Skip to main content

Texture Analysis in Skin Cancer Tumor Imaging

  • Chapter
  • First Online:
Multimodal Optical Diagnostics of Cancer

Abstract

The application of different statistical, frequency, and stochastic methods of texture image analysis for differentiation of various malignant and benign tumors is discussed. The skin surface dermatoscopic images were analyzed using Haar transform, Local Binary Patterns, and color histograms evolution. It was found that classification results may be significantly increased by calculating comparative textural descriptors including personal properties of the healthy skin. Optical Coherence Tomography (OCT) technique was used for detecting of internal inhomogeneities. Forty-four optical and textural features extracted from OCT images of healthy and diseased skin have been analyzed using a linear Support Vector Machine classification with k-fold cross-validation and 5-layer decision trees. It was demonstrated that Precision and Recall exceed 97% in a multi-class (Melanoma, Basal Cell Carcinoma, Nevus, etc.) recognition procedure due to an implementation of multi-texture analysis when each from used texture features (Haralick, Tamura, Gabor, Markov Random Field, Complex Directional Field, fractal dimensions) complements each other. It makes possible the recognition of various tumors (malignant as well as benign) contemporaneously with a high-score identification of a tumor type in real clinical conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shortliffe, E.H., Buchanan, B.G.: A model of inexact reasoning in medicine. Math. Biosci. 23, 351–379 (1975). https://doi.org/10.1016/0025-5564(75)90047-4

    Article  Google Scholar 

  2. Buchanan, B.G., Shortliffe, E.H.: Rule-Based Expert Systems: the MYCIN Experiments of the Stanford Heuristic Programming Project. Addison Wesley, Reading (1984)

    Google Scholar 

  3. Philbin, T.: The 100 Greatest Inventions of All Time: A Ranking Past and Present. Citadel Press, New York (2003)

    Google Scholar 

  4. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11), e442 (2006). https://doi.org/10.1371/journal.pmed.0030442

    Article  PubMed  PubMed Central  Google Scholar 

  5. Islami, F., Miller, K.D., Jemal, A.: Cancer burden in the United States – a review. Ann. Cancer Epidemiol. 2(1), 39 (2018). https://doi.org/10.21037/ace.2018.08.02

    Article  Google Scholar 

  6. Goss, P.E., Strasser-Weippl, K., Lee-Bychkovsky, B.L., Fan, L., Li, J., Chavarri-Guerra, Y., Chen, Z.: Challenges to effective cancer control in China, India, and Russia. Lancet Oncol. 15(5), 489–538 (2014). https://doi.org/10.1016/S1470-2045(14)70029-4

    Article  PubMed  Google Scholar 

  7. Davydov, M.I., Aksel, E.M. (eds.): Statistika zlokachestvennykh novoobrazovaniy v Rossii i stranakh SNG v 2012 g. (Statistics of Malignant Neoplasms in Russia and the CIS Countries in 2012). Izdatelskaya gruppa RONTS, Moscow (2014)

    Google Scholar 

  8. Boyle, P., Levin, B. (eds.): World Cancer Report 2008. IARC Press, Geneva (2008)

    Google Scholar 

  9. Friedman, R.J., Gutkowicz-Krusin, D., Farber, M.J., Warycha, M., Schneider-Kels, L., Papastathis, N., Kopf, A.W.: The diagnostic performance of expert dermoscopists vs a computer-vision system on small-diameter melanomas. Arch. Dermatol. 144(4), 476–482 (2008). https://doi.org/10.1001/archderm.144.4.476

    Article  PubMed  Google Scholar 

  10. Drexler, W., Fujimoto, J.G. (eds.): Optical Coherence Tomography: Technology and Applications. Springer, New York (2008)

    Google Scholar 

  11. Drexler, W., Fujimoto, J.G.: State-of-the-art retinal optical coherence tomography. Prog. Retin. Eye Res. 27(1), 45–88 (2008). https://doi.org/10.1016/j.preteyeres.2007.07.005

    Article  PubMed  Google Scholar 

  12. Mogensen, M., Thrane, L., Jørgensen, T.M., Andersen, P.E., Jemec, G.B.: OCT imaging of skin cancer and other dermatological diseases. J. Biophotonics. 2(6-7), 442–451 (2009). https://doi.org/10.1002/jbio.200910020

    Article  PubMed  Google Scholar 

  13. Mogensen, M., Nürnberg, B.M., Forman, J.L., Thomsen, J.B., Thrane, L., Jemec, G.B.E.: In vivo thickness measurement of basal cell carcinoma and actinic keratosis with optical coherence tomography and 20-MHz ultrasound. Br. J. Dermatol. 160(5), 1026–1033 (2009). https://doi.org/10.1111/j.1365-2133.2008.09003.x

  14. Massone, C., Di Stefani, A., Soyer, H.P.: Dermoscopy for skin cancer detection. Curr. Opin. Oncol. 17(2), 147–153 (2005). https://doi.org/10.1097/01.cco.0000152627.36243.26

    Article  PubMed  Google Scholar 

  15. Argenziano, G., Fabbrocini, G., Carli, P., De Giorgi, V., Sammarco, E., Delfino, M.: Epiluminescence microscopy for the diagnosis of doubtful melanocytic skin lesions: comparison of the ABCD rule of dermatoscopy and a new 7-point checklist based on pattern analysis. Arch. Dermatol. 134(12), 1563–1570 (1998). https://doi.org/10.1001/archderm.134.12.1563

    Article  CAS  PubMed  Google Scholar 

  16. Benvenuto-Andrade, C., Dusza, S.W., Agero, A.L.C., Scope, A., Rajadhyaksha, M., Halpern, A.C., Marghoob, A.A.: Differences between polarized light dermoscopy and immersion contact dermoscopy for the evaluation of skin lesions. Arch. Dermatol. 143(3), 329–338 (2007). https://doi.org/10.1001/archderm.143.3.329

    Article  PubMed  Google Scholar 

  17. Kaliyadan, F.: The scope of the dermoscope. Indian Dermatol. Online J. 7, 359–363 (2016). https://doi.org/10.4103/2229-5178.190496

    Article  PubMed  PubMed Central  Google Scholar 

  18. Moncrieff, M., Cotto, S., Claridge, E., Hall, P.: Spectrophotometric intracutaneous analysis: a new technique for imaging pigmented skin lesions. Br. J. Dermatol. 146(3), 448–457 (2002). https://doi.org/10.1046/j.1365-2133.2002.04569.x

    Article  CAS  PubMed  Google Scholar 

  19. Monheit, G., Cognetta, A.B., Ferris, L., Rabinovitz, H., Gross, K., Martini, M., King, R.: The performance of MelaFind: a prospective multicenter study. Arch. Dermatol. 147(2), 188–194 (2011). https://doi.org/10.1001/archdermatol.2010.302

    Article  PubMed  Google Scholar 

  20. Mirmehdi, M., Xie, X., Suri, J. (eds.): Handbook of Texture Analysis. Imperial College Press, London (2008)

    Google Scholar 

  21. Petrou, M.: Image Processing: Dealing with Texture, vol. 1. Wiley, Chichester (2006)

    Book  Google Scholar 

  22. Pietikäinen, M.K. (ed.): Texture Analysis in Machine Vision, pp. 197–206. World Scientific, Singapore (2000)

    Google Scholar 

  23. Haralick, R.M.: Statistical and structural approaches to texture. Proc. IEEE. 67(5), 786–804 (1979)

    Article  Google Scholar 

  24. Dubes, R.C., Jain, A.K.: Random field models in image analysis. J. Appl. Stat. 20(5-6), 121–154 (1993). https://doi.org/10.1080/02664769300000062

    Article  Google Scholar 

  25. Ahuja, N., Rosenfeld, A.: Mosaic models for textures. IEEE Trans. Pattern Anal. Mach. Intell. 1, 1–11 (1981). https://doi.org/10.1109/TPAMI.1981.4767045

    Article  Google Scholar 

  26. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (arXiv, 2014). https://arxiv.org/abs/1409.1556. Accessed 14 June 2019

  27. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugenics. 7(2), 179–188 (1936). https://doi.org/10.1111/j.1469-1809.1936.tb02137.x

    Article  Google Scholar 

  28. Cristianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  29. Olson, D.L., Delen, D.: Advanced Data Mining Techniques. Springer, New York (2008)

    Google Scholar 

  30. Abbasi, N.R., Shaw, H.M., Rigel, D.S., Friedman, R.J., McCarthy, W.H., Osman, I., Polsky, D.: Early diagnosis of cutaneous melanoma: revisiting the ABCD criteria. JAMA. 292(22), 2771–2776 (2004). https://doi.org/10.1001/jama.292.22.2771

    Article  CAS  PubMed  Google Scholar 

  31. Walter, F.M., Prevost, A.T., Vasconcelos, J., Hall, P.N., Burrows, N.P., Morris, H.C., Emery, J.D.: Using the 7-point checklist as a diagnostic aid for pigmented skin lesions in general practice: a diagnostic validation study. Br. J. Gen. Pract. 63(610), e345–e353 (2013). https://doi.org/10.3399/bjgp13X667213

    Article  PubMed  PubMed Central  Google Scholar 

  32. Myakinin, O.O., Zakharov, V.P., Bratchenko, I.A., Artemyev, D.N., Neretin, E.Y., Kozlov, S.V.: Proc. SPIE. 9599, 95992B (2015). https://doi.org/10.1117/12.2188165

    Article  Google Scholar 

  33. Tou, J.T., Gonzalez, R.C.: Pattern Recognition Principles, 2nd edn. Addison-Wesley Pub. Co., Boston (1977)

    Google Scholar 

  34. Wadhawan, T., Situ, N., Rui, H., Lancaster, K., Yuan, X., Zouridakis, G.: 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 3180–3183 (2011). https://doi.org/10.1109/IEMBS.2011.6090866

  35. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Pearson, London (2007)

    Google Scholar 

  36. Wang, L., He, D.C.: Texture classification using texture spectrum. Pattern Recogn. 23(8), 905–910 (1990). https://doi.org/10.1016/0031-3203(90)90135-8

    Article  Google Scholar 

  37. Raupov, D.S., Myakinin, O.O., Bratchenko, I.A., Zakharov, V.P., Khramov, A.G.: Multimodal texture analysis of OCT images as a diagnostic application for skin tumors. J. Biomed. Photon. Eng. 3(1), 010307 (2017). https://doi.org/10.18287/JBPE17.03.010307

    Article  Google Scholar 

  38. Gao, W., Zakharov, V.P., Myakinin, O.O., Bratchenko, I.A., Artemyev, D.N., Kornilin, D.V.: Medical images classification for skin cancer using quantitative image features with optical coherence tomography. J. Innovative Opt. Health Sci. 9(2), 1650003 (2016). https://doi.org/10.1142/S1793545816500036

    Article  CAS  Google Scholar 

  39. Puvanathasan, P., Bizheva, K.: Interval type-II fuzzy anisotropic diffusion algorithm for speckle noise reduction in optical coherence tomography images. Opt. Express. 17(2), 733–746 (2009). https://doi.org/10.1364/OE.17.000733

    Article  PubMed  Google Scholar 

  40. Haralick, R.M., Shanmugam, K.: Textural features for image classification. IEEE Trans. Syst. Man Cybern. 3(6), 610–621 (1973). https://doi.org/10.1109/TSMC.1973.4309314

    Article  Google Scholar 

  41. Fogel, I., Sagi, D.: Gabor filters as texture discriminator. Biol. Cybern. 61(2), 103–113 (1989). https://doi.org/10.1007/BF00204594

    Article  Google Scholar 

  42. Tamura, H., Mori, S., Yamawaki, T.: Textural features corresponding to visual perception. IEEE Trans. Syst. Man Cybern. 8(6), 460–473 (1978). https://doi.org/10.1109/TSMC.1978.4309999

    Article  Google Scholar 

  43. Voss, R.F.: Fundamental algorithms for computer graphics. In: Earnshaw, R.A. (ed.) Random Fractal Forgeries, pp. 805–835. Springer, Berlin (1985)

    Google Scholar 

  44. Ahammer, H.: Higuchi dimension of digital images. PLoS One. 6(9), e24796 (2011). https://doi.org/10.1371/journal.pone.0024796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sarkar, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. 24(1), 115–120 (1994). https://doi.org/10.1109/21.259692

    Article  Google Scholar 

  46. Ilyasova, N.U., Ustinov, A.V., Khramov, A.G.: Comput. Opt. 18, 150–164 (1998)

    Google Scholar 

  47. Plastinin, A.I., Kupriyanov, A.V.: A model of Markov random field in texture image synthesis and analysis. Proc. Samara State Aerosp. Univ. 2, 252–257 (2008)

    Google Scholar 

  48. Weszka, J.S., Dyer, C.R., Rosenfeld, A.: A comparative study of texture measures for terrain classification. IEEE Trans. Syst. Man Cybern. 4, 269–285 (1976). https://doi.org/10.1109/TSMC.1976.5408777

    Article  Google Scholar 

  49. Zayed, N., Elnemr, H.A.: Statistical analysis of Haralick texture features to discriminate lung abnormalities. J. Biomed. Imaging. 2015, 267807 (2015). https://doi.org/10.1155/2015/267807

    Article  Google Scholar 

  50. Park, M., Jin, J.S., Wilson, L.S.: Fifth IEEE Southwest Symposium on Image Analysis and Interpretation, pp. 178–182 (2002). https://doi.org/10.1109/IAI.2002.999914

  51. Palm, C., Keysers, D., Lehmann, T., Spitzer, K.: Gabor filtering of complex hue/saturation images for color texture classification. Proc. JCIS. 2000, 45–49 (2000)

    Google Scholar 

  52. Flueraru, C., Popescu, D.P., Mao, Y., Chang, S., Sowa, M.G.: Added soft tissue contrast using signal attenuation and the fractal dimension for optical coherence tomography images of porcine arterial tissue. Phys. Med. Biol. 55(8), 2317 (2010). https://doi.org/10.1088/0031-9155/55/8/013

    Article  CAS  PubMed  Google Scholar 

  53. Sullivan, A.C., Hunt, J.P., Oldenburg, A.L.: Fractal analysis for classification of breast carcinoma in optical coherence tomography. J. Biomed. Opt. 16(6), 066010 (2011). https://doi.org/10.1117/1.3590746

    Article  PubMed  Google Scholar 

  54. Gao, W.. PhD thesis, University of Miami (2012)

    Google Scholar 

  55. Annadhason, A.: Methods of fractal dimension computation. IRACST. 2(1), 166–169 (2012)

    Google Scholar 

  56. Florindo, J.B., Martinez Bruno, O.: Fractal descriptors in the Fourier domain applied to color texture analysis. Chaos. 21(4), 043112 (2011). https://doi.org/10.1063/1.3650233

    Article  PubMed  Google Scholar 

  57. Salomatina, E.V., Jiang, B., Novak, J., Yaroslavsky, A.N.: Optical properties of normal and cancerous human skin in the visible and near-infrared spectral range. J. Biomed. Opt. 11(6), 064026 (2006). https://doi.org/10.1117/1.2398928

    Article  PubMed  Google Scholar 

  58. Yamashita, T., Kuwahara, T., Gonzalez, S., Takahashi, M.: Non-invasive visualization of melanin and melanocytes by reflectance-mode confocal microscopy. J. Investig. Dermatol. 124(1), 235–240 (2005). https://doi.org/10.1111/j.0022-202X.2004.23562.x

    Article  CAS  PubMed  Google Scholar 

  59. Winkler, G.: Image Analysis, Random Fields and Dynamic Monte Carlo Methods. Springer, New York (1995)

    Book  Google Scholar 

  60. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, New York (2009). https://doi.org/10.1007/978-1-84800-279-1

    Book  Google Scholar 

  61. Raupov, D.S., Myakinin, O.O., Bratchenko, I.A., Zakharov, V.P., Khramov, A.G.: Skin cancer texture analysis of OCT images based on Haralick, fractal dimension, Markov random field features, and the complex directional field features. Proc. SPIE. 10024, 100244I (2016). https://doi.org/10.1117/12.2246446

    Article  Google Scholar 

  62. Celebi, M.E., Wen, Q., Iyatomi, H., Shimizu, K., Zhou, H., Schaefer, G.: A state-of-the-art survey on lesion border detection in dermoscopy images. Dermosc. Image Anal. 2015, 97–129 (2015). https://doi.org/10.1201/b19107-5

    Article  Google Scholar 

  63. Zakharov, V.P., Bratchenko, I.A., Myakinin, O.O., Artemyev, D.N., Kornilin, D.V., Kozlov, S.V., Moryatov, A.A.: Multimodal diagnosis and visualisation of oncologic pathologies. Quantum Electron. 44(8), 726–731 (2014). https://doi.org/10.1070/QE2014v044n08ABEH015545

    Article  CAS  Google Scholar 

  64. Moon, Y., Han, J.H., Choi, J.H., Shin, S., Kim, Y.C., Jeong, S.: Mapping of cutaneous melanoma by femtosecond laser-induced breakdown spectroscopy. J. Biomed. Opt. 24(3), 031011 (2018). https://doi.org/10.1117/1.JBO.24.3.031011

    Article  PubMed Central  Google Scholar 

  65. Raupov, D.S., Myakinin, O.O., Bratchenko, I.A., Zakharov, V.P., Khramov, A.G.: Analysis of 3D OCT images for diagnosis of skin tumors. Proc. SPIE. 10716, 1071608 (2018). https://doi.org/10.1117/12.2305405

    Article  Google Scholar 

  66. Sawyer, T.W., Chandra, S., Rice, P.F., Koevary, J.W., Barton, J.K.: Three-dimensional texture analysis of optical coherence tomography images of ovarian tissue. Phys. Med. Biol. 63(23), 235020 (2018). https://doi.org/10.1088/1361-6560/aaefd2

    Article  PubMed  PubMed Central  Google Scholar 

  67. Gossage, K.W., Tkaczyk, T.S., Rodriguez, J.J., Barton, J.K.: Texture analysis of optical coherence tomography images: feasibility for tissue classification. J. Biomed. Opt. 8(3), 570–576 (2003). https://doi.org/10.1117/1.1577575

    Article  PubMed  Google Scholar 

  68. Lindenmaier, A.A., Conroy, L., Farhat, G., DaCosta, R.S., Flueraru, C., Vitkin, I.A.: Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo. Opt. Lett. 38(8), 1280 (2013). https://doi.org/10.1364/ol.38.001280

  69. de Moura, J., Vidal, P.L., Novo, J., Rouco, J., Ortega, M.: Proc. Comput. Sci. 112, 1369–1377 (2017). https://doi.org/10.1016/j.procs.2017.08.043

    Article  Google Scholar 

  70. Marvdashti, T., Duan, L., Aasi, S.Z., Tang, J.Y., Bowden, A.K.E.: Classification of basal cell carcinoma in human skin using machine learning and quantitative features captured by polarization sensitive optical coherence tomography. Biomed. Opt. Express. 7(9), 3721–3735 (2016). https://doi.org/10.1364/BOE.7.003721

    Article  PubMed  PubMed Central  Google Scholar 

  71. Adabi, S., Hosseinzadeh, M., Noei, S., Conforto, S., Daveluy, S., Clayton, A., Nasiriavanaki, M.: Universal in vivo textural model for human skin based on optical coherence tomograms. Sci. Rep. 7(1), 17912 (2017). https://doi.org/10.1038/s41598-017-17398-8

  72. Xiong, Y.-Q., Mo, Y., Wen, Y.-Q., Cheng, M.-J., Huo, S.-T., Chen, X.-J., Chen, Q.: Optical coherence tomography for the diagnosis of malignant skin tumors: a meta-analysis. J. Biomed. Opt. 23(2), 020902 (2018). https://doi.org/10.1117/1.JBO.23.2.020902s

    Article  Google Scholar 

  73. Boone, M.A.L.M., Suppa, M., Dhaenens, F., Miyamoto, M., Marneffe, A., Jemec, G.B.E., Del Marmol, V., Nebosis, R.: In vivo assessment of optical properties of melanocytic skin lesions and differentiation of melanoma from non-malignant lesions by high-definition optical coherence tomography. Arch. Dermatol. Res. 308(1), 7–20 (2016). https://doi.org/10.1007/s00403-015-1608-5

  74. Esteva, A., Kuprel, B., Novoa, R.A., Ko, J., Swetter, S.M., Blau, H.M., Thrun, S.: Dermatologist-level classification of skin cancer with deep neural networks. Nature. 542(7639), 115–118 (2017). https://doi.org/10.1038/nature21056

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the grant # 19-52-18001 Bolg_a of the Russian Foundation of Basic Research. We are very thankful to Dr. Wei Gao from Ningbo University of Technology, China for Matlab scripts for denoising and fractal dimension calculating, as well as not a long but productive work together in Samara National Research University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg O. Myakinin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Myakinin, O.O., Khramov, A.G., Raupov, D.S., Konovalov, S.G., Kozlov, S.V., Moryatov, A.A. (2020). Texture Analysis in Skin Cancer Tumor Imaging. In: Tuchin, V.V., Popp, J., Zakharov, V. (eds) Multimodal Optical Diagnostics of Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-44594-2_13

Download citation

Publish with us

Policies and ethics