Skip to main content

Bioactive Compounds of Turmeric (Curcuma longa L.)

  • Living reference work entry
  • First Online:
Bioactive Compounds in Underutilized Vegetables and Legumes

Abstract

Curcuma longa, a native species to South Asia, is commonly known as turmeric and traditionally used as a spice and dye in culinary preparations and as a traditional herbal medicine. The bioactive compounds of C. longa have different effects such as antioxidant, antitumor, antimicrobial, insecticide, larvicide, repellent, anticancer, anti-inflammatory, healing, and gastroprotective properties. In this chapter, we describe the major chemical compounds present in C. longa and how these compounds demonstrate biological potential in human health. C. longa and its bioactive compounds have important health-promoting effects and have the potential for the development of pharmaceuticals, nutraceuticals, or food ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

2-DR:

2-Deoxyribose

ABTS:

2,2′-Azinobis-(3-ethylbenzthiazolin-6-sulfonic acid

CAT:

Catalase

COX:

Cyclooxygenase

CUPRAC:

Cupric reducing antioxidant capacity

DPPH:

1,1-Diphenyl-2-picrylhydrazyl

EO:

Essential oil

FDA:

Food and Drug Administration

FRAP:

Ferric ion reducing antioxidant power

GAE:

Gallic acid equivalent

HDL:

High-density lipoproteins

IC50:

50% inhibitory concentration values

IL-1/IL-6:

Interleukin 1/interleukin 6

iNOS:

Inducible nitric oxide synthase

LPS:

Lipopolysaccharide

LPSE:

Low-pressure solvent extraction

MCP-1:

Monocyte chemoattractant protein-1

MDA:

Malondialdehyde

MMP-9:

Matrix metallopeptidase 9

MPNST:

Malignant peripheral nerve sheath tumor

NF-κB:

Factor nuclear kappa B

NO:

Nitric oxide

ORAC:

Oxygen radical absorbance capacity

RDA:

Recommended daily allowance

SOD:

Superoxide dismutase

TE:

Trolox equivalent

TEAC:

Trolox equivalent antioxidant capacity

TNF:

Tumor necrosis factors

WHO:

World Health Organization

References

  1. Osorio-Tobón JF, Carvalho PI, Barbero GF, Nogueira GC, Rostagno MA, de Almeida Meireles MA (2016) Fast analysis of curcuminoids from turmeric (Curcuma longa L.) by high-performance liquid chromatography using a fused-core column. Food Chem 200:167–174

    PubMed  Google Scholar 

  2. Lucas J, Ralaivao M, Estevinho BN, Rocha F (2020) A new approach for the microencapsulation of curcumin by a spray drying method, in order to value food products. Powder Technol 362:428–435

    CAS  Google Scholar 

  3. Akter J, Hossain MA, Takara K, Islam MZ, Hou D-X (2019) Antioxidant activity of different species and varieties of turmeric (Curcuma spp): isolation of active compounds. Comp Biochem Physiol C Toxicol Pharmacol 215:9–17

    CAS  PubMed  Google Scholar 

  4. Kumar A, Luxmi V (2020) Effect of calcinations on structural, optical and photocatalytic properties of a green photo-catalyst ‘turmeric roots powder’. Optik 216:164804

    CAS  Google Scholar 

  5. Chaaban A, Gomes EN, Richardi VS, Martins CEN, Brum JS, Navarro-Silva MA, Deschampsd C, Molentoag MB (2019) Essential oil from Curcuma longa leaves: can an overlooked by-product from turmeric industry be effective for myiasis control? Ind Crop Prod 132:352–364

    CAS  Google Scholar 

  6. Mishra R, Gupta AK, Kumar A, Lal RK, Saikia D, Chanotiya CS (2018) Genetic diversity, essential oil composition, and in vitro antioxidant and antimicrobial activity of Curcuma longa L. germplasm collections. J Appl Res Med Aromat Plants 10:75–84

    Google Scholar 

  7. Ilangovan M, Guna V, Hu C, Nagananda G, Reddy N (2018) Curcuma longa L. plant residue as a source for natural cellulose fibers with antimicrobial activity. Ind Crop Prod 112:556–560

    CAS  Google Scholar 

  8. Gounder DK, Lingamallu J (2012) Comparison of chemical composition and antioxidant potential of volatile oil from fresh, dried and cured turmeric (Curcuma longa) rhizomes. Ind Crop Prod 38:124–131

    Google Scholar 

  9. Prasad S, Aggarwal BB (2011) Chapter 13 Turmeric, the golden spice: from traditional medicine to modern medicine. In: Herbal medicine: biomolecular and clinical aspects. CRC Press, Boca Raton

    Google Scholar 

  10. Kocaadam B, Şanlier N (2017) Curcumin, an active component of turmeric (Curcuma longa), and its effects on health. Crit Rev Food Sci Nutr 57:2889–1895. https://doi.org/10.1080/10408398.2015.1077195

    Article  CAS  Google Scholar 

  11. Soleimani V, Sahebkar A, Hosseinzadeh H (2018) Turmeric (Curcuma longa) and its major constituent (curcumin) as nontoxic and safe substances: review. Phytother Res 32:985–995. https://doi.org/10.1002/ptr.6054

    Article  CAS  PubMed  Google Scholar 

  12. Maizura M, Aminah A, Wan Aida W (2011) Total phenolic content and antioxidant activity of kesum (Polygonum minus), ginger (Zingiber officinale) and turmeric (Curcuma longa) extract. Int Food Res J 18:526–531

    Google Scholar 

  13. Sharma S, Kulkarni SK, Chopra K (2006) Curcumin, the active principle of turmeric (Curcuma longa), ameliorates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol 33:940–945

    CAS  PubMed  Google Scholar 

  14. Henrotin Y, Malaise M, Wittoek R, de Vlam K, Brasseur JP, Luyten FP, Jiangang Q, Van den Berghe M, Uhoda R, Bentin J, De Vroey T, Erpicum L, Donneau AF, Dierckxsens Y (2019) Bio-optimized Curcuma longa extract is efficient on knee osteoarthritis pain: a double-blind multicenter randomized placebo controlled three-arm study. Arthritis Res Ther 21:179. https://doi.org/10.1186/s13075-019-1960-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Vaughn AR, Branum A, Sivamani RK (2016) Effects of turmeric (Curcuma longa) on skin health: a systematic review of the clinical evidence. Phytother Res 30:1243–1264. https://doi.org/10.1002/ptr.5640

    Article  CAS  PubMed  Google Scholar 

  16. Cunha Neto F, Marton LT, de Marqui SV, Lima TA, Barbalho SM (2019) Curcuminoids from Curcuma Longa: new adjuvants for the treatment of crohn’s disease and ulcerative colitis? Crit Rev Food Sci Nutr 59:2136–2143. https://doi.org/10.1080/10408398.2018.1456403

    Article  CAS  PubMed  Google Scholar 

  17. Okuda-Hanafusa C, Uchio R, Fuwa A, Kawasaki K, Muroyama K, Yamamoto Y, Murosak S (2019) Turmeronol A and turmeronol B from Curcuma longa prevent inflammatory mediator production by lipopolysaccharide-stimulated RAW264.7 macrophages, partially via reduced NF-κB signaling. Food Funct 10:5779–5788. https://doi.org/10.1039/C9FO00336C

    Article  CAS  PubMed  Google Scholar 

  18. Aggarwal BB, Yuan W, Li S, Gupta SC (2013) Curcumin-free turmeric exhibits anti-inflammatory and anticancer activities: identification of novel components of turmeric. Mol Nutr Food Res 57:1529–1542

    CAS  PubMed  Google Scholar 

  19. Zhang L, Yang Z, Chen F, Su P, Chen D, Pan W, Fang Y, Dong C, Zheng X, Du Z (2017) Composition and bioactivity assessment of essential oils of Curcuma longa L. collected in China. Ind Crop Prod 109:60–73

    CAS  Google Scholar 

  20. El-Baroty GS, Abd El-Baky H, Farag RS, Saleh MA (2010) Characterization of antioxidant and antimicrobial compounds of cinnamon and ginger essential oils. Afr J Biochem 4:167–174

    CAS  Google Scholar 

  21. Sivasothy Y, Chong WK, Hamid A, Eldeen IM, Sulaiman SF, Awang K (2011) Essential oils of Zingiber officinale var. rubrum Theilade and their antibacterial activities. Food Chem 124:514–517

    CAS  Google Scholar 

  22. Shukla R, Singh P, Prakash B, Dubey N (2012) Antifungal, aflatoxin inhibition and antioxidant activity of Callistemon lanceolatus (Sm.) sweet essential oil and its major component 1,8-cineole against fungal isolates from chickpea seeds. Food Control 25:27–33

    CAS  Google Scholar 

  23. Chen C, Long L, Zhang F, Chen Q, Chen C, Yu X, Lu Q, Bao J, Long Z (2018) Antifungal activity, main active components and mechanism of Curcuma longa extract against Fusarium graminearum. PLoS One 13:e0194284. https://doi.org/10.1371/journal.pone.0194284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Avanço GB, Ferreira FD, Bomfim NS, Santos PASR, Peralta RM, Brugnari T, Mallmann CA, Abreu Filho BA, Mikcha JMG, Machinski M Jr (2017) Curcuma longa L. essential oil composition, antioxidant effect, and effect on Fusarium verticillioides and fumonisin production. Food Control 73:806–813

    Google Scholar 

  25. Apisariyakul A, Vanittanakom N, Buddhasukh D (1995) Antifungal activity of turmeric oil extracted from Curcuma longa (Zingiberaceae). J Ethnopharmacol 49:163–169

    CAS  PubMed  Google Scholar 

  26. Das N, Dhiman S, Talukdar P, Rabha B, Goswami D, Veer V (2015) Synergistic mosquito-repellent activity of Curcuma longa, Pogostemon heyneanus and Zanthoxylum limonella essential oils. J Infect Public Health 8(4):323–328

    CAS  PubMed  Google Scholar 

  27. Tavares WS, de Sousa Freitas S, Grazziotti GH, Parente LML, Lião LM, Zanuncio JC (2013) Ar-turmerone from Curcuma longa (Zingiberaceae) rhizomes and effects on Sitophilus zeamais (Coleoptera: Curculionidae) and Spodoptera frugiperda (Lepidoptera: Noctuidae). Ind Crop Prod 46:158–164

    CAS  Google Scholar 

  28. Ikpeama A, Onwuka G, Nwankwo C (2014) Nutritional composition of turmeric (Curcuma longa) and its antimicrobial properties. Int J Eng Sci 5:1085–1089

    Google Scholar 

  29. Leonel M, Sarmento SB, Cereda MP (2003) New starches for the food industry: Curcuma longa and Curcuma zedoaria. Carbohydr Polym 54:385–388

    CAS  Google Scholar 

  30. Lim HS, Park SH, Ghafoor K, Hwang SY, Park J (2011) Quality and antioxidant properties of bread containing turmeric (Curcuma longa L.) cultivated in South Korea. Food Chem 124:1577–1582

    CAS  Google Scholar 

  31. De Lima MS, Da Silva MAP, Plácido GR, Cagnin C, Vieira NF, Do Carmo RM, Da Silva RCF, Castro CFS, Caliari M, Silva RM (2017) Physical and chemical characteristics and drying kinetics of turmeric (Curcuma longa L.). Afr J Agric Res 12:28–34

    Google Scholar 

  32. Nwankwo P (2018) A comparative study of the phytochemical constituents, proximate and mineral compositions of Zingiber officinale, Curcuma longa, Aframomum sceptrum and Monodora myristica. Niger Agric J 49:22–25

    Google Scholar 

  33. Kaur A, Brar A (2016) Influence of mulching and irrigation scheduling on productivity and water use of turmeric (Curcuma longa L.) in North-Western India. Irrig Sci 34:261–269

    Google Scholar 

  34. Braga MC, Vieira ECS, de Oliveira TF (2018) Curcuma longa L. leaves: characterization (bioactive and antinutritional compounds) for use in human food in Brazil. Food Chem 265:308–315

    CAS  PubMed  Google Scholar 

  35. Li X, Chen W, Chang Q, Zhang Y, Zheng B, Zeng H (2020) Structural and physicochemical properties of ginger (Rhizoma curcumae longae) starch and resistant starch: a comparative study. Int J Biol Macromol 144:67–75

    CAS  PubMed  Google Scholar 

  36. Brasil (2002) Resolution no 2, January 2, 2002. In: Agency NHS (ed) Approves the technical regulation of bioactive substances and isolated probiotics with claim of functional and or health properties. Brasília, DOU

    Google Scholar 

  37. Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. (1997). Dietary reference intakes for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press (US) Washington, DC

    Google Scholar 

  38. Balakrishnan K (2007) Postharvest technology and processing of turmeric. In: Ravindran PN, Nirmal Babu K, Sivaraman K (eds) Turmeric: the genus Curcuma. CRC Press, Boca Raton, pp 193–256

    Google Scholar 

  39. Asuk AA, Agiang MA, Dasofunjo K, Willie AJ (2015) The biomedical significance of the phytochemical, proximate and mineral compositions of the leaf, stem bark and root of Jatropha curcas. Asian Pac J Trop Biomed 5:650–657

    CAS  Google Scholar 

  40. Zheng Y, Pan C, Zhang Z, Luo W, Liang X, Shi Y, Liang L, Zheng X, Zhang L, Du Z (2020) Antiaging effect of Curcuma longa L. essential oil on ultraviolet-irradiated skin. Microchem J 154:104608

    CAS  Google Scholar 

  41. Oyemitan IA, Elusiyan CA, Onifade AO, Akanmu MA, Oyedeji AO, McDonald AG (2017) Neuropharmacological profile and chemical analysis of fresh rhizome essential oil of Curcuma longa (turmeric) cultivated in Southwest Nigeria. Toxicol Rep 4:391–398

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kumar KN, Venkataramana M, Allen JA, Chandranayaka S, Murali HS, Batra HV (2016) Role of Curcuma longa L. essential oil in controlling the growth and zearalenone production of Fusarium graminearum. LWT 69:522–528

    Google Scholar 

  43. Hu Y, Zhang J, Kong W, Zhao G, Yang M (2017) Mechanisms of antifungal and anti-aflatoxigenic properties of essential oil derived from turmeric (Curcuma longa L.) on Aspergillus flavus. Food Chem 220:1–8

    PubMed  Google Scholar 

  44. Singh G, Kapoor I, Singh P, De Heluani CS, De Lampasona MP, Catalan CA (2010) Comparative study of chemical composition and antioxidant activity of fresh and dry rhizomes of turmeric (Curcuma longa Linn.). Food Chem Toxicol 48:1026–1031

    CAS  PubMed  Google Scholar 

  45. Gobbo-Neto L, Lopes NP (2007) Medicinal plants: factors of influence on the content of secondary metabolites. Quím Nova 30:374–381

    CAS  Google Scholar 

  46. Ahameethunisa AR, Hopper W (2012) In vitro antimicrobial activity on clinical microbial strains and antioxidant properties of Artemisia parviflora. Ann Clin Microbiol Antimicrob 11:30

    PubMed  PubMed Central  Google Scholar 

  47. Damalas CA (2011) Potential uses of turmeric (Curcuma longa) products as alternative means of pest management in crop production. Plant Omics 4:136–141

    CAS  Google Scholar 

  48. Lee Y (2016) Cytotoxicity evaluation of essential oil and its component from Zingiber officinale Roscoe. Toxicol Res 32:225–230

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Barrero AF, Herrador MM, del Moral JFQ, Arteaga P, Meine N, Pérez-Morales MC, Catalan JV (2011) Efficient synthesis of the anticancer β-elemene and other bioactive elemanes from sustainable germacrone. Organ Biomol Chem 9:1118–1125

    CAS  Google Scholar 

  50. Tyagi AK, Prasad S, Yuan W, Li S, Aggarwal BB (2015) Identification of a novel compound (β-sesquiphellandrene) from turmeric (Curcuma longa) with anticancer potential: comparison with curcumin. Investig New Drugs 33:1175–1186

    CAS  Google Scholar 

  51. Park SY, Jin ML, Kim YH, Kim Y, Lee SJ (2012) Anti-inflammatory effects of aromatic-turmerone through blocking of NF-κB, JNK, and p38 MAPK signaling pathways in amyloid β-stimulated microglia. Int Immunopharmacol 14:13–20

    CAS  PubMed  Google Scholar 

  52. Hong CH, Noh MS, Lee WY, Lee SK (2002) Inhibitory effects of natural sesquiterpenoids isolated from the rhizomes of Curcuma zedoaria on prostaglandin E2 and nitric oxide production. Planta Med 68:545–547

    CAS  PubMed  Google Scholar 

  53. Dunlap FG, White PJ, Pollak LM (1995) Fatty acid composition of oil from exotic corn breeding materials. J Am Oil Chem Soc 72:989–993

    CAS  Google Scholar 

  54. Paul B, Munshi M, Ahmed M, Saha G, Roy S (2011) The fatty acid composition and properties of oil extracted from fresh rhizomes of turmeric (Curcuma longa Linn.) cultivars of Bangladesh. Bangladesh J Sci Ind Res 46:127–132

    CAS  Google Scholar 

  55. Pal K, Chowdhury S, Dutta SK, Chakraborty S, Chakraborty M, Pandit GK, Dutta S, Paul PK, Choudhury A, Majumder B, Shana N, Mandal S (2020) Analysis of rhizome colour content, bioactive compound profiling and ex-situ conservation of turmeric genotypes (Curcuma longa L.) from sub-Himalayan terai region of India. Ind Crop Prod 150:112401

    CAS  Google Scholar 

  56. Wongsa P, Chaiwarit J, Zamaludien A (2012) In vitro screening of phenolic compounds, potential inhibition against α-amylase and α-glucosidase of culinary herbs in Thailand. Food Chem 131:964–971

    CAS  Google Scholar 

  57. Yang Q-Q, Cheng L-Z, Zhang T, Yaron S, Jiang H-X, Sui Z-Q, Corke H (2020) Phenolic profiles, antioxidant, and antiproliferative activities of turmeric (Curcuma longa). Ind Crop Prod 152:112561

    CAS  Google Scholar 

  58. Wojdyło A, Oszmiański J, Czemerys R (2007) Antioxidant activity and phenolic compounds in 32 selected herbs. Food Chem 105:940–949

    Google Scholar 

  59. Ali I, Haque A, Saleem K (2014) Separation and identification of curcuminoids in turmeric powder by HPLC using phenyl column. Anal Methods 6:2526–2536

    CAS  Google Scholar 

  60. Dao TT, Nguyen PH, Won HK, Kim EH, Park J, Won BY, Oh WK (2012) Curcuminoids from Curcuma longa and their inhibitory activities on influenza A neuraminidases. Food Chem 134:21–28

    CAS  Google Scholar 

  61. Chavalittumrong P, Jirawattanapong W (1992) Variation of active constituents of Curcuma domestica rhizomes at different ages. Thai J Pharm Sci 16:165–174

    Google Scholar 

  62. Chen J-J, Tsai C-S, Hwang T-L, Shieh P-C, Chen J-F, Sung P-J (2010) Sesquiterpenes from the rhizome of Curcuma longa with inhibitory activity on superoxide generation and elastase release by neutrophils. Food Chem 119(3):974–980

    CAS  Google Scholar 

  63. Jia S, Du Z, Song C, Jin S, Zhang Y, Feng Y, Xiong C, Jiang H (2017) Identification and characterization of curcuminoids in turmeric using ultra-high performance liquid chromatography-quadrupole time of flight tandem mass spectrometry. J Chromatogr A 1521:110–122

    CAS  PubMed  Google Scholar 

  64. Kim JA, Son JK, Chang HW, Jahng Y, Kim Y, Na M, Lee SH (2008) Inhibition of mushroom tyrosinase and melanogenesis B16 mouse melanoma cells by components isolated from Curcuma longa. Nat Prod Commun 3:1934578X0800301014

    Google Scholar 

  65. Kita T, Imai S, Sawada H, Seto H (2009) Isolation of dihydrocurcuminoids from cell clumps and their distribution in various parts of turmeric (Curcuma longa). Biosci Biotechnol Biochem 73:80871–801-5

    Google Scholar 

  66. Khurana A, Ho C-T (1988) High performance liquid chromatographic analysis of curcuminoids and their photo-oxidative decomposition compounds in Curcuma longa L. J Liq Chromatogr 11:2295–2304

    CAS  Google Scholar 

  67. Li W, Wang S, Feng J, Xiao Y, Xue X, Zhang H, Wang Y, Liang X (2009) Structure elucidation and NMR assignments for curcuminoids from the rhizomes of Curcuma longa. Magnet Resonan Chem 47:902–908

    CAS  Google Scholar 

  68. Lin X, Ji S, Li R, Dong Y, Qiao X, Hu H, Yang W, Guo D, Tu P, Ye M (2012) Terpecurcumins A–I from the rhizomes of Curcuma longa: absolute configuration and cytotoxic activity. J Nat Prod 75:2121–2131

    CAS  PubMed  Google Scholar 

  69. Lin X, Ji S, Qiao X, Hu H, Chen N, Dong Y, Huang Y, Guo D, Tu P, Ye M (2013) Density functional theory calculations in stereochemical determination of terpecurcumins J–W, cytotoxic terpene-conjugated curcuminoids from Curcuma longa L. J Organomet Chem 78:11835–11848

    CAS  Google Scholar 

  70. Park S-Y, Kim DS (2002) Discovery of natural products from Curcuma longa that protect cells from beta-amyloid insult: a drug discovery effort against Alzheimer’s disease. J Nat Prod 65:1227–1231

    CAS  PubMed  Google Scholar 

  71. Park B-S, Kim J-G, Kim M-R, Lee S-E, Takeoka GR, Oh K-B, Kim J-H (2005) Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J Agric Food Chem 53:9005–9009

    CAS  PubMed  Google Scholar 

  72. Qiao X, Lin X-h, Ji S, Z-x Z, Bo T, D-a G, Ye M (2016) Global profiling and novel structure discovery using multiple neutral loss/precursor ion scanning combined with substructure recognition and statistical analysis (MNPSS): characterization of terpene-conjugated curcuminoids in Curcuma longa as a case study. Anal Chem 88:703–710

    CAS  PubMed  Google Scholar 

  73. Shabana MH, Afifi MS (2014) A new acylated luteolin glycoside from Curcuma longa L. and free radical scavenging potential of its extracts. Med Plant Res 8:1–5

    CAS  Google Scholar 

  74. Wang L-Y, Zhang M, Zhang C-F, Wang Z-T (2008) Diaryl derivatives from the root tuber of Curcuma longa. Biochem Syst Ecol 5:476–480

    Google Scholar 

  75. Xiao YC, Xie J, Yu M, Liu M, Ran J, Xi Z, Li W, Huanga J (2011) Bisabocurcumin, a new skeleton curcuminoid from the rhizomes of Curcuma longa L. Chin Chem Lett 22:1457–1460

    CAS  Google Scholar 

  76. Xiao YC, Lei J, Liu M, Yu M, Ran J, Xie J, Li W, Huang J (2012) Three new bisabolocurcumin ethers from the rhizomes of Curcuma longa L. Helv Chim Acta 95:327–332

    CAS  Google Scholar 

  77. Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal B (2011) Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharmaceut Crops 2:28–54

    CAS  Google Scholar 

  78. Perko T, Ravber M, Knez Ž, Škerget M (2015) Isolation, characterization and formulation of curcuminoids and in vitro release study of the encapsulated particles. J Supercrit Fluids 103:48–54

    CAS  Google Scholar 

  79. Thaikert R, Paisooksantivatana Y (2009) Variation of total curcuminoids content, antioxidant activity and genetic diversity in turmeric (Curcuma longa L.) collections. Kasetsart J 43:507–518

    CAS  Google Scholar 

  80. Sajitha PK, Sasikumar B (2015) Qualitative and quantitative variation in starch from four species of Curcuma. Cytologia 80:45–50

    Google Scholar 

  81. Tinello F, Lante A (2019) Valorisation of ginger and turmeric peels as source of natural antioxidants. Plant Foods Hum Nutr 74:443–445

    CAS  PubMed  Google Scholar 

  82. Tanvir E, Hossen M, Hossain M, Afroz R, Gan SH, Khalil M, Karim N (2017) Antioxidant properties of popular turmeric (Curcuma longa) varieties from Bangladesh. J Food Qual 2017:8471785. https://doi.org/10.1155/2017/8471785

    Article  CAS  Google Scholar 

  83. Osorio-Tobón JF, Carvalho PI, Rostagno MA, Petenate AJ, Meireles MAA (2014) Extraction of curcuminoids from deflavored turmeric (Curcuma longa L.) using pressurized liquids: process integration and economic evaluation. J Supercrit Fluids 95:167–174

    Google Scholar 

  84. Chassagnez-Mendez AL, Machado NT, Araujo ME, Maia J, Meireles MAA (2000) Supercritical CO2 extraction of curcumins and essential oil from the rhizomes of turmeric (Curcuma longa L.). Ind Eng Chem Res 39:4729–4733

    CAS  Google Scholar 

  85. Suresh D, Manjunatha H, Srinivasan K (2007) Effect of heat processing of spices on the concentrations of their bioactive principles: turmeric (Curcuma longa), red pepper (Capsicum annuum) and black pepper (Piper nigrum). J Food Compos Anal 20:346–351

    CAS  Google Scholar 

  86. Tomas Melo CM, Faria JV (2014) Composition, phenolic compounds and antioxidant activity in conventional not edible parts of six vegetables. Biosci J 30:93–100

    Google Scholar 

  87. Braga ME, Leal PF, Carvalho JE, Meireles MAA (2003) Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques. J Agric Food Chem 51:6604–6611

    CAS  PubMed  Google Scholar 

  88. Wakte PS, Sachin B, Patil A, Mohato D, Band T, Shinde D (2011) Optimization of microwave, ultra-sonic and supercritical carbon dioxide assisted extraction techniques for curcumin from Curcuma longa. Sep Purif Technol 79:50–55

    CAS  Google Scholar 

  89. Martinez-Correa HA, Magalhães PM, Queiroga CL, Peixoto CA, Oliveira AL, Cabral FA (2011) Extracts from pitanga (Eugenia uniflora L.) leaves: influence of extraction process on antioxidant properties and yield of phenolic compounds. J Supercrit Fluids 55:998–1006

    CAS  Google Scholar 

  90. Martinez-Correa HA, Cabral FA, Magalhães PM, Queiroga CL, Godoy AT, Sánchez-Camargo AP, Paviani LC (2012) Extracts from the leaves of Baccharis dracunculifolia obtained by a combination of extraction processes with supercritical CO2, ethanol and water. J Supercrit Fluids 63:31–39

    CAS  Google Scholar 

  91. Martinez-Correa HA, Paula JT, Kayano ACA, Queiroga CL, Magalhaes PM, Costa FT, Cabral FA (2017) Composition and antimalarial activity of extracts of Curcuma longa L. obtained by a combination of extraction processes using supercritical CO2, ethanol and water as solvents. J Supercrit Fluids 119:122–129

    CAS  Google Scholar 

  92. Santana ÁL, Zabot GL, Osorio-Tobón JF, Johner JC, Coelho AS, Schmiele M, Stell CJ, Meireles MAA (2017) Starch recovery from turmeric wastes using supercritical technology. J Food Eng 214:266–276

    CAS  Google Scholar 

  93. Kotha RR, Luthria DL (2019) Curcumin: biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 24:2930

    CAS  PubMed Central  Google Scholar 

  94. Stohs SJ, Chen O, Ray SD, Ji J, Bucci LR, Preuss HG (2020) Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: a review. Molecules 25:1397

    CAS  PubMed Central  Google Scholar 

  95. Agarwal S, Mishra R, Gupta AK, Gupta A (2018) Turmeric: isolation and synthesis of important biological molecules. In: Tewari A, Tiwari S (eds) Synthesis of medicinal agents from plants. Elsevier, Cambridge, MA, pp 105–125

    Google Scholar 

  96. Reming V, Weeden A (2005) Tratamento Clínico Nutricional para Distúrbios Neurológicos. In: Mahan LK, Escott-Stump S (eds) Krause: Alimentos, Nutrição e Dietoterapia, 11th edn. Roca, São Paulo, pp 623–955

    Google Scholar 

  97. Pashine L, Singh J, Vaish A, Ojha S, Mahdi A (2012) Effect of turmeric (Curcuma longa) on overweight hyperlipidemic subjects: double blind study. Indian J Community Health 24:113–117

    Google Scholar 

  98. Essa R, El Sadek AM, Baset ME, Rawash MA, Sami DG, Badawy MT, Mansour ME, Attia H, Saadeldin MK, Abdellatif A (2019) Effects of turmeric (Curcuma longa) extract in streptozocin-induced diabetic model. J Food Biochem 43:e12988

    PubMed  Google Scholar 

  99. Ganjali S, Blesso CN, Banach M, Pirro M, Majeed M, Sahebkar A (2017) Effects of curcumin on HDL functionality. Pharmacol Res 119:208–218

    CAS  PubMed  Google Scholar 

  100. Maithilikarpagaselvi N, Sridhar MG, Swaminathan RP, Sripradha R, Badhe B (2016) Curcumin inhibits hyperlipidemia and hepatic fat accumulation in high-fructose-fed male Wistar rats. Pharm Biol 54:2857–2863

    CAS  PubMed  Google Scholar 

  101. Um MY, Hwang KH, Choi WH, Ahn J, Jung CH, Ha TY (2014) Curcumin attenuates adhesion molecules and matrix metalloproteinase expression in hypercholesterolemic rabbits. Nutr Res 34:886–893

    CAS  PubMed  Google Scholar 

  102. Kim M, Kim Y (2010) Hypocholesterolemic effects of curcumin via up-regulation of cholesterol 7a-hydroxylase in rats fed a high fat diet. Nutr Res Pract 4:191–195

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Feng D, Zou J, Zhang S, Li X, Lu M (2017) Hypocholesterolemic activity of curcumin is mediated by down-regulating the expression of niemann-pick c1-like 1 in hamsters. J Agric Food Chem 65:276–280

    CAS  PubMed  Google Scholar 

  104. Zou J, Zhang S, Li P, Zheng X, Feng D (2018) Supplementation with curcumin inhibits intestinal cholesterol absorption and prevents atherosclerosis in high-fat diet–fed apolipoprotein E knockout mice. Nutr Res 56:32–40

    CAS  PubMed  Google Scholar 

  105. Kalaycıoğlu Z, Gazioğlu I, Erim FB (2017) Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat Prod Res 31:2914–2917

    PubMed  Google Scholar 

  106. Buhrmann C, Kunnumakkara AB, Popper B, Majeed M, Aggarwal BB, Shakibaei M (2020) Calebin a potentiates the effect of 5-FU and TNF-β (Lymphotoxin α) against human colorectal cancer cells: potential role of NF-κB. Int J Mol Sci 21:2393

    CAS  PubMed Central  Google Scholar 

  107. Tyagi AK, Prasad S, Majeed M, Aggarwal BB (2017) Calebin A, a novel component of turmeric, suppresses NF-κB regulated cell survival and inflammatory gene products leading to inhibition of cell growth and chemosensitization. Phytomedicine 34:171–181

    CAS  PubMed  Google Scholar 

  108. Lee M-J, Tsai Y-J, Lin M-Y, You H-L, Kalyanam N, Ho C-T, Pan M-H (2019) Calebin-A induced death of malignant peripheral nerve sheath tumor cells by activation of histone acetyltransferase. Phytomedicine 57:377–384

    CAS  PubMed  Google Scholar 

  109. Lai CS, Liao SN, Tsai ML, Kalyanam N, Majeed M, Majeed A, Ho C-T, Pan M-H (2015) Calebin-A inhibits adipogenesis and hepatic steatosis in high-fat diet-induced obesity via activation of AMPK signaling. Mol Nutr Food Res 59:1883–1895

    CAS  PubMed  Google Scholar 

  110. Tyagi AK, Prasad S, Majeed M, Aggarwal BB (2016) Calebin A downregulates osteoclastogenesis through suppression of RANKL signaling. Arch Biochem Biophys 593:80–89

    CAS  PubMed  Google Scholar 

  111. Novaes JT, Lillico R, Sayre CL, Nagabushanam K, Majeed M, Chen Y, Ho EA, Oliveira ALP, Martinez SE, Alrushaid S, Davies NM, Lakowski TM (2017) Disposition, metabolism and histone deacetylase and acetyltransferase inhibition activity of tetrahydrocurcumin and other curcuminoids. Pharmaceutics 9:45

    PubMed Central  Google Scholar 

  112. Atta EM, Mohamed NH, Abdelgawad A (2017) Antioxidants: an overview on the natural and synthetic types. Eur Chem Bull 6:365–375

    CAS  Google Scholar 

  113. Denre M (2014) The determination of vitamin C, total phenol and antioxidant activity of some commonly cooking spices crops used in West Bengal. Int J Plant Physiol Biochem 6:66–70

    Google Scholar 

  114. Widowati W, Sardjono CT, Wijaya L, Laksmitawati DR, Darsono L (2011) Free radicals scavenging activities of spices and curcumin. In Proceedings of the second international symposium on Temulawak and the 40th meeting of National Working Group on Indonesian Medicinal Plant

    Google Scholar 

  115. Muhamed IA, Ahmad WANW, Ramli NS, Ghafar NA (2019) Antimicrobial and antioxidant property of Curcuma longa Linn. Int J Basic Clin Pharmacol 8:2383

    Google Scholar 

  116. Array E, Djikeng T, Kingne K, Kinge E, Womeni H (2019) Effect of different extraction solvents on the phenolic content and antioxidant activity of turmeric (Curcuma longa) from South-West Region, Cameroon. Food Res Int 3:86–90

    Google Scholar 

  117. Sepahpour S, Selamat J, Abdul Manap MY, Khatib A, AbdullRazis AF (2018) Comparative analysis of chemical composition, antioxidant activity and quantitative characterization of some phenolic compounds in selected herbs and spices in different solvent extraction systems. Molecules 23:402

    PubMed Central  Google Scholar 

  118. Trujillo J, Chirino YI, Molina-Jijón E, Andérica-Romero AC, Tapia E, Pedraza-Chaverrí J (2013) Renoprotective effect of the antioxidant curcumin: recent findings. Redox Biol 1:448–456

    CAS  PubMed  PubMed Central  Google Scholar 

  119. Shakeri F, Soukhtanloo M, Boskabady MH (2017) The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma. Iran J Basic Med Sci 20:155

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of CNPq, FAPEG, CAPES, and IF Goiano.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana Buranelo Egea .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

de Oliveira Filho, J.G., de Almeida, M.J., Sousa, T.L., dos Santos, D.C., Egea, M.B. (2020). Bioactive Compounds of Turmeric (Curcuma longa L.). In: Murthy, H.N., Paek, K.Y. (eds) Bioactive Compounds in Underutilized Vegetables and Legumes. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-44578-2_37-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-44578-2_37-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-44578-2

  • Online ISBN: 978-3-030-44578-2

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics