Skip to main content

The Role of Nrf2 in the Cardiovascular System and Atherosclerosis

  • Chapter
  • First Online:
Nrf2 and its Modulation in Inflammation

Part of the book series: Progress in Inflammation Research ((PIR,volume 85))

  • 439 Accesses

Abstract

The cardiovascular system is an important transport system comprised of the heart and associated blood vessels. Within this transport network, various biochemical reactions (including gas transfer, immune modulation, waste transport, and fluid transfer) take place within a three-layered vascular structure that is highly susceptible to damage from bacterial polysaccharides, elevated blood lipids, immune by-products, and reactive oxygen species (ROS). Recently, ROS have come to the forefront of translational research as reports show a key role for ROS and unchecked vascular cell proliferation in the development of atherosclerotic plaques as well as damage to the myocardium. Of prime importance in the maintenance of homeostasis against these insults is the body’s innate antioxidant system which is controlled almost entirely by the master transcription factor Nrf2. This chapter will explain the molecular mechanism behind the regulation of Nrf2, explore the impact of Nrf2 on the cardiovascular system and probable link to autophagy, and explicate the large number of exogenous chemical regulators of Nrf2 that are available for use in both in vitro and in vivo cardiovascular studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathis BJ, Cui T. CDDO and its role in chronic diseases. Adv Exp Med Biol. 2016;929:291–314.

    Article  CAS  PubMed  Google Scholar 

  2. Cleasby A, Yon J, Day PJ, Richardson C, Tickle IJ, Williams PA, et al. Structure of the BTB domain of Keap1 and its interaction with the triterpenoid antagonist CDDO. PLoS One. 2014;9(6):e98896.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sussan TE, Rangasamy T, Blake DJ, Malhotra D, El-Haddad H, Bedja D, et al. Targeting Nrf2 with the triterpenoid CDDO-imidazolide attenuates cigarette smoke-induced emphysema and cardiac dysfunction in mice. Proc Natl Acad Sci U S A. 2009;106(1):250–5.

    Article  CAS  PubMed  Google Scholar 

  4. Ogura T, Tong KI, Mio K, Maruyama Y, Kurokawa H, Sato C, et al. Keap1 is a forked-stem dimer structure with two large spheres enclosing the intervening, double glycine repeat, and C-terminal domains. Proc Natl Acad Sci U S A. 2010;107(7):2842–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cuadrado A. Structural and functional characterization of Nrf2 degradation by glycogen synthase kinase 3/??-TrCP. Free Radic Biol Med. 2015;88(Part B):147–57.

    Article  CAS  PubMed  Google Scholar 

  6. Canning P, Sorrell FJ, Bullock AN. Structural basis of Keap1 interactions with Nrf2. Free Radic Biol Med. 2015;88(Part B):101–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Itoh K, Wakabayashi N, Katoh Y, Ishii T, O’Connor T, Yamamoto M. Keap1 regulates both cytoplasmic-nuclear shuttling and degradation of Nrf2 in response to electrophiles. Genes Cells. 2003;8(4):379–91.

    Article  CAS  PubMed  Google Scholar 

  8. Jaramillo MC, Zhang DD. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 2013;27(20):2179–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho H-Y, Marzec J, Kleeberger SR. Functional polymorphisms in NRF2: implications for human disease. Free Radic Biol Med. 2015;88:1–10.

    Article  CAS  Google Scholar 

  10. Taguchi K, Fujikawa N, Komatsu M, Ishii T, Unno M, Akaike T, et al. Keap1 degradation by autophagy for the maintenance of redox homeostasis. Proc Natl Acad Sci. 2012;109(34):13561–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu C, Li CY-T, Kong A-NT. Induction of phase I, II and III drug metabolism/transport by xenobiotics. Arch Pharm Res. 2005;28(3):249–68.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang M, An C, Gao Y, Leak RK, Chen J, Zhang F. Emerging roles of Nrf2 and phase II antioxidant enzymes in neuroprotection. Prog Neurobiol. 2013;100(1):30–47.

    Article  CAS  PubMed  Google Scholar 

  13. Consortium TU. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2017;45:D158–69.

    Article  CAS  Google Scholar 

  14. Brown GR, Hem V, Katz KS, Ovetsky M, Wallin C, Ermolaeva O, et al. Gene: a gene-centered information resource at NCBI. Nucleic Acids Res. 2015;43(D1):D36–42.

    Article  CAS  PubMed  Google Scholar 

  15. Abed DA, Goldstein M, Albanyan H, Jin H, Hu L. Discovery of direct inhibitors of Keap1–Nrf2 protein–protein interaction as potential therapeutic and preventive agents. Acta Pharm Sin B. 2015;5(4):285–99.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Shelton P, Jaiswal AK. The transcription factor NF-E2-related factor 2 (nrf2): a protooncogene? FASEB J. 2013;27:414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Theodore M, Kawai Y, Yang J, Kleshchenko Y, Reddy SP, Villalta F, et al. Multiple nuclear localization signals function in the nuclear import of the transcription factor Nrf2. J Biol Chem. 2008;283(14):8984–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Katoh Y, Itoh K, Yoshida E, Miyagishi M, Fukamizu A, Yamamoto M. Two domains of Nrf2 cooperatively bind CBP, a CREB binding protein, and synergistically activate transcription. Genes Cells. 2001;6(10):857–68.

    Article  CAS  PubMed  Google Scholar 

  19. Bryan HK, Olayanju A, Goldring CE, Park BK. The Nrf2 cell defence pathway: Keap1-dependent and -independent mechanisms of regulation. Biochem Pharmacol. 2013;85(6):705–17.

    Article  CAS  PubMed  Google Scholar 

  20. Kaspar JW, Jaiswal AK. Tyrosine phosphorylation controls nuclear export of Fyn, allowing Nrf2 activation of cytoprotective gene expression. FASEB J. 2011;25(3):1076–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Velichkova M, Hasson T. Keap1 regulates the oxidation-sensitive shuttling of Nrf2 into and out of the nucleus via a Crm1-dependent nuclear export mechanism. Mol Cell Biol. 2005;25(11):4501–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sun Z, Zhang S, Chan JY, Zhang DD. Keap1 controls Postinduction repression of the Nrf2-mediated antioxidant response by escorting nuclear export of Nrf2. Mol Cell Biol. 2007;27(18):6334–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li W, Jain MR, Chen C, Yue X, Hebbar V, Zhou R, et al. Nrf2 possesses a redox-insensitive nuclear export signal overlapping with the Leucine zipper motif. J Biol Chem. 2005;280(31):28430–8.

    Article  CAS  PubMed  Google Scholar 

  24. Jain AK, Bloom DA, Jaiswal AK. Nuclear import and export signals in control of Nrf2. J Biol Chem. 2005;280(32):29158–68.

    Article  CAS  PubMed  Google Scholar 

  25. Kobayashi A, Kang M-I, Okawa H, Ohtsuji M, Zenke Y, Chiba T, et al. Oxidative stress sensor Keap1 functions as an adaptor for Cul3-based E3 ligase to regulate proteasomal degradation of Nrf2. Mol Cell Biol. 2004;24(16):7130–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Itoh K, Mimura J, Yamamoto M. Discovery of the negative regulator of Nrf2, Keap1: a historical overview. Antioxid Redox Signal. 2010;13(11):1665–78.

    Article  CAS  PubMed  Google Scholar 

  27. Kansanen E, Kuosmanen SM, Leinonen H, Levonen A-L. The Keap1-Nrf2 pathway: mechanisms of activation and dysregulation in cancer. Redox Biol. 2013;1(1):45–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD. KPNA6 (Importin 7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol. 2011;31(9):1800–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Klaassen CD, Reisman S. a. Nrf2 the rescue: effects of the antioxidative/electrophilic response on the liver. Toxicol Appl Pharmacol. 2010;244(1):57–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xing Y, Niu T, Wang W, Li J, Li S, Janicki JS, et al. Triterpenoid dihydro-CDDO-trifluoroethyl amide protects against maladaptive cardiac remodeling and dysfunction in mice: a critical role of Nrf2. PLoS One. 2012;7(9):e44899.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Leinonen HM, Kansanen E, Pölönen P, Heinäniemi M, Levonen A-L. Role of the Keap1-Nrf2 pathway in cancer. Adv Cancer Res. 2014;122:281–320.

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Chatterjee N, Spirohn K, Boutros M, Bohmann D. Cdk12 is a gene-selective RNA polymerase II kinase that regulates a subset of the transcriptome, including Nrf2 target genes. Sci Rep. 2016;6(1):21455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Wang Y-Y, Yang Y-X, Zhao R, Pan S-T, Zhe H, He Z-X, et al. Bardoxolone methyl induces apoptosis and autophagy and inhibits epithelial-to-mesenchymal transition and stemness in esophageal squamous cancer cells. Drug Des Devel Ther. 2015;9:993–1026.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bonay M, Deramaudt TB. Nrf2: new insight in cell apoptosis. Cell Death Dis. 2015;6(10):e1897.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Valdecantos MP, Prieto-Hontoria PL, Pardo V, Módol T, Santamaría B, Weber M, et al. Essential role of Nrf2 in the protective effect of lipoic acid against lipoapoptosis in hepatocytes. Free Radic Biol Med. 2015;84:263–78.

    Article  CAS  Google Scholar 

  36. Ouyang L, Shi Z, Zhao S, Wang FT, Zhou TT, Liu B, et al. Programmed cell death pathways in cancer: a review of apoptosis, autophagy and programmed necrosis. Cell Prolif. 2012;45(15):487–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin Q, Qu C, Niu T, Zang H, Qi L, Lyu L, et al. Nrf2-mediated cardiac maladaptive remodeling and dysfunction in a setting of autophagy insufficiency. Hypertension. 2016;67(1):107–17.

    Article  CAS  PubMed  Google Scholar 

  38. Strzyz P. Cell death: pulling the apoptotic trigger for necrosis. Nat Rev Mol Cell Biol. 2017;18(2):72.

    Article  CAS  PubMed  Google Scholar 

  39. Farré J-C, Subramani S. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat Rev Mol Cell Biol. 2016;17(9):537–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dikic I. Proteasomal and autophagic degradation systems. Annu Rev Biochem. 2017;86:1–32.

    Article  CAS  Google Scholar 

  41. Zhan J, He J, Zhou Y, Wu M, Liu Y, Shang F, et al. Crosstalk between the autophagy-lysosome pathway and the ubiquitin-proteasome pathway in retinal pigment epithelial cells. Curr Mol Med. 2016;16(5):487–95.

    Article  CAS  PubMed  Google Scholar 

  42. Jiang T, Harder B, Rojo De La Vega M, Wong PK, Chapman E, Zhang DD. P62 links autophagy and Nrf2 signaling. Free Radic Biol Med. 2015;88(Part B):199–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Reddy NM, Potteti HR, Vegiraju S, Chen HJ, Tamatam CM, Reddy SP. PI3K-AKT signaling via Nrf2 protects against hyperoxia-induced acute lung injury, but promotes inflammation post-injury independent of Nrf2 in mice. PLoS One. 2015;10(6):1–13.

    Google Scholar 

  44. Bae SH, Sung SH, Oh SY, Lim JM, Lee SK, Park YN, et al. Sestrins activate Nrf2 by promoting p62-dependent autophagic degradation of Keap1 and prevent oxidative liver damage. Cell Metab. 2013;17(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  45. Rhee SG, Bae SH. The antioxidant function of sestrins is mediated by promotion of autophagic degradation of Keap1 and Nrf2 activation and by inhibition of mTORC1. Free Radic Biol Med. 2015;88(Part B):205–11.

    Article  CAS  PubMed  Google Scholar 

  46. Jang J, Wang Y, Kim H-S, Lalli MA, Kosik KS. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells. 2014;32(10):2616–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Pajares M, Cuadrado A, Rojo AI. Modulation of proteostasis by transcription factor NRF2 and impact in neurodegenerative diseases. Redox Biol. 2017;11:543–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Lai Y, Mathis BJ, Wang W, Li S, Qu C, et al. Deubiquitinating enzyme CYLD mediates pressure overload-induced cardiac maladaptive remodeling and dysfunction via downregulating Nrf2. J Mol Cell Cardiol. 2015;84:143–53.

    Article  CAS  PubMed  Google Scholar 

  49. Sun Z, Huang Z, Zhang DD. Phosphorylation of Nrf2 at multiple sites by MAP kinases has a limited contribution in modulating the Nrf2-dependent antioxidant response. PLoS One. 2009;4(8):e6588.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Krall EB, Wang B, Munoz DM, Ilic N, Raghavan S, Niederst MJ, et al. KEAP1 loss modulates sensitivity to kinase targeted therapy in lung cancer. elife. 2017;1:6.

    Google Scholar 

  51. Chen W, Sun Z, Wang X-J, Jiang T, Huang Z, Fang D, et al. Direct interaction between Nrf2 and p21Cip1/WAF1 upregulates the Nrf2-mediated antioxidant response. Mol Cell. 2009;34(6):663–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Villeneuve NF, Lau A, Zhang DD. Regulation of the Nrf2-Keap1 antioxidant response by the ubiquitin proteasome system: an insight into cullin-ring ubiquitin ligases. Antioxid Redox Signal. 2010;13(11):1699–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kanzaki H, Shinohara F, Kajiya M, Fukaya S, Miyamoto Y, Nakamura Y. Nuclear nrf2 induction by protein transduction attenuates osteoclastogenesis. Free Radic Biol Med. 2014;77:239–48.

    Article  CAS  PubMed  Google Scholar 

  54. Woo C-H, Shishido T, McClain C, Lim JH, Li J-D, Yang J, et al. Extracellular signal-regulated kinase 5 SUMOylation antagonizes shear stress-induced antiinflammatory response and endothelial nitric oxide synthase expression in endothelial cells. Circ Res. 2008;102(5):538–45.

    Article  CAS  PubMed  Google Scholar 

  55. Malloy MT, McIntosh DJ, Walters TS, Flores A, Goodwin JS, Arinze IJ. Trafficking of the transcription factor Nrf2 to promyelocytic leukemia-nuclear bodies: implications for degradation of nrf2 in the nucleus. J Biol Chem. 2013;288(20):14569–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Polvani S, Tarocchi M, Galli A. PPAR and oxidative stress: con() catenating NRF2 and FOXO. PPAR Res. 2012;2012:1–15.

    Article  CAS  Google Scholar 

  57. Rada P, Rojo AI, Offergeld A, Feng GJ, Velasco-Martín JP, González-Sancho JM, et al. WNT-3A regulates an Axin1/NRF2 complex that regulates antioxidant metabolism in hepatocytes. Antioxid Redox Signal. 2015;22(7):555–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Wei Y, Gong J, Thimmulappa RK, Kosmider B, Biswal S, Duh EJ. Nrf2 acts cell-autonomously in endothelium to regulate tip cell formation and vascular branching. Proc Natl Acad Sci U S A. 2013;110(41):E3910–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wakabayashi N, Chartoumpekis DV, Kensler TW. Crosstalk between Nrf2 and notch signaling. Free Radic Biol Med. 2015;88(Part B):158–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Li J, Zhang C, Xing Y, Janicki JS, Yamamoto M, Wang XL, et al. Up-regulation of p27kip1 contributes to Nrf2-mediated protection against angiotensin II-induced cardiac hypertrophy. Cardiovasc Res. 2011;90(2):315–24.

    Article  CAS  PubMed  Google Scholar 

  61. Shirwany NA, Zou M. Arterial stiffness: a brief review. Acta Pharmacol Sin. 2010;31(10):1267–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Barnes S, Curtis H. Biology: 5th Ed. 5th ed. New York City: W.H. Freeman & Co.; 1989. 756 p.

    Google Scholar 

  63. Mathis BJ, Lai Y, Qu C, Janicki JS, Cui T. CYLD-mediated signaling and diseases. Curr Drug Targets. 2015;16(4):284–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Majesky MW, Dong XR, Hoglund V, Mahoney WM, Daum G. The adventitia: a dynamic interface containing resident progenitor cells. Arterioscler Thromb Vasc Biol. 2011;31(7):1530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Förstermann U, Münzel T. Endothelial nitric oxide synthase in vascular disease: from marvel to menace. Circulation. 2006;113(13):1708–14.

    Article  PubMed  CAS  Google Scholar 

  66. Moise M, Fairman RM. Atluri P, Karakousis G, Porrett P, Kaiser L, editors. Vascular disease and vascular surgery. 2nd ed. New York City: Lippincott Williams & Wlkins. p. 344–5.

    Google Scholar 

  67. Qian J, Fulton D. Post-translational regulation of endothelial nitric oxide synthase in vascular endothelium. Front Physiol 2013;4.

    Google Scholar 

  68. Ruster C, Wolf G. Renin-angiotensin-aldosterone system and progression of renal disease. J Am Soc Nephrol. 2006;17(11):2985–91.

    Article  PubMed  CAS  Google Scholar 

  69. Heiss EH, Schachner D, Werner ER, Dirsch VM. Active NF-E2-related factor (Nrf2) contributes to keep endothelial NO synthase (eNOS) in the coupled state: role of reactive oxygen species (ROS), eNOS, and heme oxygenase (HO-1) levels. J Biol Chem. 2009;284(46):31579–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Luo Z, Aslam S, Welch WJ, Wilcox CS. Activation of nuclear factor Erythroid 2-related factor 2 coordinates dimethylarginine dimethylaminohydrolase/PPAR-γ/endothelial nitric oxide synthase pathways that enhance nitric oxide generation in human glomerular endothelial cells. Hypertension. 2015;65(4):896–902.

    Article  CAS  PubMed  Google Scholar 

  71. Warabi E, Takabe W, Minami T, Inoue K, Itoh K, Yamamoto M, et al. Shear stress stabilizes NF-E2-related factor 2 and induces antioxidant genes in endothelial cells: role of reactive oxygen/nitrogen species. Free Radic Biol Med. 2007;42(2):260–9.

    Article  CAS  PubMed  Google Scholar 

  72. Kim M, Kim S, Lim JH, Lee C, Choi HC, Woo CH. Laminar flow activation of ERK5 protein in vascular endothelium leads to atheroprotective effect via NF-E2-related factor 2 (Nrf2) activation. J Biol Chem. 2012;287(48):40722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McSweeney SR, Warabi E, Siow RCM. Nrf2 as an endothelial mechanosensitive transcription factor: going with the flow. Hypertension. 2016;67(1):20–9.

    Article  CAS  PubMed  Google Scholar 

  74. Chen B, Lu Y, Chen Y, Cheng J. The role of Nrf2 in oxidative stress-induced endothelial injuries. J Endocrinol. 2015;225(3):R83–99.

    Article  CAS  PubMed  Google Scholar 

  75. Ashino T, Yamamoto M, Numazawa S. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury. Sci Rep. 2016;6(April):26291.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Florczyk U, Jazwa A, Maleszewska M, Mendel M, Szade K, Kozakowska M, et al. Nrf2 regulates angiogenesis: effect on endothelial cells, bone marrow-derived proangiogenic cells and hind limb ischemia. Antioxid Redox Signal. 2014;20(11):1693–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li L, Pan H, Wang H, Li X, Bu X, Wang Q, et al. Interplay between VEGF and Nrf2 regulates angiogenesis due to intracranial venous hypertension. Sci Rep. 2016;6(1):37338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Levonen AL, Inkala M, Heikura T, Jauhiainen S, Jyrkkänen HK, Kansanen E, et al. Nrf2 gene transfer induces antioxidant enzymes and suppresses smooth muscle cell growth in vitro and reduces oxidative stress in rabbit aorta in vivo. Arterioscler Thromb Vasc Biol. 2007;27(4):741–7.

    Article  CAS  PubMed  Google Scholar 

  79. Murakami S, Motohashi H. Roles of Nrf2 in cell proliferation and differentiation. Free Radic Biol Med. 2015;88(Part B):168–78.

    Article  CAS  PubMed  Google Scholar 

  80. Ghaffari S. Oxidative stress in the regulation of normal and neoplastic hematopoiesis. Antioxid Redox Signal. 2008;10(11):1923–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Murakami S, Shimizu R, Romeo P-H, Yamamoto M, Motohashi H. Keap1-Nrf2 system regulates cell fate determination of hematopoietic stem cells. Genes Cells. 2014;19(3):239–53.

    Article  CAS  PubMed  Google Scholar 

  82. Kobayashi EH, Suzuki T, Funayama R, Nagashima T, Hayashi M, Sekine H, et al. Nrf2 suppresses macrophage inflammatory response by blocking proinflammatory cytokine transcription. Nat Commun. 2016;7:11624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Macoch M, Morzadec C, Genard R, Pallardy M, Kerdine-Romer S, Fardel O, et al. Nrf2-dependent repression of interleukin-12 expression in human dendritic cells exposed to inorganic arsenic. Free Radic Biol Med. 2015;88(Part B):381–90.

    Article  CAS  PubMed  Google Scholar 

  84. Zhou S, Sun W, Zhang Z, Zheng Y. The role of Nrf2-mediated pathway in cardiac remodeling and heart failure. Oxidative Med Cell Longev. 2014;2014:260429.

    Google Scholar 

  85. Narasimhan M, Rajasekaran NS. Exercise, Nrf2 and antioxidant signaling in cardiac aging. Front Physiol. 2016;7(JUN):1–8.

    Google Scholar 

  86. Li J, Ichikawa T, Villacorta L, Janicki JS, Brower GL, Yamamoto M, et al. Nrf2 protects against maladaptive cardiac responses to hemodynamic stress. Arterioscler Thromb Vasc Biol. 2009;29(11):1843–50.

    Article  CAS  PubMed  Google Scholar 

  87. Li S, Wang W, Niu T, Wang H, Li B, Shao L, et al. Nrf2 deficiency exaggerates doxorubicin-induced cardiotoxicity and cardiac dysfunction. Oxidative Med Cell Longev. 2014;2014:748524.

    Google Scholar 

  88. Dokken BB. The pathophysiology of cardiovascular disease and diabetes: beyond blood pressure and lipids. Diabetes Spectr. 2008;21(3):160–5.

    Article  Google Scholar 

  89. Feng J, Anderson K, Singh AK, Ehsan A, Mitchell H, Liu Y, et al. Diabetes upregulation of cyclooxygenase 2 contributes to altered coronary reactivity after cardiac surgery. Ann Thorac Surg 2017 18.

    Google Scholar 

  90. Feng J, Liu Y, Chu LM, Singh AK, Dobrilovic N, Fingleton JG, et al. Changes in microvascular reactivity after cardiopulmonary bypass in patients with poorly controlled versus controlled diabetes. Circulation. 2012;126(11 Suppl 1):S73–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Gu J, Cheng Y, Wu H, Kong L, Wang S, Xu Z, et al. Metallothionein is downstream of Nrf2 and partially mediates sulforaphane prevention of diabetic cardiomyopathy. Diabetes. 2017;66(2):529–42.

    Article  CAS  PubMed  Google Scholar 

  92. Lu J, Guo S, Xue X, Chen Q, Ge J, Zhuo Y, et al. Identification of a novel series of anti-inflammatory and anti-oxidative phospholipid oxidation products containing Cyclopentenone moiety in vitro and in vivo: implication in atherosclerosis. J Biol Chem. 2017;292(13):5378–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Arlt A, Sebens S, Krebs S, Geismann C, Grossmann M, Kruse ML, et al. Inhibition of the Nrf2 transcription factor by the alkaloid trigonelline renders pancreatic cancer cells more susceptible to apoptosis through decreased proteasomal gene expression and proteasome activity. Oncogene. 2013;32(40):4825–35.

    Article  CAS  PubMed  Google Scholar 

  94. Ishikado A, Morino K, Nishio Y, Nakagawa F, Mukose A, Sono Y, et al. 4-Hydroxy Hexenal derived from docosahexaenoic acid protects endothelial cells via Nrf2 activation PLoS One. 2013;8(7).

    Google Scholar 

  95. Lopez-Bernardo E, Anedda A, Sanchez-Perez P, Acosta-Iborra B, Cadenas S. 4-Hydroxynonenal induces Nrf2-mediated UCP3 upregulation in mouse cardiomyocytes. Free Radic Biol Med. 2015;88(Part B):427–38.

    Article  CAS  PubMed  Google Scholar 

  96. Shelton LM, Lister A, Walsh J, Jenkins RE, Wong MHL, Rowe C, et al. Integrated transcriptomic and proteomic analyses uncover regulatory roles of Nrf2 in the kidney. Kidney Int. 2015;88(6):1261–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chen J, Zhang Z, Cai L. Diabetic cardiomyopathy and its prevention by nrf2: current status. Diabetes Metab J. 2014;38(5):337–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Boudina S, Abel ED. Diabetic cardiomyopathy revisited. Circulation. 2007;115(25):3213–23.

    Article  PubMed  Google Scholar 

  99. Olagnier D, Lavergne R-A, Meunier E, Lefèvre L, Dardenne C, Aubouy A, et al. Nrf2, a PPARγ alternative pathway to promote CD36 expression on inflammatory macrophages: implication for malaria. Mota MM, editor. PLoS Pathog. 2011;7(9):e1002254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lutgens E. Atherosclerotic plaque rupture: local or systemic process? Arterioscler Thromb Vasc Biol. 2003;23(12):2123–30.

    Article  CAS  PubMed  Google Scholar 

  101. Raedschelders K, Ansley DM, Chen DDY. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion. Pharmacol Ther. 2012;133(2):230–55.

    Article  CAS  PubMed  Google Scholar 

  102. Kalogeris T, Baines CP, Krenz M, Korthuis RJ. Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol. 2012;298:229–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kalogeris T, Bao Y, Korthuis RJ. Mitochondrial reactive oxygen species: a double edged sword in ischemia/reperfusion vs preconditioning. Redox Biol. 2014;2:702–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Clempus RE, Griendling KK. Reactive oxygen species signaling in vascular smooth muscle cells. Cardiovasc Res. 2006;71:216–25.

    Article  CAS  PubMed  Google Scholar 

  105. Olechnowicz-Tietz S, Gluba A, Paradowska A, Banach M, Rysz J. The risk of atherosclerosis in patients with chronic kidney disease. Int Urol Nephrol. 2013;45(6):1605–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Thomas R, Kanso A, Sedor JR. Chronic kidney disease and its complications. Prim Care Clin Off Pract. 2008;35(2):329–44.

    Article  Google Scholar 

  107. Wang Y-Y, Yang Y-X, Zhe H, He Z-X, Zhou S-F. Bardoxolone methyl (CDDO-Me) as a therapeutic agent: an update on its pharmacokinetic and pharmacodynamic properties. Drug Des Devel Ther. 2014;8:2075–88.

    PubMed  PubMed Central  Google Scholar 

  108. Hybertson B, Gao B, Doan A. The clinical potential of influencing Nrf2 signaling in degenerative and immunological disorders. Clin Pharmacol Adv Appl 2014;19.

    Google Scholar 

  109. Kim JH, Choi YK, Lee KS, Cho DH, Baek YY, Lee DK, et al. Functional dissection of Nrf2-dependent phase II genes in vascular inflammation and endotoxic injury using Keap1 siRNA. Free Radic Biol Med. 2012;53(3):629–40.

    Article  CAS  PubMed  Google Scholar 

  110. Sussan TE, Jun J, Thimmulappa R, Bedja D, Antero M, Gabrielson KL, et al. Disruption of Nrf2, a key inducer of antioxidant defenses, attenuates ApoE-mediated atherosclerosis in mice. PLoS One. 2008;3(11):1–9.

    Article  CAS  Google Scholar 

  111. Barajas B, Che N, Yin F, Rowshanrad A, Orozco LD, Gong KW, et al. NF-E2-related factor 2 promotes atherosclerosis by effects on plasma lipoproteins and cholesterol transport that overshadow antioxidant protection. Arterioscler Thromb Vasc Biol. 2011;31(1):58–66.

    Article  CAS  PubMed  Google Scholar 

  112. Howden R. Nrf2 and cardioascular defense. Oxidative Med Cell Longev. 2013;2013:1–10.

    Google Scholar 

  113. Goldberg LR, Stage B. Heart failure: management of asymptomatic left ventricular systolic dysfunction. Circulation. 2006;113(24):2851–60.

    Article  PubMed  Google Scholar 

  114. Kung G, Konstantinidis K, Kitsis RN. Programmed necrosis, not apoptosis, in the heart. Circ Res. 2011;108(8):1017–36.

    Article  CAS  PubMed  Google Scholar 

  115. Sawyer DB, Colucci WS. Mitochondrial oxidative stress in heart failure : “oxygen wastage” revisited. Circ Res. 2000;86(2):119–20.

    Article  CAS  PubMed  Google Scholar 

  116. Sugamura K, Keaney JF. Reactive oxygen species in cardiovascular disease. Free Radic Biol Med. 2011;51(5):978–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Wallukat G. The beta-adrenergic receptors. Herz. 2002;27(7):683–90.

    Article  PubMed  Google Scholar 

  118. Nishida K, Kyoi S, Yamaguchi O, Sadoshima J, Otsu K. The role of autophagy in the heart. Cell Death Differ. 2009;16(1):31–8.

    Article  CAS  PubMed  Google Scholar 

  119. Lompre A-M, Hajjar RJ, Harding SE, Kranias EG, Lohse MJ, Marks AR. Ca2+ cycling and new therapeutic approaches for heart failure. Circulation. 2010;121(6):822–30.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Shirakabe A, Ikeda Y, Sciarretta S, Zablocki DK, Sadoshima J. Aging and autophagy in the heart. Circ Res. 2016;118(10):1563–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kim AN, Jeon W-K, Lee JJ, Kim B-C. Up-regulation of heme oxygenase-1 expression through CaMKII-ERK1/2-Nrf2 signaling mediates the anti-inflammatory effect of bisdemethoxycurcumin in LPS-stimulated macrophages. Free Radic Biol Med. 2010;49(3):323–31.

    Article  CAS  PubMed  Google Scholar 

  122. Tannous P, Zhu H, Johnstone JL, Shelton JM, Rajasekaran NS, Benjamin IJ, et al. Autophagy is an adaptive response in desmin-related cardiomyopathy. Proc Natl Acad Sci U S A. 2008;105(28):9745–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Xie M, Morales CR, Lavandero S, Hill JA. Tuning flux: autophagy as a target of heart disease therapy. Curr Opin Cardiol. 2011;26(3):216–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kannan S, Muthusamy VR, Whitehead KJ, Wang L, Gomes AV, Litwin SE, et al. Nrf2 deficiency prevents reductive stress-induced hypertrophic cardiomyopathy. Cardiovasc Res. 2013;100(1):63–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. de Haan JB. Limiting reductive stress for treating in-stent stenosis: the heart of the matter? J Clin Invest. 2014;124(12):5092–4.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Margaritelis NV, Kyparos A, Paschalis V, Theodorou AA, Panayiotou G, Zafeiridis A, et al. Reductive stress after exercise: the issue of redox individuality. Redox Biol. 2014;2:520–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Seifirad S, Ghaffari A, Amoli MM. The antioxidants dilemma: are they potentially immunosuppressants and carcinogens? Front Physiol. 2014;5:245.

    PubMed  PubMed Central  Google Scholar 

  128. Bouayed J, Bohn T. Exogenous antioxidants — double-edged swords in cellular redox state health beneficial effects at physiologic doses versus deleterious effects at high doses. Oxidative Med Cell Longev. 2010;3(4):228–37.

    Article  Google Scholar 

  129. Eggler AL, Savinov SN. In: Gang DR, editor. 50 years of phytochemistry research, vol. 2. Cham: Springer; 2013. p. 1–34.

    Google Scholar 

  130. Pasquier B. Autophagy inhibitors. Cell Mol Life Sci. 2016;73(5):985–1001.

    Article  CAS  PubMed  Google Scholar 

  131. Solitro AR, MacKeigan JP. Leaving the lysosome behind: novel developments in autophagy inhibition. Future Med Chem. 2016;8(1):73–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Liu J, Liu Y, Madhu C, Klaassen CD. Protective effects of oleanolic acid on acetaminophen-induced hepatotoxicity in mice. J Pharmacol Exp Ther. 1993;266(3):1607–13.

    CAS  PubMed  Google Scholar 

  133. Honda T, Rounds BV, Gribble GW, Suh N, Wang Y, Sporn MB. Design and synthesis of 2-cyano-3,12-dioxoolean-1,9-dien-28-oic acid, a novel and highly active inhibitor of nitric oxide production in mouse macrophages. Bioorg Med Chem Lett. 1998;8(19):2711–4.

    Article  CAS  PubMed  Google Scholar 

  134. Shay KP, Michels AJ, Li W, Kong A-NT, Hagen TM. Cap-independent Nrf2 translation is part of a lipoic acid-stimulated detoxification stress response. Biochim Biophys Acta, Mol Cell Res. 2012;1823(6):1102–9.

    Article  CAS  PubMed  Google Scholar 

  135. Zhang J, Zhou X, Wu W, Wang J, Xie H, Wu Z. Regeneration of glutathione by α-lipoic acid via Nrf2/ARE signaling pathway alleviates cadmium-induced HepG2 cell toxicity. Environ Toxicol Pharmacol. 2017;51:30–7.

    Article  CAS  PubMed  Google Scholar 

  136. Deng C, Sun Z, Tong G, Yi W, Ma L, Zhao B, et al. α-Lipoic acid reduces infarct size and preserves cardiac function in rat myocardial ischemia/reperfusion injury through activation of PI3K/Akt/Nrf2 pathway. Katare RG, editor. PLoS One. 2013;8(3):e58371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Heinisch BB, Francesconi M, Mittermayer F, Schaller G, Gouya G, Wolzt M, et al. Alpha-lipoic acid improves vascular endothelial function in patients with type 2 diabetes: a placebo-controlled randomized trial. Eur J Clin Investig. 2010;40(2):148–54.

    Article  CAS  Google Scholar 

  138. Wollin SD, Jones PJH. Alpha-lipoic acid and cardiovascular disease. J Nutr. 2003;133(11):3327–30.

    Article  CAS  PubMed  Google Scholar 

  139. Boettler U, Sommerfeld K, Volz N, Pahlke G, Teller N, Somoza V, et al. Coffee constituents as modulators of Nrf2 nuclear translocation and ARE (EpRE)-dependent gene expression. J Nutr Biochem. 2011;22(5):426–40.

    Article  CAS  PubMed  Google Scholar 

  140. Wang Y, Wang B, Du F, Su X, Sun G, Zhou G, et al. Epigallocatechin-3-Gallate attenuates oxidative stress and inflammation in obstructive nephropathy via NF-?B and Nrf2/HO-1 signalling pathway regulation. Basic Clin Pharmacol Toxicol. 2015;117(3):164–72.

    Article  CAS  PubMed  Google Scholar 

  141. Dinkova-Kostova AT, Abramov AY. The emerging role of Nrf2 in mitochondrial function. Free Radic Biol Med. 2015;88(Part B):179–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tai H-C, Chung S-D, Chien C-T, Yu H-J. Sulforaphane improves ischemia-induced detrusor overactivity by downregulating the enhancement of associated endoplasmic reticulum stress, autophagy, and apoptosis in rat bladder. Sci Rep. 2016;6(August 2015):36110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Xu Z, Wang S, Ji H, Zhang Z, Chen J, Tan Y, et al. Broccoli sprout extract prevents diabetic cardiomyopathy via Nrf2 activation in db/db T2DM mice. Sci Rep. 2016;6:30252.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Cominacini L, Mozzini C, Garbin U, Pasini A, Stranieri C, Solani E, et al. Endoplasmic reticulum stress and Nrf2 signaling in cardiovascular diseases. Free Radic Biol Med. 2015;88(Part B):233–42.

    Article  CAS  PubMed  Google Scholar 

  145. Yao J, Zhang B, Ge C, Peng S, Fang J. Xanthohumol, a polyphenol chalcone present in hops, activating Nrf2 enzymes to confer protection against oxidative damage in PC12 cells. J Agric Food Chem. 2015;63(5):1521–31.

    Article  CAS  PubMed  Google Scholar 

  146. Doddapattar P, Radovi B, Patankar JV, Obrowsky S, Jandl K, Nusshold C, et al. Xanthohumol ameliorates atherosclerotic plaque formation , hypercholesterolemia , and hepatic steatosis in ApoE -deficient mice. Mol Biol Rep. 2013;57(10):1718–28.

    CAS  Google Scholar 

  147. Dong WW, Liu YJ, Lv Z, Mao YF, Wang YW, Zhu XY, et al. Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism. Free Radic Biol Med. 2015;88(Part B):404–16.

    Article  CAS  PubMed  Google Scholar 

  148. Ungvari Z, Bagi Z, Feher A, Recchia FA, Sonntag WE, Pearson K, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. AJP Hear Circ Physiol. 2010;299(1):H18–24.

    Article  CAS  Google Scholar 

  149. Arredondo F, Echeverry C, Abin-Carriquiry JA, Blasina F, Antúnez K, Jones DP, et al. After cellular internalization, quercetin causes Nrf2 nuclear translocation, increases glutathione levels, and prevents neuronal death against an oxidative insult. Free Radic Biol Med. 2010;49(5):738–47.

    Article  CAS  PubMed  Google Scholar 

  150. Hung C, Chan S, Chu P, Tsai K. Quercetin is a potent anti-atherosclerotic compound by activation of SIRT1 signaling under oxLDL stimulation. Mol Nutr Food Res. 2015;59(10):1905–17.

    Article  CAS  PubMed  Google Scholar 

  151. Lin W, Wang W, Wang D, Ling W. Quercetin protects against atherosclerosis by inhibiting dendritic cell activation. Mol Nutr Food Res. 2017. (Epub ahead of print).

    Google Scholar 

  152. Kim JH, Na HJ, Kim CK, Kim JY, Ha KS, Lee H, et al. The non-provitamin a carotenoid, lutein, inhibits NF-??B-dependent gene expression through redox-based regulation of the phosphatidylinositol 3-kinase/PTEN/Akt and NF-??B-inducing kinase pathways: role of H2O2 in NF-??B activation. Free Radic Biol Med. 2008;45(6):885–96.

    Article  CAS  PubMed  Google Scholar 

  153. Zhang T, Hu Q, Shi L, Qin L, Zhang Q, Mi M. Equol attenuates atherosclerosis in apolipoprotein E-deficient mice by inhibiting endoplasmic reticulum stress via activation of Nrf2 in endothelial cells. PLoS One. 2016;11(12):1–15.

    Google Scholar 

  154. Yang YC, Lii CK, Wei YL, Li CC, Lu CY, Liu KL, et al. Docosahexaenoic acid inhibition of inflammation is partially via cross-talk between Nrf2/heme oxygenase 1 and IKK/NF-??B pathways. J Nutr Biochem. 2013;24(1):204–12.

    Article  CAS  PubMed  Google Scholar 

  155. Gruber F, Ornelas CM, Karner S, Narzt MS, Nagelreiter IM, Gschwandtner M, et al. Nrf2 deficiency causes lipid oxidation, inflammation, and matrix-protease expression in DHA-supplemented and UVA-irradiated skin fibroblasts. Free Radic Biol Med. 2015;88(Part B):439–51.

    Article  CAS  PubMed  Google Scholar 

  156. Kanninen KM, Pomeshchik Y, Leinonen H, Malm T, Koistinaho J, Levonen AL. Applications of the Keap1-Nrf2 system for gene and cell therapy. Free Radic Biol Med. 2015;88(Part B):350–61.

    Article  CAS  PubMed  Google Scholar 

  157. Lee TM, Lin SZ, Chang NC. Antiarrhythmic effect of lithium in rats after myocardial infarction by activation of Nrf2/HO-1 signaling. Free Radic Biol Med. 2014;77:71–81.

    Article  CAS  PubMed  Google Scholar 

  158. Kerr F, Sofola-Adesakin O, Ivanov DK, Gatliff J, Gomez Perez-Nievas B, Bertrand HC, et al. Direct Keap1-Nrf2 disruption as a potential therapeutic target for Alzheimer?S disease. Lu B, editor. PLoS Genet. 2017;13(3):e1006593.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  159. Castillo-Quan J, Li L, Kinghorn K, Ivanov D, Tain L, Slack C, et al. Lithium promotes longevity through GSK3/NRF2-dependent Hormesis. Cell Rep. 2016;15(3):638–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Menegon S, Columbano A, Giordano S. The dual roles of NRF2 in cancer. Trends Mol Med. 2016;22(7):578–93.

    Article  CAS  PubMed  Google Scholar 

  161. Kalaska B, Piotrowski L, Leszczynska A, Michalowski B, Kramkowski K, Kaminski T, et al. Antithrombotic Effects of pyridinium compounds formed from trigonelline upon coffee roasting. J Agric Food Chemestry. 2014;62:2853–60.

    Article  CAS  Google Scholar 

  162. Kamble HV, Bodhankar SL. Cardioprotective effect of concomitant administration of trigonelline and sitagliptin on cardiac biomarkers, lipid levels, electrocardiographic and haemodynamic modulation on cardiomyopathy in diabetic Wistar rats. Biomed Aging Pathol. 2014;4(4):335–42.

    Article  CAS  Google Scholar 

  163. No JH, Kim Y-B, Song YS. Targeting nrf2 signaling to combat chemoresistance. J cancer Prev. 2014;19(2):111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Li X-W, Wang X-M, Li S, Yang J-R. Effects of chrysin (5,7-dihydroxyflavone) on vascular remodeling in hypoxia-induced pulmonary hypertension in rats. Chin Med. 2015;10(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Lu Y, Wang B, Shi Q, Wang X, Wang D, Zhu L. Brusatol inhibits HIF-1 signaling pathway and suppresses glucose uptake under hypoxic conditions in HCT116 cells. Sci Rep. 2016;6(1):39123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. AJP Lung Cell Mol Physiol. 2014;307(12):L924–35.

    Article  CAS  Google Scholar 

  167. Oudemans-van Straaten HM, Man AMS, de Waard MC. Vitamin C revisited. Crit Care. 2014;18(4):460.

    Article  PubMed  PubMed Central  Google Scholar 

  168. Chan K, Lu R, Chang JC, Kan YW. NRF2, a member of the NFE2 family of transcription factors, is not essential for murine erythropoiesis, growth, and development. Proc Natl Acad Sci U S A. 1996;93(24):13943–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Priestley JRC, Kautenburg KE, Casati MC, Endres BT, Geurts AM, Lombard JH. The NRF2 knockout rat: a new animal model to study endothelial dysfunction, oxidant stress, and microvascular rarefaction. Am J Physiol Heart Circ Physiol. 2016;310(4):H478–87.

    Article  PubMed  Google Scholar 

  170. Fourtounis J, Wang I-M, Mathieu M-C, Claveau D, Loo T, Jackson AL, et al. Gene expression profiling following NRF2 and KEAP1 siRNA knockdown in human lung fibroblasts identifies CCL11/Eotaxin-1 as a novel NRF2 regulated gene. Respir Res. 2012;13(1):92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Dhakshinamoorthy S, Jain AK, Bloom DA, Jaiswal AK. Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J Biol Chem. 2005;280(17):16891–900.

    Article  CAS  PubMed  Google Scholar 

  172. Liu Y, Zheng Y. Bach1 siRNA attenuates bleomycin-induced pulmonary fibrosis by modulating oxidative stress in mice. Int J Mol Med. 2016:91–100.

    Google Scholar 

  173. Kang M-I, Kobayashi A, Wakabayashi N, Kim S-G, Yamamoto M. Scaffolding of Keap1 to the actin cytoskeleton controls the function of Nrf2 as key regulator of cytoprotective phase 2 genes. Proc Natl Acad Sci. 2004;101(7):2046–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hussong M, Börno ST, Kerick M, Wunderlich A, Franz A, Sültmann H, et al. The bromodomain protein BRD4 regulates the KEAP1/NRF2-dependent oxidative stress response. Cell Death Dis. 2014;5(4):e1195.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gounder SS, Kannan S, Devadoss D, Miller CJ, Whitehead KS, Odelberg SJ, et al. Impaired transcriptional activity of Nrf2 in age-related myocardial oxidative stress is reversible by moderate exercise training. PLoS One. 2012;7(9).

    Google Scholar 

  176. Myung S-K, Ju W, Cho B, Oh S-W, Park SM, Koo B-K, et al. Efficacy of vitamin and antioxidant supplements in prevention of cardiovascular disease: systematic review and meta-analysis of randomised controlled trials. BMJ. 2013;346(jan18 1):f10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  177. Conti V, Izzo V, Corbi G, Russomanno G, Manzo V, De Lise F, et al. Antioxidant supplementation in the treatment of aging-associated diseases. Front Pharmacol. 2016;7(February):1–11.

    Google Scholar 

Download references

Acknowledgments

The authors have no acknowledgements to declare.

Conflicts of Interest: The authors have no conflicts of interest to declare.

Memorium: B.J.M. wishes to dedicate this manuscript to the memory of Charles Edward Milliken who was a great scientist, friend, and mentor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taixing Cui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mathis, B.J., Cui, T. (2020). The Role of Nrf2 in the Cardiovascular System and Atherosclerosis. In: Deng, H. (eds) Nrf2 and its Modulation in Inflammation. Progress in Inflammation Research, vol 85. Springer, Cham. https://doi.org/10.1007/978-3-030-44599-7_5

Download citation

Publish with us

Policies and ethics