink, T., Davelaar, E. (eds.) Proceedings of 39th Conference of Cognitive Science Society, pp. 883–888. Cognitive Science Society, Austin (2017)

    Google Scholar 

  7. Cramer, M., Guillaume, M.: Empirical cognitive study on abstract argumentation semantics. In: Computational Models of Argument - Proceedings of COMMA, pp. 413–424 (2018)

    Google Scholar 

  8. Cramer, M., Guillaume, M.: Empirical study on human evaluation of complex argumentation frameworks. In: Calimeri, F., Leone, N., Manna, M. (eds.) JELIA 2019. LNCS (LNAI), vol. 11468, pp. 102–115. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19570-0_7

    Chapter  Google Scholar 

  9. Cramer, M., van der Torre, L.: SCF2 - an argumentation semantics for rational human judgments on argument acceptability. In: Proceedings of the 8th Workshop on Dynamics of Knowledge and Belief (DKB 2019) and the 7th Workshop KI & Kognition (KIK 2019), pp. 24–35 (2019)

    Google Scholar 

  10. Dietz, E.-A.: A computational logic approach to the belief bias in human syllogistic reasoning. In: Brézillon, P., Turner, R., Penco, C. (eds.) CONTEXT 2017. LNCS (LNAI), vol. 10257, pp. 691–707. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57837-8_55

    Chapter  Google Scholar 

  11. Dietz, E.A., Hölldobler, S., Ragni, M.: A computational logic approach to the suppression task. In: Miyake, N., Peebles, D., Cooper, R.P. (eds.) Proceedings of the 34th Annual Conference of the Cognitive Science Society (COGSCI), pp. 1500–1505. Cognitive Science Society (2012)

    Google Scholar 

  12. Dietz, E.A., Hölldobler, S., Wernhard, C.: Modeling the suppression task under weak completion and well-founded semantics. J. Appl. Non Class. Log. (JANCL) 24(1–2), 61–85 (2014)

    Article  MathSciNet  Google Scholar 

  13. Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. Artif. Intell. 77(2), 321–357 (1995)

    Article  MathSciNet  Google Scholar 

  14. Dvořák, W., Gaggl, S.A.: Stage semantics and the SCC-recursive schema for argumentation semantics. J. Log. Comput. 26(4), 1149–1202 (2016)

    Article  MathSciNet  Google Scholar 

  15. Fitting, M.: A Kripke-Kleene semantics for logic programs. J. Log. Program. 2(4), 295–312 (1985)

    Article  MathSciNet  Google Scholar 

  16. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Kowalski, R., Bowen, K.A. (eds.) Proceedings of the International Logic Programming Conference and Symposium, (ICLP/SLP), pp. 1070–1080. MIT Press, Cambridge (1988)

    Google Scholar 

  17. Hölldobler, S.: Logik und Logikprogrammierung 1: Grundlagen. Kolleg Synchron, Synchron (2009)

    Google Scholar 

  18. Hölldobler, S.: Weak completion semantics and its applications in human reasoning. In: Furbach, U., Schon, C. (eds.) Proceedings of the 1st Workshop on Bridging the Gap Between Human and Automated Reasoning (Bridging 2015), CEUR Workshop Proceedings, pp. 2–16 (2015). CEUR-WS.org

  19. Hölldobler, S., Kencana Ramli, C.D.P.: Logic programs under three-valued Łukasiewicz semantics. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 464–478. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02846-5_37

    Chapter  MATH  Google Scholar 

  20. Hölldobler, S., Kencana Ramli, C.D.P.: Logics and networks for human reasoning. In: Alippi, C., Polycarpou, M., Panayiotou, C., Ellinas, G. (eds.) ICANN 2009. LNCS, vol. 5769, pp. 85–94. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04277-5_9

    Chapter  Google Scholar 

  21. Hölldobler, S., Kencana Ramli, C.D.P.: Contraction properties of a semantic operator for human reasoning. In: Li, L., Yen, K.K. (eds.) Proceedings of the Fifth International Conference on Information, pp. 228–231 (2009)

    Google Scholar 

  22. Hölldobler, S., Philipp, T., Wernhard, C.: An abductive model for human reasoning. In: Logical Formalizations of Commonsense Reasoning. AAAI Spring Symposium Series Technical Reports, pp. 135–138. AAAI Press, Cambridge (2011)

    Google Scholar 

  23. Johnson-Laird, P., Khemlani, S.S.: Toward a unified theory of reasoning. Psychol. Learn. Motiv. 59, 1–42 (2013)

    Article  Google Scholar 

  24. Kakas, A.C., Kowalski, R.A., Toni, F.: Abductive logic programming. J. Log. Comput. 2(6), 719–770 (1993)

    Article  MathSciNet  Google Scholar 

  25. Lloyd, J.W.: Foundations of Logic Programming. Springer, New York (1984). https://doi.org/10.1007/978-3-642-96826-6

    Book  MATH  Google Scholar 

  26. Łukasiewicz, J.: O logice trójwartościowej. Ruch Filozoficzny 5, 169–171 (1920). English translation: On three-valued logic. In: Łukasiewicz, J., Borkowski, L. (eds.) Selected Works, Amsterdam, North Holland, pp. 87–88 (1990)

    Google Scholar 

  27. Mercier, H., Sperber, D.: Why do humans reason? Arguments for an argumentative theory. Behav. Brain Sci. 34(2), 57–74 (2011)

    Article  Google Scholar 

  28. Oaksford, M., Chater, N.: New paradigms in the psychology of reasoning. Annu. Rev. Psychol. 71(1), 305–330 (2020)

    Article  Google Scholar 

  29. Przymusinski, T.C.: Well-founded semantics coincides with three-valued stable semantics. Fundamenta Informaticae 13(4), 445–463 (1990)

    MathSciNet  MATH  Google Scholar 

  30. Rahwan, I., Madakkatel, M.I., Bonnefon, J.F., Awan, R.N., Abdallah, S.: Behavioral experiments for assessing the abstract argumentation semantics of reinstatement. Cogn. Sci. 34(8), 1483–1502 (2010)

    Article  Google Scholar 

  31. Rescher, N.: Many-Valued Logic. McGraw-Hill, New York (1969)

    MATH  Google Scholar 

  32. Rips, L.J.: The Psychology of Proof: Deductive Reasoning in Human Thinking. MIT Press, Cambridge (1994)

    Book  Google Scholar 

  33. Stenning, K., van Lambalgen, M.: Human Reasoning and Cognitive Science. A Bradford Book. MIT Press, Cambridge (2008)

    Book  Google Scholar 

  34. Van Gelder, A., Ross, K.A., Schlipf, J.S.: The well-founded semantics for general logic programs. J. ACM 38(3), 619–649 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to thank Christian Straßer for proposing a shorter proof of Theorem 34 (see appendix) that additionally has the advantage of establishing a useful correspondence between the weak completion semantics and the Kripke Kleene semantics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Cramer .

Editor information

Editors and Affiliations

A Proof of Theorem 34

A Proof of Theorem 34

As mentioned in the Acknowledgements, the proof we present is based on a proof presented by Christian Straßer. It derives Theorem 34 from Theorem 30 with the help of Lemma 43, which establishes a correspondence between the weak completion semantics and the Kripke Kleene semantics.

Definition 42

Given a program \(\mathcal{P}\), define \(\mathcal{P}_{\mathsf {id}} := \mathcal{P}\cup \{ A \leftarrow A \mid A \in \mathsf {undef}(\mathcal{P}) \}\).

Lemma 43

The WCS model of a program \(\mathcal{P}\) is the KK-model of \(\mathcal{P}_{\mathsf {id}}\).

Proof

We prove this result by inductively proving that \(\varPhi _{\mathcal {P}}^i(\langle \emptyset ,\emptyset \rangle ) = \varPsi _{\mathcal {P}_{\mathsf {id}}}^i(\langle \emptyset ,\emptyset \rangle )\) for any \(i \ge 1\) and any program \(\mathcal {P}\) (where \(\varPhi ^i_{\mathcal {P}}\) respectively \(\varPsi ^i_{\mathcal {P}}\) denotes the \(i\)th iteration of the function based on a program \(\mathcal {P}\)). In the proof, we will sometimes make use of the following observation:

  • \((\star )\) If \(A \notin \mathsf {undef}(A)\), \(A \leftarrow body \in \mathcal {P}\) iff \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\).

Let \(\langle J_{i}^{\top }, J_i^{\bot } \rangle = \varPsi _{\mathcal {P}_{\mathsf {id}}}^i(\langle \emptyset , \emptyset \rangle )\) and \(\langle K_{i}^{\top }, K_i^{\bot } \rangle = \varPhi _{\mathcal {P}}^i(\langle \emptyset , \emptyset \rangle )\). We now show inductively that (i) \(J_i^{\top }= K_i^{\top }\) and (ii) \(J_i^{\bot } = K_i^{\bot }\).

We make use of a somewhat unusual variant of proof by induction in which both \(i = 0\) and \(i=1\) are first established as separate base cases, and the induction step is from \(i-1\) and i to \(i+1\) for any \(i > 0\).

\(\underline{\mathrm{First\; base\; case:}\ i = 0.}\) In this case, \(J_i^{\top }= \emptyset =K_i^{\top }\) and \(J_i^{\bot } = \emptyset = K_i^{\bot }\).

\(\underline{\mathrm{Second\; base\; case:}\ i = 1.}\) We discuss each point separately. Let \(I = \langle \emptyset ,\emptyset \rangle \).

Ad (i). Suppose \(A \in J_1^{\top }\). Thus, there is a \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\) such that \(I( body ) = \top \). Since \(I = \langle \emptyset ,\emptyset \rangle \), \( body \) is \(\top \). In view of the definition of \(\mathcal {P}_{\mathsf {id}}\), \(A \leftarrow \top \,\, \in \mathcal {P} \cap \mathcal {P}_{\mathsf {id}}\) and so \(A \in K_1^{\top }\). \(K_1^{\top } \subseteq J_1^{\top }\) holds since \(\mathcal {P} \subseteq \mathcal {P}_{\mathsf {id}}\).

Ad (ii). Suppose \(A \in K_1^{\bot }\). Thus, \(A \notin \mathsf {undef}(\mathcal {P})\) and for all \(A \leftarrow body \in \mathcal {P}\), \(I( body ) = \bot \). By (\(\star \)), for all \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\), \(I( body ) = \bot \) and hence \(A \in J_1^{\bot }\).

Suppose now that \(A \in J_1^{\bot }\). So, for all \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\), \(I( body ) = \bot \). Note that \(A \notin \mathsf {undef}(\mathcal {P})\) since otherwise \(I(A) = \bot \) which is impossible since \(I = \langle \emptyset , \emptyset \rangle \). Since \(\mathcal {P} \subseteq \mathcal {P}_{\mathsf {id}}\), \(A \in K_1^{\bot }\).

\(\underline{\mathrm{Induction\; step:}\ i-1, i \Rightarrow i+1 for \;any\; i > 0.}\) Our inductive hypothesis is that \(J_{i-1}^{\top } = K_{i-1}^{\top }\), \(J_{i-1}^{\bot } = K_{i-1}^{\bot }\), \(J_i^{\top } = K_i^{\top }\) and \(J_i^{\bot } = K_i^{\bot }\). We again discuss (i) and (ii) separately. Let \(I_i = \langle I_{i}^{\top }, I_i^{\bot } \rangle \) where \(I_i^{\top } = J_i^{\top } = K_i^{\top }\) and \(I_i^{\bot } = J_i^{\bot } = K_i^{\bot }\). Similarly for \(I_{i-1}\).

Ad (i). Suppose \(A \in K_{i+1}^{\top }\). Thus, there is a \(A \leftarrow body \in \mathcal {P}\) for which \(I_i( body ) = \top \). Since \(\mathcal {P} \subseteq \mathcal {P}_{\mathsf {id}}\), \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\). Thus, \(A \in J_{i+1}^{\top }\).

For the other direction assume \(A \in J_{i+1}^{\top }\). Thus, there is a \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\) for which \(I_i( body ) = \top \). Assume for a contradiction that \(A \in \mathsf {undef}(\mathcal {P})\). Thus, \( body = A\) and \(A \in I_i^{\top } = K_i^{\top }\). Thus, there is a \(A \leftarrow body ' \in \mathcal {P}\) for which \(I_{i-1}( body ') = \top \). This contradicts \(A \in \mathsf {undef}(\mathcal {P})\). So \(A \notin \mathsf {undef}(\mathcal {P})\) and therefore \(A \leftarrow body \in \mathcal {P}\). Thus, \(A \in \mathcal {K}_{i+1}^{\top }\).

Ad (ii). Suppose \(A \in K_{i+1}^{\bot }\). Thus, \(A \notin \mathsf {undef}(\mathcal {P})\) and for all \(A \leftarrow body (\mathcal {P})\), \(I_i( body ) = \bot \). By (\(\star \)), for all \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\), \(I_i( body ) = \bot \). Thus, \(A \in J_{i+1}^{\bot }\).

Suppose now that \(A \in J_{i+1}^{\bot }\). Thus, (\(\dagger \)) for all \(A \leftarrow body \in \mathcal {P}_{\mathsf {id}}\), \(I_i( body ) = \bot \). Assume for a contradiction that \(A \in \mathsf {undef}(\mathcal {P})\). Then, since \(A \leftarrow A \in \mathcal {P}_{\mathsf {id}}\), \(I_i(A) = \bot \) and so \(A \in I_i^{\bot } = K_i^{\bot }\). Since for all \(B \in K_i^{\bot } (= \{ C \mid C \notin \mathsf {undef}(\mathcal {P})\) and for all \(C \leftarrow body \in \mathcal {P}, I_{i-1}( body ) = \bot \})\), \(B \notin \mathsf {undef}(\mathcal {P})\), this is a contradiction. So, \(A \notin \mathsf {undef}(\mathcal {P})\) and by (\(\star \)) and (\(\dagger \)), for all \(A \leftarrow body \in \mathcal {P}\), \(I_i( body ) = \bot \). Thus, \(A \in K_{i+1}^{\bot }\).    \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cramer, M., Saldanha, EA.D. (2020). Logic Programming, Argumentation and Human Reasoning. In: Dastani, M., Dong, H., van der Torre, L. (eds) Logic and Argumentation. CLAR 2020. Lecture Notes in Computer Science(), vol 12061. Springer, Cham. https://doi.org/10.1007/978-3-030-44638-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44638-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44637-6

  • Online ISBN: 978-3-030-44638-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics