Skip to main content

Structural Modifications of Polymers by Pulsed Electrical Discharges in Liquids

  • Chapter
  • First Online:
Carbon-Related Materials

Abstract

Pulsed electrical discharges generated at atmospheric pressure in liquids have become one of the most interesting techniques for the functionalization of polymers. The generation of plasmas in liquids with short high voltage pulses for material modification is very new, but the approach offers the potential to be highly flexible with regard to their range of applications. When water is subjected to a high electric field, a high amount of excited species, such as hydrogen, oxygen, nitrogen, and hydroxyl radicals, are produced, which may efficiently interact with molecules and bulk-materials, inducing structural modifications. The material surface tailoring with different functionalities is possible, due to a wide range of functional groups that can be generated in liquid plasma by using anionic or cationic solutions. Polymer nanocomposites may be synthesized in a one-step process, nanomaterials being generated in plasma discharge and incorporated into the polymer matrix which is also placed in the plasma reactor during this process. Different reactions set in motion are determined by the way the electrical energy that is provided is dissipated in different mechanisms. Our experiments have shown that structural modifications of polymers and nanocomposite obtained when using nanosecond voltage pulses differ significantly from treatments with plasmas in liquids that have been generated with longer (microsecond) pulse duration. Therefore, pulse electrical discharges in liquids may be used for a controlled and efficient structural modification of polymers.

This chapter is a review on recent progress and new developments in modification of the polymer films structure and synthesis of nanocomposites after treatment by pulsed electrical discharges in liquids. First, a brief introduction of the plasma formed in liquids, the mechanism of plasma breakdown and reactive species formation. The polymers used in our studies and the influence of plasma treatment on the electrical, optical, and mechanical properties are described, according to the results obtained using different characterization methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deligöz H, Yalcinyuva T, Özgümüs S, Yildirim S (2006) Electrical properties of conventional polyimide films: effects of chemical structure and water uptake. J Appl Polym Sci 100:810

    Google Scholar 

  2. Jeong JY, Babayan SE, Schutze A, Tu VJ, Park J, Henins I, Selwyn GS, Hicks RF (1999) Etching polyimide with a nonequilibrium atmospheric-pressure plasma jet. J Vac Sci Technol A 17:5

    Google Scholar 

  3. Isfahani HN, Faghihi K, Hajibeygi M, Bokaei M (2010) New optically active poly(amide-imide)s from N,N′-(bicyclo[2,2,2]oct-7-ene-2,3,5,6-tetracarboxylic)bis-l-phenyl alanine and aromatic diamines: synthesis and characterization. Polym Bull 64:633

    CAS  Google Scholar 

  4. Gonzalo B, Vilas JL, Breczewski T, Perz-jubindo MA, Delafuente MR, Rodriguez M (2009) Synthesis, characterization, and thermal properties of piezoelectric polyimides. J Polym Sci Part A Polym Chem 47:722

    CAS  Google Scholar 

  5. Zhang QX, Naito K, Tanaka Z, Kagawa Z (2008) Grafting polyimides from nanodiamonds. Macromolecules 41:536

    CAS  Google Scholar 

  6. Maya EM, Benavente J, de Abajo J (2012) Effect of the carboxylic acid groups on water sorption, thermal stability and dielectric properties of polyimide films. Mater Chem Phys 131:581

    CAS  Google Scholar 

  7. Sava I, Chisca S (2012) Surface properties of aromatic polymer film during thermal treatment. Mater Chem Phys 134:116

    CAS  Google Scholar 

  8. Kim Y, Goh WH, Chang T, Ha CS, Ree M (2004) Optical and dielectric anisotropy in polyimide nanocomposite films prepared from soluble poly(amic diethyl ester) precursors. Adv Eng Mater 6:39

    CAS  Google Scholar 

  9. Ukishima S, Lijima M, Sato M, Takashi Y, Fukada E (1997) A novel cross-linked polyimide film: synthesis and dielectric properties. Thin Solid Films 308:309

    Google Scholar 

  10. Lee C, Shu Y, Han H (2002) Dielectric properties of oxydianiline-based polyimide thin films according to the water uptake. J Polym Sci B Polym Phys 40:2190

    CAS  Google Scholar 

  11. Liang T, Makita Y, Kimura S (2001) Effect of film thickness on the electrical properties of polyimide thin films. Polymer 42:4867

    CAS  Google Scholar 

  12. Martin SJ, Godschalx JP, Mills ME, Shaffer EO, Townsend PH (2000) Development of a low-dielectric-constant polymer for the fabrication of integrated circuit interconnect. Adv Mater 12:1769

    CAS  Google Scholar 

  13. Havemann RH, Hutchby JA (2001) High-performance interconnects: an integration overview. Proc IEEE 89:586

    CAS  Google Scholar 

  14. Chern YT (1998) Low dielectric constant polyimides derived from novel 1, 6-bis [4-(4-aminophenoxy) phenyl] diamantane. Macromolecules 31:5837

    CAS  Google Scholar 

  15. Chern YT, Shiue H-C (1997) Low dielectric constants of soluble polyimides based on adamantane. Macromolecules 30:4646

    CAS  Google Scholar 

  16. Meijer HEH, Govaert LE (2005) Mechanical performance of polymer systems: the relation between structure and properties. Prog Polym Sci 30:915

    CAS  Google Scholar 

  17. Mathews AS, Kim I, Ha CS (2007) Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol Res 15:114

    CAS  Google Scholar 

  18. Huang JW, Wen YL, Kang CC, Yeh MY (2007) Preparation of polyimide-silica nanocomposites from nanoscale colloidal silica. Polym J 39:654

    CAS  Google Scholar 

  19. Matsumoto T (2001) Aliphatic polyimides derived from polyalicyclic monomers. High Perform Polym 13:S85

    CAS  Google Scholar 

  20. Seino H, Sasaki T, Mochizuki A, Ueda M (1999) Synthesis of fully aromatic polyimides. High Perform Polym 11:255

    CAS  Google Scholar 

  21. Matsuura T, Ishizawa M, Yasuda Y, Nishi S (1992) Polyimides derived from 2,2,-bis(trifluoromethyl)-4,4/-diaminobiphenyl. 2. Synthesis and characterization of polyimides prepared from fluorinated benzenetetracarboxylic dianhydrides. Macromolecules 25:3540

    CAS  Google Scholar 

  22. Rancourt JD, Taylor LT (1987) Preparation and properties of surface-conductive polyimide films via in situ codeposition of metal salts. Macromolecules 20:790

    CAS  Google Scholar 

  23. Ukishima S, Iijima M, Sato M, Takahashi Y, Fukada E (1997) Heat resistant polyimide films with low dielectric constant by vapor deposition polymerization. Thin Solid Films 475:308–309

    Google Scholar 

  24. Matsuura T, Ando S, Sasaki S, Yamamoto F (1994) Polyimides derived from 2,2/-bis(trifluoromethyl)-4,4/-diaminobiphenyl. 4. Optical properties of fluorinated polyimides for optoelectronic components. Macromolecules 27:6665

    CAS  Google Scholar 

  25. Halper SR, Villahermosa RM (2009) Cobalt-containing polyimides for moisture sensing and absorption. ACS Appl Mater Interfaces 1:1041

    CAS  Google Scholar 

  26. Wachsman ED, Frank CW (1988) Effect of cure history on the morphology of polyimide: fluorescence spectroscopy as a method for determining the degree of cure. Polymer 29:1191

    CAS  Google Scholar 

  27. Takizawa K, Wakita J, Sekiguchi K, Ando S (2012) Macromolecules 45:4764

    CAS  Google Scholar 

  28. Matsuda S, Urano Y, Park JW, Ha CS, Ando S (2004) Variations in aggregation structures and fluorescence properties of a semialiphatic fluorinated polyimide induced by very high pressure. J Photopolym Sci Technol 17:241

    CAS  Google Scholar 

  29. Hasegawa M (2001) Semi-aromatic polyimides with low dielectric constant and low CTE. High Perform Polym 13(2):S93

    CAS  Google Scholar 

  30. Sava I, Chisca S, Bruma M, Lisa G (2010) Study of some aromatic polyimides containing methylene units. Mater Plast 47:481

    CAS  Google Scholar 

  31. Nica S-L, Hulubei C, Stoica I, Ioanid GE, Ioan S (2013) Surface properties and blood compatibility of some aliphatic/aromatic polyimide blends. Polym Eng Sci 53:263

    CAS  Google Scholar 

  32. Myung BY, Kim JS, Kim JJ, Yoon TH (2003) Synthesis and characterization of novel polyimides with 2,2-bis[4(4-aminophenoxy) phenyl]phthalein-3′,5′-bis(trifluoromethyl)anilide. J Polym Sci Part A Polym Chem 41:3361

    CAS  Google Scholar 

  33. Houghham G, Tesoro G, Viehbeck A (1996) Influence of free volume change on the relative permittivity and refractive index in fluoropolyimides. Macromolecules 29:3453

    Google Scholar 

  34. Chen H, Xie L, Lu H, Yang Y (2007) Ultra-low-κ polyimide hybrid films via copolymerization of polyimide and polyoxometalates, communication in J. Mater Chem 17:1258

    CAS  Google Scholar 

  35. Huang JC, Lim PC, Shen L, Pallathadka PK, Zeng KY, He CB (2005) Cubic silsesquioxane–polyimide nanocomposites with improved thermomechanical and dielectric properties. Acta Mater 53:2395

    CAS  Google Scholar 

  36. Zhang YH, Lu SG, Li YQ, Dang ZM, Xin JH, Fu SY, Li GT, Guo RR, Li LF (2005) Adv Mater 17:1056

    CAS  Google Scholar 

  37. Zhang Y, Yu L, Su Q, Zheng H, Huang H, Chan HLW (2012) Novel silica tube/polyimide composite films with variable low dielectric constant. J Mater Sci 47:1958

    CAS  Google Scholar 

  38. Wang HW, Dong RX, Liu CL, Chang HY (2007) Effect of clay on properties of polyimide-clay nanocomposites. J Appl Polym Sci 104:318

    CAS  Google Scholar 

  39. Wang J-Y, Yang S-Y, Huang Y-L, Tien H-W, Chin W-K, Ma C-CM (2011) Preparation and properties of graphene oxide/polyimide composite films with low dielectric constant and ultrahigh strength via in situ polymerization. J Mater Chem 21:13569

    CAS  Google Scholar 

  40. Calvert P (1999) A recipe for strength. Nature 399:210

    CAS  Google Scholar 

  41. Coleman JN, Khan U, Blau WJ, Gun’ko YK (2006) Small but strong: a review of the mechanical properties of carbon nanotube–polymer composites. Carbon 44:1624

    CAS  Google Scholar 

  42. Yang SY, Ma CCM, Teng CC, Huang YW, Liao SH, Huang YL, Tien HW, Lee TM, Chiou KC (2010) Effect of functionalized carbon nanotubes on the thermal conductivity of epoxy composites. Carbon 48:592

    CAS  Google Scholar 

  43. Park O-K, Hwang J-Y, Goh M, Lee JH, Ku B-C, You N-H (2013) Mechanically strong and multifunctional polyimide nanocomposites using aminophenyl functionalized graphene nanosheets. Macromolecules 46:3505

    CAS  Google Scholar 

  44. Yang CY, Chen JS, Hsu SLC (2006) Effects of O2 and N2 plasma treatment on 6FDA-BisAAF fluorine-contained polyimide. J Electrochem Soc 153:F120

    CAS  Google Scholar 

  45. Park SJ, Sohn HJ, Hong SK, Shin GS (2009) Influence of atmospheric fluorine plasma treatment on thermal and dielectric properties of polyimide film. J Colloid Interface Sci 332:246

    CAS  Google Scholar 

  46. Cheng YY, Ko HH, Chou SC, Ku PS (2014) Study on NH3 plasma-treated polyimide/MWNT composites on electrical and surface properties. Mater Sci Appl 5:54

    Google Scholar 

  47. Lin Y-S, Liu H-M, Tsai C-W (2005) Nitrogen plasma modification on polyimide films for copper metallization on microelectronic flex substrates. J Polym Sci Part B Polym Phys 43:2023

    CAS  Google Scholar 

  48. Favia P (2012) Plasma deposited coatings for biomedical materials and devices: fluorocarbon and PEO-like coatings. Surf Coat Technol 211:50

    CAS  Google Scholar 

  49. Oh JS, Gil EL, Kyoung SJ, Lim JT, Yeom GY (2010) Polyimide surface treatment by atmospheric pressure plasma for metal adhesion. J Electrochem Soc 157:D614

    Google Scholar 

  50. Friedrich JF, Mix R, Schulze R-D, Meyer-Plath A, Joshi R, Wettmarshausen S (2008) New plasma techniques for polymer surface modification with monotype functional groups. Plasma Process Polym 5:407

    CAS  Google Scholar 

  51. Joshi R, Schulze RD, Meyer-Plath A, Wagner MH, Friedrich JF (2009) Selective surface modification of polypropylene using underwater plasma technique or underwater capillary discharge. Plasma Process Polym 6:S218

    CAS  Google Scholar 

  52. Joshi R, Schulze R-D, Meyer-Plath A, Friedrich JF (2008) Selective surface modification of poly (propylene) with OH and COOH groups using liquid-plasma systems. Plasma Process Polym 5:695

    CAS  Google Scholar 

  53. Miron C, Sava I, Jepu I, Osiceanu P, Lungu CP, Sacarescu L, Harabagiu V (2013) Surface modification of the polyimide films by electrical discharges in water. Plasma Process Polym 10:798

    CAS  Google Scholar 

  54. Miron C, Zhuang J, Sava I, Kruth A, Weltmann K-D, Kolb JF (2016) Dielectric spectroscopy of polyimide films treated by nanosecond high voltage pulsed driven electrical discharges in water. Plasma Process Polym 13:253–257

    CAS  Google Scholar 

  55. Sava I, Kruth A, Kolb JF, Miron C (2018) Optical properties of polyimides films treated by nanosecond pulsed electrical discharges in water. Jpn J Appl Phys 57:0102BF

    Google Scholar 

  56. Hagoino T, Kondo H, Ishikawa K, Kano H, Sekine M, Hori M (2012) Appl Phys Express 5:035101

    Google Scholar 

  57. Senthilnathan J, Liu YF, Rao KS, Yoshimura M (2014) Ultrahigh-speed synthesis of nanographene using alcohol in-liquid plasma. Sci Rep 4:04395

    Google Scholar 

  58. Shirafuji T, Noguchi Y, Yamamoto T, Hieda J, Saito N, Takai O, Tsuchimoto A, Nojima K, Okabe Y (2013) Functionalization of multiwalled carbon nanotubes by solution plasma processing in ammonia aqueous solution and preparation of composite material with polyamide. Jpn J Apl Phys 52:125101

    Google Scholar 

  59. Kolb JF, Joshi RP, Xiao S, Schoenbach KH (2008) Streamers in water and other dielectric liquids. J Phys D Appl Phys 41:234007

    Google Scholar 

  60. Shih K-Y, Locke BR (2011) Optical and electrical diagnostics of the effects of conductivity on liquid phase electrical discharge. IEEE Trans Plasma Sci 39:883

    CAS  Google Scholar 

  61. Lungu CP, Lungu AM, Chiru P, Pompilian O, Georgescu N, Magureanu M, Mustata I, Velea T, Stanciu D, Predica V (2009) Plasma treatment of levigated materials and saturated waters. Rom J Phys 54:369

    CAS  Google Scholar 

  62. Marinov I, Starikovskaia S, Rousseau A (2014) Dynamics of plasma evolution in a nanosecond underwater discharge. J Phys D Appl Phys 47:224017

    Google Scholar 

  63. Sun B, Sato M, Harano A, Clements JS (1998) Non-uniform pulse discharge-induced radical production in distilled water. J Electrost 43:115

    CAS  Google Scholar 

  64. Starikovskiy A, Yang Y, Cho YI, Fridman A (2011) Non-equilibrium plasma in liquid water: dynamics of generation and quenching. Plasma Sources Sci Technol 20:024003

    Google Scholar 

  65. Miron C, Hulubei C, Sava I, Quade A, Steuer A, Weltmann K-D, Kolb JF (2015) Polyimide film surface modification by nanosecond high voltage pulse driven electrical discharges in water. Plasma Process Polym 12:734–745

    CAS  Google Scholar 

  66. Hickling A, Ingram MD (1963) Electrochemical processes in glow discharge at the gas-solution interface. Trans Faraday Soc 60:783–793

    Google Scholar 

  67. Martin TH, Guenther AH, Kristiansen M (1996) J. C. Martin on pulsed power. Plenum, New York

    Google Scholar 

  68. Graham WG, Stalde KR (2011) Plasmas in liquids and some of their applications in nanoscience. J Phys D Appl Phys 44:174037

    Google Scholar 

  69. Sunka P (2001) Pulsed electrical discharge in water and their applications. Phys Plasmas 8:2587–2594

    CAS  Google Scholar 

  70. Pavlinak D, Galmiz O, Zemanek M, Brablec A, Cech J, Cernak M (2014) Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges. Appl Phys Lett 105:154102

    Google Scholar 

  71. Vanraes P, Nikiforov A, Leys C (2016) In: Mieno T (ed) Plasma science and technology: progress in physical states and chemical reactions, pp 457–506

    Google Scholar 

  72. Vanraes P, Bogaerts A (2018) Plasma physics of liquids—a focused review. Appl Phys Rev 5:031103

    Google Scholar 

  73. Sato M, Tokutake T, Ohshima T, Sugiarto AT (2008) Aqueous phenol decomposition by pulsed discharges on the water surface. IEEE Trans Ind Appl 44(5):1397–1402

    CAS  Google Scholar 

  74. Khalaf TH, Kadum AH (2010) Analysis of initiation and growth of plasma channels within non-mixed dielectric liquids. Iraqi J Phys 8(11):88–94

    Google Scholar 

  75. Li J, Si W, Yao X, Li Y (2009) Partial discharge characteristics over differently aged oil/pressboard interfaces. IEEE Trans Dielectr Electr Insul 16(6):1640–1647

    Google Scholar 

  76. Saito G, Akiyama T (2015) Nanomaterial synthesis using plasma generation in liquid., J Nanomater. https://doi.org/10.1155/2015/123696

    Book  Google Scholar 

  77. Kareem TA, Kaliani AA (2012) Glow discharge plasma electrolysis for nanoparticles synthesis. Ionics 18:315–327

    Google Scholar 

  78. Miron C, Balan M, Pricop L, Harabagiu V, Jepu I, Porosnicu C, Lungu CP (2014) Pulsed electrical discharges in silicone emulsion. Plasma Process Polym 11:214

    CAS  Google Scholar 

  79. Shi Q, Vitchuli N, Nowak J, Lin Z, Guo B, McCord M, Bourham M, Zhang X (2011) Atmospheric plasma treatment of pre-electrospinning polymer solution: A feasible method to improve electrospinnability. J Polym Sci Part B Polym Phys 49(2):115–122

    CAS  Google Scholar 

  80. Senthilnathan J, Weng C-C, Der Liao J, Yoshimura M (2013) Sci Rep 3:2414. https://doi.org/10.1038/srep02414

    Article  Google Scholar 

  81. Yasuda H, Hirotsu T (1978) Critical evaluation of conditions of plasma polymerization. J Polym Sci Polym Chem Ed 16:743–759

    CAS  Google Scholar 

  82. Yasuda H (1981) Glow discharge polymerization. J Polym Sci Macromol Rev 16:199–293

    CAS  Google Scholar 

  83. Banaschik R, Lukes P, Miron C, Banaschik R, Pipa A, Fricke K, Bednarski PJ, Kolb JF (2017) Fenton chemistry promoted by sub-microsecond pulsed corona plasmas for organic micropollutant degradation in water. Electrochim Acta 245:539–548

    CAS  Google Scholar 

  84. An W, Baumung K, Bluhm H (2007) Underwater streamer propagation analyzed from detailed measurements of pressure release. J Appl Phys 101:053302

    Google Scholar 

  85. Liaw DJ, Liaw BY, Hsu PN, Huang CY (2001) Synthesis and characterization of new highly organosoluble poly(ether imide)s bearing a noncoplanar 2,2′-dimethyl-4,4′-biphenyl unit and kink diphenylmethylene linkage. Chem Mater 13:1811–1816

    CAS  Google Scholar 

  86. Liaw DJ, Chang FC, Leung M, Chou MY, Muellen K (2005) Highly organosoluble and flexible polyimides with color lightness and transparency based on 2,2-bis[4-(2-trifluoromethyl-4-aminophenoxy)-3,5-dimethylphenyl]propane. Macromolecules 38:4024–4029

    CAS  Google Scholar 

  87. Zhao G, Ishizaka T, Kasai I, Oikawa I, Nakanishi I (2007) Fabrication of unique porous polyimide nanoparticles using a reprecipitation method. Chem Mater 19:1901–1905

    CAS  Google Scholar 

  88. Ge Z, Fan L, Yang S (2008) Synthesis and characterization of novel fluorinated polyimides derived from 1,1′-bis(4-aminophenyl)-1-(3-trifluoromethylphenyl)-2,2,2-trifluoroethane and aromatic dianhydrides. Eur Polym J 44:1252–1260

    CAS  Google Scholar 

  89. Zhao G, Ishizaka T, Kasai I, Hasegawa M, Nakanishi I, Oikawa H (2009) Using a polyelectrolyte to fabricate porous polyimide nanoparticles with crater-like pores. Polym Adv Technol 20:43–47

    CAS  Google Scholar 

  90. Sava I, Chisca S, Bruma M, Lisa G (2010) Comparative study of aromatic polyimides containing methylene units. Polym Bull 65:363

    CAS  Google Scholar 

  91. Bas C, Tamagna C, Pascal T, Alberola ND (2003) On the dynamic mechanical behavior of polyimides based on aromatic and alicyclic dianhydrides. Polym Eng Sci 43:344–355

    CAS  Google Scholar 

  92. Kim S-U, Lee C, Sundar S, Jang W, Yang S-J, Han H (2004) Synthesis and characterization of soluble polyimides containing trifluoromethyl groups in their backbone. J Polym Sci B Polym Phys 42:4303–4312

    CAS  Google Scholar 

  93. Damaceanu MD, Musteata VE, Cristea M, Bruma M (2010) Viscoelastic and dielectric behaviour of thin films made from siloxane-containing poly(oxadiazole-imide)s. Eur Polym J 46:1049–1062

    CAS  Google Scholar 

  94. Chisca S, Sava I, Musteata V, Bruma M (2011) Dielectric behavior of some aromatic polyimide films. Eur Polym J 47:1186–1197

    CAS  Google Scholar 

  95. Chisca S, Musteata V, Stoica I, Sava I, Bruma M (2011) Effect of the chemical structure of aromatic-cycloaliphatic copolyimide films on their surface morphology, relaxation behavior and dielectric properties. J Polym Res 20:111

    Google Scholar 

  96. Comer AC, Kalika DS, Rowe BW, Freeman BD, Paul DR (2009) Dynamic relaxation characteristics of Matrimid® polyimide. Polymer 50:891–897

    CAS  Google Scholar 

  97. Damaceanu MD, Rusu RD, Cristea M, Musteata VE, Bruma M, Wolinska-Grabczyk A (2014) Insights into the chain and local mobility of some aromatic polyamides and their influence on the physicochemical properties. Macromol Chem Phys 215:1573–1587

    CAS  Google Scholar 

  98. Havriliak S, Negami S (1966) A complex plane analysis of α-dispersions in some polymer systems. J Polym Sci Polym Symp 14:99–117

    Google Scholar 

  99. Ferreira FAS, Battirola LC, Lewicki JP, Worsley MA, Pereira-da-Silva MA, Amaral T, Lepienski CM, Rodrigues-Filho UP (2016) Influence of thermal treatment time on structural and physical properties of polyimide films at beginning of carbonization. Polym Degrad Stabil 129:399–407

    CAS  Google Scholar 

  100. Blanksby S, Ellison GB (2003) Bond dissociation energies of organic molecules. Acc Chem Res 36:255–263

    CAS  Google Scholar 

  101. Lee S-C, Tai F-C, Wei C-H, Yu J-I (2007) ATR-FTIR and nanoindentation measurements of PMDA-ODA polyimide film under different curing temperature. Mater Trans 48:1554–1557

    CAS  Google Scholar 

  102. Senthilnathan J, Sanjeeva Rao K, Yoshimura M (2014) Submerged liquid plasma–low energy synthesis of nitrogen-doped graphene for electrochemical applications. J Mater Chem A 2:3332–3337

    CAS  Google Scholar 

  103. Krishnamoorthya K, Veerapandianb M, Kima G-S, Kima SJ (2012) A one step hydrothermal approach for the improved synthesis of graphene nanosheets. Curr Nanosci 8:934–938

    Google Scholar 

  104. Lai Q, Zhu S, Luo X, Zou M, Huang S (2012) Ultraviolet-visible spectroscopy of graphene oxides. AIP Adv 2:032146

    Google Scholar 

  105. Damaceanu MD, Sava I, Constantin CP (2016) The chromic and electrochemical response of CoCl2-filled polyimide materials for sensing applications. Sensors Actuators B 234:549–561

    CAS  Google Scholar 

  106. Miron C, Zhuang J, Balcerak M, Holub M, Kruth A, Quade A, Sava I, Weltmann K-D, Kolb JF (2016) Cobalt containing polyimide films treated by nanosecond pulsed electrical discharges in water. IEEE Trans Plasma Sci 44:11

    Google Scholar 

  107. Jin X, Huang L, Shi Y, Yang S, Hu A (2002) Thermosetting process and thermal degradation mechanism of high-performance polyimide. J Anal Appl Pyrolysis 64:395

    CAS  Google Scholar 

  108. Yoshifumi S, Yoshida M, Ando S (2006) J Photopolym Sci Technol 19:297

    Google Scholar 

  109. Li Q, Horie K, Yokota R (1997) Absorption, fluorescence and thermal properties of transparent polyimides based on 2, 3, 5-tricarboxycyclopentylacetic acid dianhydride. J Photopolym Sci Technol 10:49

    CAS  Google Scholar 

  110. Hasegawa M, Kochi M, Mita I, Yokota R (1989) Molecular aggregation and fluorescence spectra of aromatic polyimides. Eur Polym J 25:349

    CAS  Google Scholar 

  111. Hasegawa M, Shindo Y, Sugimura T, Ohshima S, Horie K, Kochi M, Yokota R, Mita I (1993) Photophysical processes in aromatic polyimides. Studies with model compounds. J Polym Sci Part B 31:1617

    CAS  Google Scholar 

  112. Wakita J, Ando S (2009) Characterization of electronic transitions in polyimide films based on spectral variations induced by hydrostatic pressures up to 400 MPa. J Phys Chem B 113:8835

    CAS  Google Scholar 

  113. Carturan S, Quaranta A, Negro E, Tonezzer M, Bonafini M, Maggioni G, Della Mea G (2006) Optical response of 6FDA–DAD fluorinated polyimide to water and alcohols. Sensors Actuators B 118:393

    CAS  Google Scholar 

  114. Chang MH, Frampton MJ, Anderson HL, Herz LM (2007) Intermolecular interaction effects on the ultrafast depolarization of the optical emission from conjugated polymers. Phys Rev Lett 98:027402

    CAS  Google Scholar 

  115. Morteani AC, Friend RH, Silva C (2005) Exciton trapping at heterojunctions in polymer blends. J Chem Phys 122:7

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Miron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Miron, C., Sava, I., Sacarescu, L., Ishizaki, T., Kolb, J.F., Lungu, C.P. (2020). Structural Modifications of Polymers by Pulsed Electrical Discharges in Liquids. In: Miron, C., Mele, P., Kaneko, S., Endo, T. (eds) Carbon-Related Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-44230-9_6

Download citation

Publish with us

Policies and ethics