Skip to main content

Bioactive Compounds of Black Bean (Phaseolus vulgaris L.)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Abstract

Nutrition and diseases are knottily related; they cannot be separated in any way whatsoever. Epidemiological investigations have reported that consistent intake of plant-based foods, i.e., vegetables, legumes, and fruits, is associated with reduced incidence of heart-related diseases, cancer, and cardiovascular diseases. Legumes, particularly black beans (Phaseolus vulgaris L.), are popularly consumed in many parts of the world and are a staple food in Central America and East and West African countries, where they are a major source of vitamins, proteins, energy, and minerals. This review gathers up-do-date studies on this plant species and has discovered that P. vulgaris is rich in anthocyanins, flavonols, flavones, and tannins, and only twenty-eight compounds have been identified to date from this bean. One of the objectives of this review is to gather evidence available in the scientific literature on the observed biology of this bean (in vitro and in vivo studies), which is commonly rejected by many in Nigeria. Anticancer, antidiabetic, and antioxidant effects are among the most prominent activities associated with P. vulgaris, making obvious the hidden benefits that this plant species possesses. In contrast, “Phytohemagglutinin,” a toxic protein present in most common beans, includeing P. vulgaris, but cooking for at least 30 min deactivates this compound. There are indications that black beans have enormous potential as a functional food, though more pharmacological facts are needed to justify this claim. Modern metabolomics may be employed to help researchers know the compounds responsible for some of its effects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

5-HTP:

5-hydroxytryptophan

ABTS:

2,2′-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid

b.w:

Body Weight

Caco-2:

human epithelial cell line

DPPH:

2,2-diphenyl-1-picrylhydrazyl.

FST:

Force swim test

HepG2:

a human liver cancer cell line

HTRs:

induced head-twitch responses

MCF7:

a breast cancer cell line

MDA-MB231:

Cell Line human breast adenocarcinoma

PC3:

a human prostate cancer cell line

PRSC:

Peroxyl Radical Scavenging Capacity

References

  1. Farhadi S, Ovchinnikov RS (2018) The relationship between nutrition and infectious diseases: a review. Biomed Biotechnol Res J 2:168–172

    Article  Google Scholar 

  2. Cervantes-Ríos E, Ortiz-Muñiz R, Martínez-Hernández AL, Cabrera-Rojo L, Graniel-Guerrero J, Rodríguez-Cruz L (2012) Malnutrition and infection influence the peripheral blood reticulocyte micronuclei frequency in children. Mutat Res 731:68–74

    Article  PubMed  CAS  Google Scholar 

  3. Kim DE, Jang MJ, Kim YR, Lee JY, Cho EB, Kim E (2017) Prediction of drug-induced immune-mediated hepatotoxicity using hepatocyte-like cells derived from human embryonic stem cells. Toxicology 387:1–9

    Article  CAS  PubMed  Google Scholar 

  4. Black RE, Morris SS, Bryce J (2003) Where and why are 10 million children dying every year? Lancet 361:2226–2234

    Article  PubMed  Google Scholar 

  5. Stoltzfus RJ, Kvalsvig JD, Chwaya HM (2001) Effects of iron supplementation and anthelmintic treatment on motor and language development of preschool children in Zanzibar: double blind, placebo controlled study. BMJ 323:1389–1349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wortmann CS (2006) Phaseolus vulgaris L. (common bean): Prota 1: cereals and pulses/Céréales et légumes secs. http://database.prota.org/PROTAhtml/Phaseolus%20vulgar is%20(common%20bean)_En.htm

  7. Phillips R, Rix M (1993) Vegetables. Random House, New York. ISBN 9780679750246

    Google Scholar 

  8. Bello OM, Fasinu PS, Ogbesejana AB, Bello OE, Dada OA, Aloko S, Ibitoye OS, Adetunji CO, Oguntoye OS (2019a) Wild vegetable Rumex acetosa Linn.; unrecognized functional food, its pharmacology, phytochemistry and nutritional advantages – a review. S Afr J Bot. https://doi.org/10.1016/j.sajb.2017.08.002

  9. Bahadoran Z, Mirmiran P (2015) Potential properties of legumes as important functional foods for management of type 2 diabetes. Int J Nutr Food Sci 4(2-1):6–9. https://doi.org/10.11648/j.ijnfs.s.2015040201.12

    Article  Google Scholar 

  10. Kris-Etherton PM, Hecker KD, Bonanome A, Coval SM, Binkoski AE, Hilpert KF, Etherton TD (2002) Bioactive compounds in foods: their role in the prevention of cardiovascular disease and cancer. Am J Med 113(9):71–88

    Article  Google Scholar 

  11. Bello OM, Jagaba SM, Abubakar SM, Ogbesejana AB, Bello OE, Ali T (2019b) Recent perception of the ethnomedicinal importance of Acacia ataxacantha DC.; its pharmacology, phytochemistry and therapeutic gains. FUDMA J Sci 3(1):90–99

    Google Scholar 

  12. Block G, Patterson B, Subar A (1992) Fruit, vegetables and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  CAS  PubMed  Google Scholar 

  13. Willett WC (1994) Diet and health: what should we eat? Science 254:532–537

    Article  Google Scholar 

  14. Willett WC (2002) Balancing life-style and genomics research for disease prevention. Science 296:695–698

    Article  CAS  PubMed  Google Scholar 

  15. Liu RH (2004) Potential synergy of phytochemicals in cancer prevention: mechanism of action. J Nutr 134:3479S–3485S

    Article  CAS  PubMed  Google Scholar 

  16. The Plant List: a working list of all plant species. Accessed 5 May 2019

    Google Scholar 

  17. Gepts P, Debouck DG (1991) Origin, domestication, and evolution of the common bean (Phaseolus vulgaris L.). In: van Schoonhoven A, Voysest O (eds) Common Bean: research for crop improvement. CABI, Wallingford

    Google Scholar 

  18. Gentry HS (1969) Origin of the Common Bean, Phaseolus vulgaris. Econ Bot New York: New York Botanical Garden Press 23(1):55–69

    Article  Google Scholar 

  19. Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131(3):872–877. https://doi.org/10.1104/pp.017004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Porch T, Beaver JS, Debouck DG, Jackson SA, Kelly JD, Dempewolf H (2013) Use of wild relatives and closely related species to adapt common bean to climate change. Agronomy 3(2):433–461. https://doi.org/10.3390/agronomy3020433

    Article  Google Scholar 

  21. Broughton WJ, Hernandez G, Blair M, Beebe S, Gepts P, Vanderleydenet J (2003) Beans (Phaseolus Spp.) – model food legumes. Plant Soil 252(1):55–128

    Article  CAS  Google Scholar 

  22. Chacón SMI, Pickersgill B, Debouck DG, Arias JS (2007) Phylogeographic analysis of the chloroplast DNA variation in wild common bean (Phaseolus vulgaris L.) in the Americas. Plant Syst Evo 266(3):175–195. https://doi.org/10.1007/s00606-007-0536-z

    Article  CAS  Google Scholar 

  23. Nasir E, Ali SI (1977) Flora of West Pakistan. No. 100, Papilionaceae. Department of Botany, University of Karachi, Karachi, pp 239–252

    Google Scholar 

  24. Aparicio-Fernandez X, Yousef GG, Loarca-Pina G, de Mejia E, Ann M (2005) LilaCharacterization of polyphenolics in the seed coat of Black Jamapa Bean (Phaseolus vulgaris L.). J Agric Food Chem 53(11):4615–4622. https://doi.org/10.1021/jf047802o

    Article  CAS  PubMed  Google Scholar 

  25. Deshpande SS, Cheryan M (1986) Water uptake during cooking of dry beans (Phaseolus vulgaris L.). Plant Food Hum Nutr 36:157–165. https://doi.org/10.1007/BF01092032

    Article  Google Scholar 

  26. Devi M, Sharma R (2014) Antidepressant activity of aqueous extract of Phaseolus vulgaris (black bean) in rodent models of depression. Int J Nutr Pharm Neurol Dis 4:118–1124

    Article  Google Scholar 

  27. Jawaid T, Kamal M, Kumar S (2017) Antihypertensive effect of the alcoholic extract of seeds of Phaseolus vulgaris Linn. (Fabaceae) on high salt diet induced hypertension in male rats. Int J Pharm Sci Res 8(7):3092–3097. https://doi.org/10.13040/IJPSR.0975-8232.8(7).3092-97

    Article  CAS  Google Scholar 

  28. Audu SS, Aremu MO (2011) Nutritional composition of raw and processed pinto bean (Phaseolus vulgaris L.) grown in Plateau State, Nigeria. J Food Agric Environ 9(3&4):72–80

    CAS  Google Scholar 

  29. Purseglove JW (1968) Tropical crops: dicotyledons. Longmans, London

    Google Scholar 

  30. Ikezu UJM, Udeozo IP, Egbe DE (2015) Phytochemical and proximate analysis of Black Turtle Beans (Phaseolus vulgaris). Afr J Basic Appl Sci 7(2):88–90

    Google Scholar 

  31. Voysest O, Dessert M (1991) Bean cultivars: classes and commercial seed types. In: van Schoonhoven A, Voysest O (eds) Common beans: research for crop improvement. Commonwealth Agricultural Bureaux International, Wallingford, pp 119–162

    Google Scholar 

  32. Brücher H (1988) The wild ancestor of Phaseolus vulgaris in South America. In: Gepts P (ed) Genetic resources of Phaseolus Beans. Kluwer Academic Publishers, Dordrecht, pp 185–214

    Chapter  Google Scholar 

  33. Delgado-Salinas A, Bonet A, Gepts P (1988) The wild relative of Phaseolus vulgaris in middle America. In: Gepts P (ed) Genetic resources of Phaseolus Beans. Kluwer Academic Publishers, Dordrecht, pp 163–184

    Chapter  Google Scholar 

  34. García EH, Valdivia CB, Aguirre JR, Muruaga JS (1997) Morphological and agronomic traits of a wild population and an improved cultivar of common bean (Phaseolus vulgaris L.). Ann Bot 79:207–213. http://aob.oxfordjournals.org/content/79/2/207.full.pdf

    Article  Google Scholar 

  35. Zainish M, Saleem SA, Hasan MM (2016) Phaseolus vulgaris Linn.: botany, medicinal uses, phytochemistry and pharmacology. World J Pharm Res 5(11):1611–1616

    Google Scholar 

  36. Kwak M, Toro O, Debouck DG, Gepts P (2012) Multiple origins of the determinate growth habit in domesticated common bean (Phaseolus vulgaris). Ann Bot 110(8):1573–1580. https://doi.org/10.1093/aob/mcs207

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gouveia CSS, Freitas G, De Brito JH, Slaski JJ, Pinheiro De Carvalho MAA (2014) Nutritional and mineral variability in 52 accessions of common bean varieties (Phaseolus vulgaris L.) from Madeira Island. Agric Sci 5:317–329. https://doi.org/10.4236/as.2014.54034

    Article  CAS  Google Scholar 

  38. Jacinto-Hernández C, Sánchez HH, Susana Azpíroz Rivero H, AcostaGallegos JA, Lugo IB (2002) Caracterización de una población de líneas endogámicas de frijol común por su calidad de cocción y algunos componentes nutrimentales. Agrociencia 36:451–459. http://www.redalyc.org/articulo.oa?id=30236406

    Google Scholar 

  39. Jacinto-Hernández C, Campos EA (1993) Efecto de la cocción sobre algunas características nutricionales del frijol. Rev Agron Mesoam 4:42–47. (English abstract) http://www.mag.go.cr/rev_meso/v04n01_042.pdf

    Article  Google Scholar 

  40. Kiers JL, Nout MJR, Rombouts FM (2000) In vitro digestibility of processed and fermented soya bean, cowpea and maize. J Sci Food Agric 80:1325–1331

    Article  CAS  Google Scholar 

  41. Batista KA, Prudêncio SH, Fernandes KF (2010. PMID:20492281) Changes in the functional properties and antinutritional factors of extruded hard-to-cook common beans (Phaseolus vulgaris L.). J Food Sci 75(3):C286–C290. https://doi.org/10.1111/j.1750-3841.2010.01557.x

    Article  CAS  PubMed  Google Scholar 

  42. Poel TFB, Blonk J, Van Zuilichem DJ, Van Oort MG (1990) Thermal inactivation of lectins and trypsin inhibitor activity during steam processing of dry beans (Phaseolus vulgaris) and effects on protein quality. J Sci Food Agric 53(2):215–228. http://onlinelibrary.wiley.com/doi/10.1002/jsfa.2740530209/pdf

    Article  Google Scholar 

  43. Romero J, Ryan DS (1978) Susceptibility of the major storage protein of the bean, Phaseolus vulgaris L., to in vitro enzymic hydrolysis. J Agric Food Chem 26(4):784–788

    Article  CAS  PubMed  Google Scholar 

  44. Anderson JW, Smith BM, Washnock CS (1999) Cardiovascular and renal benefits of dry bean and soybean intake. Am J Clin Nutr 70(suppl):464–474

    Article  Google Scholar 

  45. Cvitanich C, Przybyłowicz WJ, Mesjasz-Przybyłowicz J, Blair MW, Astudillo C, Elżbieta O, Jurkiewicz AM, Jensen EØ, Stougaard J (2011) Micro-PIXE investigation of bean seeds to assist micronutrient biofortification. Nucl Instrum Methods Phys Res Sect B 269(20):2297–2302. www.sciencedirect.com/science/article/pii/S0168583X11002308

    Article  CAS  Google Scholar 

  46. Lombardi-Boccia G, De Santis N, Di Lullo G, Carnovale E (1995) Impact of processing on FE dialysability from bean (Phaseolus vulgaris L.). Food Chem 53(2):191–195

    Article  CAS  Google Scholar 

  47. Amaya H, Acevedo E, Bressani R (1991) Efecto del recalientamiento sobre la disponibilidad de hierro y del valor nutritivo de la proteína del frijol negro (Phaseolus vulgaris) cocido. Arch Latinoam Nutr 41(2):222–237

    CAS  PubMed  Google Scholar 

  48. Messina V (2014) Nutritional and health benefits of dried beans. Am J Clin Nutr 100:437S–442S

    Article  CAS  PubMed  Google Scholar 

  49. Okafor DC, Enwereuzoh RO, Ibeabuchi JC, Uzoukwu AE, Alagbaoso SO, Udenkwo C (2015) Production of flour types from Black Bean (Phaseolus Vulgaris) and effect of pH and temperature on functional physico-chemical properties of the flours. Eur J Food Sci Technol 3(2):64–84

    Google Scholar 

  50. Ganesan K, Xu B (2017) Polyphenol-rich dry Common Beans (Phaseolus vulgaris L.) and their health benefits. Int J Mol Sci 18(11):2331. https://doi.org/10.3390/ijms18112331

    Article  CAS  PubMed Central  Google Scholar 

  51. Oomah BD, Blanchard C, Balasubramanian P (2008) Phytic acid, phytase, minerals, and antioxidant activity in Canadian dry bean (Phaseolus vulgaris L.) cultivars. J Agric Food Chem 56(23):11312–11319

    Article  CAS  PubMed  Google Scholar 

  52. Campos-Vega R, Vergara-Castañeda HA, Oomah BD (2012) Functional food sources: beans in sight. In: Popescu E, Golubev I (eds) Beans: nutrition, consumption and health, Ch.1. Nova Science Publishers, Inc, New York, pp 1–56

    Google Scholar 

  53. Marles MAS, Vandenberg A, Bett KE (2008) Polyphenol oxidase activity and differential accumulation of polyphenolics in seed coats of Pinto Bean (Phaseolus vulgaris L.) characterize postharvest color changes. J Agric Food Chem 56(16):7049–7056

    Article  CAS  PubMed  Google Scholar 

  54. Xu B, Chang SKC (2009) Total phenolic, phenolic acid, anthocyanin, Flavan-3-ol, and Flavonol profiles and antioxidant properties of Pinto and Black Beans (Phaseolus vulgaris L.) as affected by thermal processing. J Agric Food Chem 57(11):4754–4764

    Article  CAS  PubMed  Google Scholar 

  55. Luthria DL, Pastor-Corrales MA (2006) Phenolic acids content of fifteen dry edible bean (Phaseolus vulgaris L.) varieties. J Food Comp Anal 19:205–211. http://www.sciencedirect.com/science/article/pii/S0889157505000992

    Article  CAS  Google Scholar 

  56. Espinosa-Alonso LG, Lygin A, Widholm JM, Valverde ME, Paredes-Lopez O (2006) Polyphenols in wild and weedy Mexican common beans (Phaseolus vulgaris L.). J Agric Food Chem 54(12):4436–4444

    Article  CAS  PubMed  Google Scholar 

  57. Díaz-Batella, L. Widholm, J. M., Fahey, G. C., Castano-Tostado, E., & ˜Paredes-Lopez, O. (2006), "Chemical components with health implications in wild and cultivated Mexican common bean seeds (Phaseolus vulgaris L.)", J Agric Food Chem. 54 (6):2045-2052

    Article  CAS  Google Scholar 

  58. Ombra MN, d’Acierno A, Nazzaro F, Riccardi R, Spigno P, Zaccardelli M, Pane C, Maione M, Fratianni F (2016) Phenolic composition and antioxidant and antiproliferative activities of the extracts of twelve Common Bean (Phaseolus vulgaris L.) Endemic ecotypes of Southern Italy before and after cooking. Oxid Med Cell Longev 12:1–12. Article ID 1398298. https://doi.org/10.1155/2016/1398298

  59. Chavez-Santoscoy RA, Gutierrez-Uribe JA, Granados O, Torre-Villalvazo I, Serna-Saldivar SO, Torres N, Palacios-Gonza B (2014) Flavonoids and saponins extracted from black bean (Phaseolus vulgaris L.) seed coats modulate lipid metabolism and biliary cholesterol secretion in C57BL/6 mice. Br J Nutr 112:886–899

    Article  CAS  PubMed  Google Scholar 

  60. Bianco G, Buchicchio A, Cataldi TRI (2015) Structural characterization of major soyasaponins in traditional cultivars of Fagioli di Sarconi beans investigated by high-resolution tandem mass spectrometry. Anal Bioanal Chem 407:6381–6389. https://doi.org/10.1007/s00216-015-8810-3

    Article  CAS  PubMed  Google Scholar 

  61. Yoshikawa M, Shimada H, Komatsu H, Sakurama T, Nishida N, Yamahara J, Tani T (1997) Medicinal foodstuffs. VI. Histamine release inhibitors from kidney bean, the seeds of Phaseolus vulgaris L.: chemical structures of Sandosaponins A and B. Chem Pharm Bull 45(5):877–882. https://doi.org/10.1248/cpb.45.877

    Article  CAS  Google Scholar 

  62. Curl CL, Price KR, Fenwick GR (1988) Isolation and structural elucidation of a New Saponin (‘Soyasaponin V’) from Haricot Bean (Phaseolus vulgaris L.). J Sci Food Agric 43:101–107

    Article  CAS  Google Scholar 

  63. Oseguera-Toledo ME, Gonzalez de Mejia E, Amaya-Llano SL (2015) Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food Res Int 76:839–851. https://doi.org/10.1016/j.foodres.2015.07.046

    Article  CAS  PubMed  Google Scholar 

  64. Moreno-Jiménez MR, López-Barraza R, Cervantes-Cardoza V, Pérez-Ramírez IF, Reyna-Rojas JA, Gallegos-Infante JA, Rocha-Guzmán NE (2018). Mechanisms associated to apoptosis of cancer cells by phenolic extracts from two canned common beans varieties (Phaseolus vulgaris L.). J Food Biochem e12680

    Google Scholar 

  65. Kotue TC, Pieme AC, Fokou E (2016) Ethnobotanicals usages in the management of sickle cell disease (SDC) in some localities of Cameroon. Pharmacophore 7:192–200

    Google Scholar 

  66. Weiss J, McClements DJ, Decker EA, Park Y (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49(6):577–606

    Article  PubMed  CAS  Google Scholar 

  67. Duke JA, Bogenschutz-Godwin MJ, du Cellier J, Duke PK (2002) Handbook of medicinal herbs, 2a. Ed. CRC Press, New York

    Book  Google Scholar 

  68. Rafi MM, Vastano BC (2002) Novel polyphenol molecule isolated from licorice root (Glycrrhizaglabra) induces apoptosis, G2/M cell cycle arrest, and Bcl-2 phosphorylation in tumor cell lines. J Agric Food Chem 50:677–684

    Article  CAS  PubMed  Google Scholar 

  69. Blumenthal M, Busse WR, Goldberg A, Grenwald J, Hall T, Riggins CW, Rister RS (1998) The complete German Comission E Monographs-therapeutic guide to herbal medicines. Ed. American Botanical Council, Pub. Int Med Com, Boston, 157

    Google Scholar 

  70. González de Mejía E, Hanzkins CN, Paredes LO y Shannon AM (1990) The lectins and lectins-like proteins of tepary beans (Phaseolus acutifolius) and Tepary-Common bean (Phaseolus vulgaris) hybrids. J Food Biochem 14:117–126

    Google Scholar 

  71. Kumar S, Sharma VK, Yadav S, Dey S (2017) Antiproliferative and apoptotic effects of black turtle bean extracts on human breast cancer cell line through extrinsic and intrinsic pathway. Chem Cent J 11:56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ombra MN, d’Acierno A, Nazzaro F, Spigno P, Riccardi R, Zaccardelli M, Pane C, Coppola R, Fratianni F (2018) Alpha-amylase, α-glucosidase and lipase inhibiting activities of polyphenol-rich extracts from six common bean cultivars of Southern Italy, before and after cooking. Int J Food Sci Nutr 69(7):824–834. https://doi.org/10.1080/09637486.2017.1418845

    Article  CAS  PubMed  Google Scholar 

  73. Soriano Sancho RA, Pastore GM (2012) Evaluation of the effects of anthocyanins in type 2 diabetes. Food Res Int 46:378–386

    Article  CAS  Google Scholar 

  74. Almuaigel MF, Seif MA, Albuali HW, Alharbi O, Alhawash A (2017) Hypoglycemic and hypolipidemic effects of aqueous extract of Phaseolus vulgaris pods in streptozotocin-diabetic rats. Biomed Pharmacother 94:742–746

    Article  CAS  PubMed  Google Scholar 

  75. López-Reyes AG, Arroyo-Curras N, Cano BG, Lara-Díaz VJ, Guajardo-Salinas GE, Islas JF, Morales-Oyarvide V, Morales-Garza LA, Galvez-Gastelum FJ, Grijalva G, Moreno-Cuevas JE (2008) Black bean extract ameliorates liver fibrosis in rats with CCl4-induced injury. Ann Hepatol 7(2):130–135

    Article  PubMed  Google Scholar 

  76. Guajardo-Flores D, Serna-Saldívar SO, Gutiérrez- Uribe JA (2013) Evaluation of the antioxidant and antiproliferative activities of extracted saponins and flavonols from germinated black beans (Phaseolus vulgaris L.). Food Chem 141:1497–1503

    Article  CAS  PubMed  Google Scholar 

  77. Zhao G, Liu Y, Zhao M, Ren J, Yang B (2011) Enzymatic hydrolysis and their effects on conformational and functional properties of peanut protein isolate. Food Chem 127(4):1438–1443. https://doi.org/10.1016/j.foodchem.2011.01.046

    Article  CAS  Google Scholar 

  78. Dong M, He X, Liu RH (2007) Phytochemicals of Black Bean Seed Coats: isolation, structure elucidation, and their antiproliferative and antioxidative activities. J Agric Food Chem 55:6044–6051

    Article  CAS  PubMed  Google Scholar 

  79. Tan Y, Chang SKC, Zhang Y (2016) Comparison of α-amylase, α-glucosidase and lipase inhibitory activity of the phenolic substances in two black legumes of different genera. Food Chem. https://doi.org/10.1016/j.foodchem.2016.06.100

  80. Njoku UO, Agu CV, Nwodo OFC Effect of aqueous seed extracts of two varieties of Phaseolus Vulgaris on the lipid profile of rats. Res J Pharm Biol Chem Sci 4(2):1469–1478

    Google Scholar 

  81. Daniel RS, Devi KS, Augusti KT, Sudhakaran Nair CR (2003) Mechanism of action of antiatherogenic and related effects of Ficus bengalensis flavonoids in experimental animals. Indian J Exp Biol 41(4):296–303

    CAS  PubMed  Google Scholar 

  82. Dongmo AB, Kamanyi A, Franck U, Wagner H (2002) Vasodilating properties of extracts from the leaves of Musanga cercrpioides (R. Brown). Phytother Res 16:56–59

    Article  Google Scholar 

  83. Han LK, Zheng YN, Xu BJ, Okuda H, Kimura Y (2002) Saponins from platycodi radix ameliorate high fat diet-induced obesity in mice. J Nutr 132(8):2241–2245

    Article  CAS  PubMed  Google Scholar 

  84. Cichy KA, Fernandez A, Kilian A, Kelly JD, Galeano CH, Shaw S, Brick M, Hodkinson D, Troxtell E (2013) QTL analysis of canning quality and color retention in blackbeans (Phaseolus vulgaris L.). Mol Breed. https://doi.org/10.1007/s11032-013-9940-y

  85. Singh AS, Singh SK (2018) Antioxidant and anti-inflammatory effects of Phaseolus Vulgaris L. seeds ethanol extract: an in-vitro study. Int Res J Pharm 9(8):117–122

    Article  CAS  Google Scholar 

  86. Gelenberg A, Gibson C, Wojcik J (1982) Neurotransmitter precursors for the treatment of depression. Psychopharmacol Bull 18:7–18

    CAS  PubMed  Google Scholar 

  87. Jackson J et al (2012) In: Siddiq M, Uebersax MA (eds) Utilization of dry beans and pulses in Africa. Blackwell Publishing Ltd., Oxford, UK. https://doi.org/10.1002/9781118448298

    Chapter  Google Scholar 

  88. Organisation for Economic Co-operation and Development (2015) Consensus document on compositional considerations for new varieties of Common Bean (Phaseolus Vulgaris L.): key food and feed nutrients, Anti-Nutrients and Other Constituents ENV/JM/MONO 49. Accessed 30 May 2019

    Google Scholar 

  89. Food and Drug Administration FDA (2014) Bad Bug Book: handbook of foodborne pathogenic microorganisms and natural toxins: phytohaemagglutinin (PDF). United States Food and Drug Administration, USA

    Google Scholar 

  90. Food and Drug Administration FDA (2017) Foodborne pathogenic microorganisms and natural toxins handbook phytohaemagglutinin. US Food and Drug Administration, USA

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oluwasesan M. Bello .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdulrahman, B.O., Bala, M., Bello, O.M. (2020). Bioactive Compounds of Black Bean (Phaseolus vulgaris L.). In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_38-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44578-2_38-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44578-2

  • Online ISBN: 978-3-030-44578-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics