Skip to main content

Neutrophil Elastase and Neutrophil Extracellular Traps in the Tumor Microenvironment

  • Chapter
  • First Online:
Tumor Microenvironment

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1263))

Abstract

Tumor-associated neutrophils (TANs) play a major role during cancer development and progression in the tumor microenvironment. Neutrophil elastase (NE) is a serine protease normally expressed in neutrophil primary granules. Formation of neutrophil extracellular traps (NETs), a mechanism used by neutrophils, has been traditionally associated with the capture and killing of bacteria. However, there are recent discoveries suggesting that NE secretion and NETs formation are also involved in the tumor microenvironment. Here, we focus on how NE and NETs play a key regulatory function in the tumor microenvironment, such as tumor proliferation, distant metastasis, tumor-associated thrombosis, and antitumor activity. Additionally, the potential use of NETs, NE, or associated molecules as potential disease activity biomarkers or therapeutic targets will be introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CXCL:

C-X-C motif chemokine

CXCR:

C-X-C chemokine receptor

DNase:

Deoxyribonuclease

LPS:

Lipopolysaccharide

MPO:

Myeloperoxidase

NE:

Neutrophil elastase

NET:

Neutrophil extracellular trap

PAD4:

Protein arginine deiminase 4

PMA:

Phorbol-12-myristate-13-acetate

PMN:

Polymorphonuclear neutrophil

RA:

Rheumatoid arthritis

ROS:

Reactive oxygen species

SLE:

Systemic lupus erythematosus

TAN:

Tumor-associated neutrophil

TGF-β:

Transforming Growth factor-β

TLR:

Toll-like receptor

References

  1. Casanova-Acebes M, Pitaval C, Weiss LA, Nombela-Arrieta C, Chevre R, AG N et al (2013) Rhythmic modulation of the hematopoietic niche through neutrophil clearance. Cell 153(5):1025–1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lawrence SM, Corriden R, Nizet V (2018) The ontogeny of a neutrophil: mechanisms of granulopoiesis and homeostasis. Microbiol Mol Biol Rev 82(1):e00057–17

    Google Scholar 

  3. Borregaard N (2010) Neutrophils, from marrow to microbes. Immunity 33(5):657–670

    Article  CAS  PubMed  Google Scholar 

  4. Nathan C (2006) Neutrophils and immunity: challenges and opportunities. Nat Rev Immunol 6(3):173–182

    Article  CAS  PubMed  Google Scholar 

  5. Brinkmann V, Zychlinsky A (2007) Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 5(8):577–582

    Article  CAS  PubMed  Google Scholar 

  6. Bainton DF, Ullyot JL, Farquhar MG (1971) The development of neutrophilic polymorphonuclear leukocytes in human bone marrow. J Exp Med 134(4):907–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shaul ME, Fridlender ZG (2017) Neutrophils as active regulators of the immune system in the tumor microenvironment. J Leukoc Biol 102(2):343–349

    Article  CAS  PubMed  Google Scholar 

  8. Wu L, Saxena S, Awaji M, Singh RK (2019) Tumor-associated neutrophils in cancer: going pro. Cancers 11(4):P5641–20

    Google Scholar 

  9. Tecchio C, Scapini P, Pizzolo G, Cassatella MA (2013) On the cytokines produced by human neutrophils in tumors. Semin Cancer Biol 23(3):159–170

    Article  CAS  PubMed  Google Scholar 

  10. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  PubMed  Google Scholar 

  11. Ocana A, Nieto-Jimenez C, Pandiella A, Templeton AJ (2017) Neutrophils in cancer: prognostic role and therapeutic strategies. Mol Cancer 16(1):137

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Swierczak A, Mouchemore KA, Hamilton JA, Anderson RL (2015) Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev 34(4):735–751

    Article  CAS  PubMed  Google Scholar 

  13. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16(7):431–446

    Article  CAS  PubMed  Google Scholar 

  14. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L et al (2009) Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell 16(3):183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fridlender ZG, Albelda SM (2012) Tumor-associated neutrophils: friend or foe? Carcinogenesis 33(5):949–955

    Article  CAS  PubMed  Google Scholar 

  16. Jamieson T, Clarke M, Steele CW, Samuel MS, Neumann J, Jung A et al (2012) Inhibition of CXCR2 profoundly suppresses inflammation-driven and spontaneous tumorigenesis. J Clin Invest 122(9):3127–3144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Antonio N, Bonnelykke-Behrndtz ML, Ward LC, Collin J, Christensen IJ, Steiniche T et al (2015) The wound inflammatory response exacerbates growth of pre-neoplastic cells and progression to cancer. EMBO J 34(17):2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gordon-Weeks AN, Lim SY, Yuzhalin AE, Jones K, Markelc B, Kim KJ et al (2017) Neutrophils promote hepatic metastasis growth through fibroblast growth factor 2-dependent angiogenesis in mice. Hepatology (Baltimore, Md) 65(6):1920–1935

    Article  CAS  Google Scholar 

  19. Zhou SL, Dai Z, Zhou ZJ, Wang XY, Yang GH, Wang Z et al (2012) Overexpression of CXCL5 mediates neutrophil infiltration and indicates poor prognosis for hepatocellular carcinoma. Hepatology (Baltimore, Md) 56(6):2242–2254

    Article  CAS  Google Scholar 

  20. Wilson CL, Jurk D, Fullard N, Banks P, Page A, Luli S et al (2015) NFkappaB1 is a suppressor of neutrophil-driven hepatocellular carcinoma. Nat Commun 6:6818

    Article  CAS  PubMed  Google Scholar 

  21. Mensurado S, Rei M, Lanca T, Ioannou M, Goncalves-Sousa N, Kubo H et al (2018) Tumor-associated neutrophils suppress pro-tumoral IL-17+ gammadelta T cells through induction of oxidative stress. PLoS Biol 16(5):e2004990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, Oflazoglu E, Huberman A, Repasky E et al (2003) Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res 9(16 Pt 1):5866–5873

    CAS  PubMed  Google Scholar 

  23. Stockmeyer B, Beyer T, Neuhuber W, Repp R, Kalden JR, Valerius T et al (2003) Polymorphonuclear granulocytes induce antibody-dependent apoptosis in human breast cancer cells. J Immunol (Baltimore, Md : 1950) 171(10):5124–5129

    Article  CAS  Google Scholar 

  24. Simons MP, O'Donnell MA, Griffith TS (2008) Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol 26(4):341–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Challacombe JM, Suhrbier A, Parsons PG, Jones B, Hampson P, Kavanagh D et al (2006) Neutrophils are a key component of the antitumor efficacy of topical chemotherapy with ingenol-3-angelate. J Immunol (Baltimore, Md : 1950) 177(11):8123–8132

    Article  CAS  Google Scholar 

  26. Takeshima T, Pop LM, Laine A, Iyengar P, Vitetta ES, Hannan R (2016) Key role for neutrophils in radiation-induced antitumor immune responses: potentiation with G-CSF. Proc Natl Acad Sci USA 113(40):11300–11305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Otten MA, Rudolph E, Dechant M, Tuk CW, Reijmers RM, Beelen RH et al (2005) Immature neutrophils mediate tumor cell killing via IgA but not IgG Fc receptors. J Immunol (Baltimore, Md : 1950) 174(9):5472–5480

    Article  CAS  Google Scholar 

  28. Lichtenstein A, Kahle J (1985) Anti-tumor effect of inflammatory neutrophils: characteristics of in vivo generation and in vitro tumor cell lysis. Int J Cancer 35(1):121–127

    Article  CAS  PubMed  Google Scholar 

  29. Fouret P, du Bois RM, Bernaudin JF, Takahashi H, Ferrans VJ, Crystal RG (1989) Expression of the neutrophil elastase gene during human bone marrow cell differentiation. J Exp Med 169(3):833–845

    Article  CAS  PubMed  Google Scholar 

  30. Molldrem JJ, Komanduri K, Wieder E (2002) Overexpressed differentiation antigens as targets of graft-versus-leukemia reactions. Curr Opin Hematol 9(6):503–508

    Article  PubMed  Google Scholar 

  31. Pulford KA, Erber WN, Crick JA, Olsson I, Micklem KJ, Gatter KC et al (1988) Use of monoclonal antibody against human neutrophil elastase in normal and leukaemic myeloid cells. J Clin Pathol 41(8):853–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Korkmaz B, Moreau T, Gauthier F (2008) Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie 90(2):227–242

    Article  CAS  PubMed  Google Scholar 

  33. Papayannopoulos V, Metzler KD, Hakkim A, Zychlinsky A (2010) Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J Cell Biol 191(3):677–691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belorgey D, Bieth JG (1998) Effect of polynucleotides on the inhibition of neutrophil elastase by mucus proteinase inhibitor and alpha 1-proteinase inhibitor. Biochemistry 37(46):16416–16422

    Article  CAS  PubMed  Google Scholar 

  35. Honda M, Kubes P (2018) Neutrophils and neutrophil extracellular traps in the liver and gastrointestinal system. Nat Rev Gastroenterol Hepatol 15(4):206–221

    Article  CAS  PubMed  Google Scholar 

  36. Ruemmele FM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG (1998) Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology 115(4):822–829

    Article  CAS  PubMed  Google Scholar 

  37. Zhou G, Song Y, Yang W, Guo Y, Fang L, Chen Y et al (2016) ASCA, ANCA, ALCA and many more: are they useful in the diagnosis of inflammatory bowel disease? Dig Dis (Basel, Switzerland) 34(1–2):90–97

    Article  Google Scholar 

  38. Uchiyama K, Naito Y, Takagi T, Mizushima K, Hirai Y, Hayashi N et al (2012) Serpin B1 protects colonic epithelial cell via blockage of neutrophil elastase activity and its expression is enhanced in patients with ulcerative colitis. Am J Physiol Gastrointest Liver Physiol 302(10):G1163–G1170

    Article  CAS  PubMed  Google Scholar 

  39. Kato S, Ochiai M, Sakurada T, Ohno S, Miyamoto K, Sagara M et al (2008) Increased expression of long pentraxin PTX3 in inflammatory bowel diseases. Dig Dis Sci 53(7):1910–1916

    Article  CAS  PubMed  Google Scholar 

  40. Darrah E, Andrade F (2012) NETs: the missing link between cell death and systemic autoimmune diseases? Front Immunol 3:428

    PubMed  Google Scholar 

  41. Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA et al (2000) Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood 96(7):2317–2322

    Article  CAS  PubMed  Google Scholar 

  42. Grenda DS, Murakami M, Ghatak J, Xia J, Boxer LA, Dale D et al (2007) Mutations of the ELA2 gene found in patients with severe congenital neutropenia induce the unfolded protein response and cellular apoptosis. Blood 110(13):4179–4187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chin AC, Lee WY, Nusrat A, Vergnolle N, Parkos CA (2008) Neutrophil-mediated activation of epithelial protease-activated receptors-1 and -2 regulates barrier function and transepithelial migration. J Immunol (Baltimore, Md: 1950) 181(8):5702–5710

    Article  CAS  Google Scholar 

  44. Hattar K, Oppermann S, Ankele C, Weissmann N, Schermuly RT, Bohle RM et al (2010) c-ANCA-induced neutrophil-mediated lung injury: a model of acute Wegener’s granulomatosis. Eur Respir J 36(1):187–195

    Article  CAS  PubMed  Google Scholar 

  45. Massberg S, Grahl L, von Bruehl ML, Manukyan D, Pfeiler S, Goosmann C et al (2010) Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat Med 16(8):887–896

    Article  CAS  PubMed  Google Scholar 

  46. Lerman I, Hammes SR (2018) Neutrophil elastase in the tumor microenvironment. Steroids 133:96–101

    Article  CAS  PubMed  Google Scholar 

  47. Houghton AM, Rzymkiewicz DM, Ji H, Gregory AD, Egea EE, Metz HE et al (2010) Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat Med 16(2):219–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caruso JA, Akli S, Pageon L, Hunt KK, Keyomarsi K (2015) The serine protease inhibitor elafin maintains normal growth control by opposing the mitogenic effects of neutrophil elastase. Oncogene 34(27):3556–3567

    Article  CAS  PubMed  Google Scholar 

  49. Ho AS, Chen CH, Cheng CC, Wang CC, Lin HC, Luo TY et al (2014) Neutrophil elastase as a diagnostic marker and therapeutic target in colorectal cancers. Oncotarget 5(2):473–480

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gong L, Cumpian AM, Caetano MS, Ochoa CE, De la Garza MM, Lapid DJ et al (2013) Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Mol Cancer 12(1):154

    Article  PubMed  PubMed Central  Google Scholar 

  51. Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M (2003) The prognostic value of polymorphonuclear leukocyte elastase in patients with primary breast cancer. Cancer Res 63(2):337–341

    CAS  PubMed  Google Scholar 

  52. Lerman I, Garcia-Hernandez ML, Rangel-Moreno J, Chiriboga L, Pan C, Nastiuk KL et al (2017) Infiltrating myeloid cells exert protumorigenic actions via neutrophil elastase. Mol Cancer Res 15(9):1138–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Davis RJ, Moore EC, Clavijo PE, Friedman J, Cash H, Chen Z et al (2017) Anti-PD-L1 efficacy can be enhanced by inhibition of myeloid-derived suppressor cells with a selective inhibitor of PI3Kdelta/gamma. Cancer Res 77(10):2607–2619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pivetta E, Danussi C, Wassermann B, Modica TM, Del Bel BL, Canzonieri V et al (2014) Neutrophil elastase-dependent cleavage compromises the tumor suppressor role of EMILIN1. Matrix Biol 34:22–32

    Article  CAS  PubMed  Google Scholar 

  55. El Rayes T, Catena R, Lee S, Stawowczyk M, Joshi N, Fischbach C et al (2015) Lung inflammation promotes metastasis through neutrophil protease-mediated degradation of Tsp-1. Proc Natl Acad Sci USA 112(52):16000–16005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Grosse-Steffen T, Giese T, Giese N, Longerich T, Schirmacher P, Hansch GM et al (2012) Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma and pancreatic tumor cell lines: the role of neutrophils and neutrophil-derived elastase. Clin Dev Immunol 2012:720768

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Wada Y, Yoshida K, Tsutani Y, Shigematsu H, Oeda M, Sanada Y et al (2007) Neutrophil elastase induces cell proliferation and migration by the release of TGF-alpha, PDGF and VEGF in esophageal cell lines. Oncol Rep 17(1):161–167

    CAS  PubMed  Google Scholar 

  58. Inoue H, Kazawa T, Sato Y, Satodate H, Sasajima K, Kudo SE et al (2004) In vivo observation of living cancer cells in the esophagus, stomach, and colon using catheter-type contact endoscope, “Endo-Cytoscopy system”. Gastrointest Endosc Clin N Am 14(3):589–594. x-xi

    Article  PubMed  Google Scholar 

  59. Yamashita J, Ogawa M, Abe M, Hayashi N, Kurusu Y, Kawahara K et al (1997) Tumor neutrophil elastase is closely associated with the direct extension of non-small cell lung cancer into the aorta. Chest 111(4):885–890

    Article  CAS  PubMed  Google Scholar 

  60. Mittendorf EA, Alatrash G, Qiao N, Wu Y, Sukhumalchandra P, St John LS et al (2012) Breast cancer cell uptake of the inflammatory mediator neutrophil elastase triggers an anticancer adaptive immune response. Cancer Res 72(13):3153–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Topic A, Ljujic M, Nikolic A, Petrovic-Stanojevic N, Dopudja-Pantic V, Mitic-Milikic M et al (2011) Alpha-1-antitrypsin phenotypes and neutrophil elastase gene promoter polymorphisms in lung cancer. Pathol Oncol Res 17(1):75–80

    Article  CAS  PubMed  Google Scholar 

  62. Foekens JA, Ries C, Look MP, Gippner-Steppert C, Klijn JG, Jochum M (2003) Elevated expression of polymorphonuclear leukocyte elastase in breast cancer tissue is associated with tamoxifen failure in patients with advanced disease. Br J Cancer 88(7):1084–1090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Rotondo R, Barisione G, Mastracci L, Grossi F, Orengo AM, Costa R et al (2009) IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. Int J Cancer 125(4):887–893

    Article  CAS  PubMed  Google Scholar 

  64. Mayadas TN, Cullere X, Lowell CA (2014) The multifaceted functions of neutrophils. Annu Rev Pathol 9:181–218

    Article  CAS  PubMed  Google Scholar 

  65. Tomizawa N, Ohwada S, Ohya T, Kawashima Y, Takeyoshi I, Morishita Y (1999) The effect of neutrophil elastase inhibitor in hepatectomy with ischemia in dogs. J Surg Res 81(2):230–237

    Article  CAS  PubMed  Google Scholar 

  66. Yamaguchi Y, Akizuki E, Ichiguchi O, Matsumura F, Goto M, Miyanari N et al (1997) Neutrophil elastase inhibitor reduces neutrophil chemoattractant production after ischemia-reperfusion in rat liver. Gastroenterology 112(2):551–560

    Article  CAS  PubMed  Google Scholar 

  67. Doi K, Horiuchi T, Uchinami M, Tabo T, Kimura N, Yokomachi J et al (2002) Neutrophil elastase inhibitor reduces hepatic metastases induced by ischaemia-reperfusion in rats. Eur J Surg Acta Chir 168(8–9):507–510

    Article  CAS  Google Scholar 

  68. Chawla A, Alatrash G, Philips AV, Qiao N, Sukhumalchandra P, Kerros C et al (2016) Neutrophil elastase enhances antigen presentation by upregulating human leukocyte antigen class I expression on tumor cells. Cancer Immunol Immunother 65(6):741–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Aikawa N, Kawasaki Y (2014) Clinical utility of the neutrophil elastase inhibitor sivelestat for the treatment of acute respiratory distress syndrome. Ther Clin Risk Manag 10:621–629

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Aikawa N, Ishizaka A, Hirasawa H, Shimazaki S, Yamamoto Y, Sugimoto H et al (2011) Reevaluation of the efficacy and safety of the neutrophil elastase inhibitor, Sivelestat, for the treatment of acute lung injury associated with systemic inflammatory response syndrome; a phase IV study. Pulm Pharmacol Ther 24(5):549–554

    Article  CAS  PubMed  Google Scholar 

  71. Stevens T, Ekholm K, Granse M, Lindahl M, Kozma V, Jungar C et al (2011) AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J Pharmacol Exp Ther 339(1):313–320

    Article  CAS  PubMed  Google Scholar 

  72. von Nussbaum F, Li VM, Allerheiligen S, Anlauf S, Barfacker L, Bechem M et al (2015) Freezing the bioactive conformation to boost potency: the identification of BAY 85-8501, a selective and potent inhibitor of human neutrophil elastase for pulmonary diseases. ChemMedChem 10(7):1163–1173

    Article  CAS  Google Scholar 

  73. Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS et al (2004) Neutrophil extracellular traps kill bacteria. Science (New York, NY) 303(5663):1532–1535

    Article  CAS  Google Scholar 

  74. Wang Y, Li M, Stadler S, Correll S, Li P, Wang D et al (2009) Histone hypercitrullination mediates chromatin decondensation and neutrophil extracellular trap formation. J Cell Biol 184(2):205–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Urban CF, Reichard U, Brinkmann V, Zychlinsky A (2006) Neutrophil extracellular traps capture and kill Candida albicans yeast and hyphal forms. Cell Microbiol 8(4):668–676

    Article  CAS  PubMed  Google Scholar 

  76. Saitoh T, Komano J, Saitoh Y, Misawa T, Takahama M, Kozaki T et al (2012) Neutrophil extracellular traps mediate a host defense response to human immunodeficiency virus-1. Cell Host Microbe 12(1):109–116

    Article  CAS  PubMed  Google Scholar 

  77. Abi Abdallah DS, Lin C, Ball CJ, King MR, Duhamel GE, Denkers EY (2012) Toxoplasma gondii triggers release of human and mouse neutrophil extracellular traps. Infect Immun 80(2):768–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Walker MJ, Hollands A, Sanderson-Smith ML, Cole JN, Kirk JK, Henningham A et al (2007) DNase Sda1 provides selection pressure for a switch to invasive group A streptococcal infection. Nat Med 13(8):981–985

    Article  CAS  PubMed  Google Scholar 

  79. Branzk N, Lubojemska A, Hardison SE, Wang Q, Gutierrez MG, Brown GD et al (2014) Neutrophils sense microbe size and selectively release neutrophil extracellular traps in response to large pathogens. Nat Immunol 15(11):1017–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Berthelot JM, Le Goff B, Neel A, Maugars Y, Hamidou M (2017) NETosis: at the crossroads of rheumatoid arthritis, lupus, and vasculitis. Joint Bone Spine 84(3):255–262

    Article  PubMed  Google Scholar 

  81. Yipp BG, Kubes P (2013) NETosis: how vital is it? Blood 122(16):2784–2794

    Article  CAS  PubMed  Google Scholar 

  82. Fuchs TA, Abed U, Goosmann C, Hurwitz R, Schulze I, Wahn V et al (2007) Novel cell death program leads to neutrophil extracellular traps. J Cell Biol 176(2):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sollberger G, Tilley DO, Zychlinsky A (2018) Neutrophil extracellular traps: the biology of chromatin externalization. Dev Cell 44(5):542–553

    Article  CAS  PubMed  Google Scholar 

  84. Barnado A, Crofford LJ, Oates JC (2016) At the bedside: neutrophil extracellular traps (NETs) as targets for biomarkers and therapies in autoimmune diseases. J Leukoc Biol 99(2):265–278

    Article  CAS  PubMed  Google Scholar 

  85. Yang H, Biermann MH, Brauner JM, Liu Y, Zhao Y, Herrmann M (2016) New insights into neutrophil extracellular traps: mechanisms of formation and role in inflammation. Front Immunol 7:302

    PubMed  PubMed Central  Google Scholar 

  86. Papayannopoulos V (2018) Neutrophil extracellular traps in immunity and disease. Nat Rev Immunol 18(2):134–147

    Article  CAS  PubMed  Google Scholar 

  87. Hakkim A, Furnrohr BG, Amann K, Laube B, Abed UA, Brinkmann V et al (2010) Impairment of neutrophil extracellular trap degradation is associated with lupus nephritis. Proc Natl Acad Sci USA 107(21):9813–9818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Pinegin B, Vorobjeva N, Pinegin V (2015) Neutrophil extracellular traps and their role in the development of chronic inflammation and autoimmunity. Autoimmun Rev 14(7):633–640

    Article  CAS  PubMed  Google Scholar 

  89. Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS, Smith CK et al (2016) Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat Med 22(2):146–153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Warnatsch A, Ioannou M, Wang Q, Papayannopoulos V (2015) Inflammation. Neutrophil extracellular traps license macrophages for cytokine production in atherosclerosis. Science (New York, NY) 349(6245):316–320

    Article  CAS  Google Scholar 

  91. Caudrillier A, Kessenbrock K, Gilliss BM, Nguyen JX, Marques MB, Monestier M et al (2012) Platelets induce neutrophil extracellular traps in transfusion-related acute lung injury. J Clin Invest 122(7):2661–2671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. de Jong HK, Koh GC, Achouiti A, van der Meer AJ, Bulder I, Stephan F et al (2014) Neutrophil extracellular traps in the host defense against sepsis induced by Burkholderia pseudomallei (melioidosis). Intensive Care Med Exp 2(1):21

    Article  PubMed  PubMed Central  Google Scholar 

  93. Lee SK, Kim SD, Kook M, Lee HY, Ghim J, Choi Y et al (2015) Phospholipase D2 drives mortality in sepsis by inhibiting neutrophil extracellular trap formation and down-regulating CXCR2. J Exp Med 212(9):1381–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sakurai K, Miyashita T, Okazaki M, Yamaguchi T, Ohbatake Y, Nakanuma S et al (2017) Role for neutrophil extracellular traps (NETs) and platelet aggregation in early sepsis-induced hepatic dysfunction. In vivo (Athens, Greece) 31(6):1051–1058

    CAS  Google Scholar 

  95. Jorch SK, Kubes P (2017) An emerging role for neutrophil extracellular traps in noninfectious disease. Nat Med 23(3):279–287

    Article  CAS  PubMed  Google Scholar 

  96. Wong SL, Demers M, Martinod K, Gallant M, Wang Y, Goldfine AB et al (2015) Diabetes primes neutrophils to undergo NETosis, which impairs wound healing. Nat Med 21(7):815–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Yazdani HO, Chen HW, Tohme S, Tai S, van der Windt DJ, Loughran P et al (2017) IL-33 exacerbates liver sterile inflammation by amplifying neutrophil extracellular trap formation. J Hepatol 68(1)130–139

    Google Scholar 

  98. Huang H, Tohme S, Al-Khafaji AB, Tai S, Loughran P, Chen L et al (2015) Damage-associated molecular pattern-activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury. Hepatology (Baltimore, Md) 62(2):600–614

    Article  CAS  Google Scholar 

  99. Fuchs TA, Brill A, Duerschmied D, Schatzberg D, Monestier M, Myers DD Jr et al (2010) Extracellular DNA traps promote thrombosis. Proc Natl Acad Sci USA 107(36):15880–15885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO et al (2018) Neutrophil extracellular traps promote inflammation and development of hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology (Baltimore, Md) 68(4):1347–1360

    Google Scholar 

  101. Demers M, Krause DS, Schatzberg D, Martinod K, Voorhees JR, Fuchs TA et al (2012) Cancers predispose neutrophils to release extracellular DNA traps that contribute to cancer-associated thrombosis. Proc Natl Acad Sci USA 109(32):13076–13081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Levi M (2016) Management of cancer-associated disseminated intravascular coagulation. Thromb Res 140(Suppl 1):S66–S70

    Article  CAS  PubMed  Google Scholar 

  103. Guglietta S, Chiavelli A, Zagato E, Krieg C, Gandini S, Ravenda PS et al (2016) Coagulation induced by C3aR-dependent NETosis drives protumorigenic neutrophils during small intestinal tumorigenesis. Nat Commun 7:11037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ho-Tin-Noe B, Carbo C, Demers M, Cifuni SM, Goerge T, Wagner DD (2009) Innate immune cells induce hemorrhage in tumors during thrombocytopenia. Am J Pathol 175(4):1699–1708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Cedervall J, Zhang Y, Huang H, Zhang L, Femel J, Dimberg A et al (2015) Neutrophil extracellular traps accumulate in peripheral blood vessels and compromise organ function in tumor-bearing animals. Cancer Res 75(13):2653–2662

    Article  CAS  PubMed  Google Scholar 

  106. Cools-Lartigue J, Spicer J, McDonald B, Gowing S, Chow S, Giannias B et al (2013) Neutrophil extracellular traps sequester circulating tumor cells and promote metastasis. J Clin Invest 123(8):3446–3458

    Google Scholar 

  107. Tohme S, Yazdani HO, Al-Khafaji AB, Chidi AP, Loughran P, Mowen K et al (2016) Neutrophil extracellular traps promote the development and progression of liver metastases after surgical stress. Cancer Res 76(6):1367–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Millrud CR, Kagedal A, Kumlien Georen S, Winqvist O, Uddman R, Razavi R et al (2017) NET-producing CD16(high) CD62L(dim) neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. Int J Cancer 140(11):2557–2567

    Article  CAS  PubMed  Google Scholar 

  109. Cedervall J, Olsson AK (2016) Immunity gone astray – NETs in cancer. Trends Cancer 2(11):633–634

    Article  PubMed  Google Scholar 

  110. Zhang LM, Chen JH (2015) Progression of NETs correlating with tumor-related diseases. Asian Pac J Cancer Prev 16(17):7431–7434

    Article  PubMed  Google Scholar 

  111. Chang X, Han J (2006) Expression of peptidylarginine deiminase type 4 (PAD4) in various tumors. Mol Carcinog 45(3):183–196

    Article  CAS  PubMed  Google Scholar 

  112. Chang X, Han J, Pang L, Zhao Y, Yang Y, Shen Z (2009) Increased PADI4 expression in blood and tissues of patients with malignant tumors. BMC Cancer 9:40

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Li P, Li M, Lindberg MR, Kennett MJ, Xiong N, Wang Y (2010) PAD4 is essential for antibacterial innate immunity mediated by neutrophil extracellular traps. J Exp Med 207(9):1853–1862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Li P, Wang D, Yao H, Doret P, Hao G, Shen Q et al (2010) Coordination of PAD4 and HDAC2 in the regulation of p53-target gene expression. Oncogene 29(21):3153–3162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Li P, Yao H, Zhang Z, Li M, Luo Y, Thompson PR et al (2008) Regulation of p53 target gene expression by peptidylarginine deiminase 4. Mol Cell Biol 28(15):4745–4758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Conflicts of Interest

The authors have nothing to disclose.

Funding

This work was supported by the grants from the National Institute of Health, T32AI 106704-01A1 (AEO), CA214865-01 (AT) and GM095566-06 (AT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allan Tsung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, H., Zhang, H., Onuma, A.E., Tsung, A. (2020). Neutrophil Elastase and Neutrophil Extracellular Traps in the Tumor Microenvironment. In: Birbrair, A. (eds) Tumor Microenvironment. Advances in Experimental Medicine and Biology, vol 1263. Springer, Cham. https://doi.org/10.1007/978-3-030-44518-8_2

Download citation

Publish with us

Policies and ethics