Skip to main content

Differential Geometric Methods in Nonlinear Control

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 103 Accesses

Abstract

In the early 1970s, concepts from differential geometry were introduced to study nonlinear control systems. The leading researchers in this effort were Roger Brockett, Robert Hermann, Henry Hermes, Alberto Isidori, Velimir Jurdjevic, Arthur Krener, Claude Lobry, and Hector Sussmann. These concepts revolutionized our knowledge of the analytic properties of control systems, e.g., controllability, observability, minimality, and decoupling. With these concepts, a theory of nonlinear control systems emerged that generalized the linear theory. This theory of nonlinear systems is largely parallel to the linear theory, but of course it is considerably more complicated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Arnol’d VI (1983) Geometrical methods in the theory of ordinary differential equations. Springer, Berlin

    Book  Google Scholar 

  • Brockett RW (1972) Systems theory on group manifods and coset spaces. SIAM J Control 10: 265–284

    Article  MathSciNet  MATH  Google Scholar 

  • Chow WL (1939) Uber Systeme von Linearen Partiellen Differentialgleichungen Erster Ordnung. Math Ann 117:98–105

    MathSciNet  MATH  Google Scholar 

  • Gauthier JP, Hammouri H, Othman S (1992) A simple observer for nonlinear systems with applications to bioreactors. IEEE Trans Autom Control 37:875–880

    Article  MathSciNet  MATH  Google Scholar 

  • Griffith EW, Kumar KSP (1971) On the observability of nonlinear systems, I. J Math Anal Appl 35:135–147

    Article  MathSciNet  MATH  Google Scholar 

  • Haynes GW, Hermes H (1970) Non-linear controllability via Lie theory SIAM J Control 8: 450–460

    Google Scholar 

  • Hermann R, Krener AJ (1977) Nonlinear controllability and observability. IEEE Trans Autom Control 22:728–740

    Article  MathSciNet  MATH  Google Scholar 

  • Hermes H (1994) Large and small time local controllability. In: Proceedings of the 33rd IEEE conference on decision and control, vol 2, pp 1280–1281

    Google Scholar 

  • Hirschorn RM (1981) (A,B)-invariant distributions and the disturbance decoupling of nonlinear systems. SIAM J Control Optim 19:1–19

    Article  MathSciNet  MATH  Google Scholar 

  • Isidori A, Krener AJ, Gori Giorgi C, Monaco S (1981a) Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans Autom Control 26:331–345

    Article  MathSciNet  MATH  Google Scholar 

  • Isidori A, Krener AJ, Gori Giorgi C, Monaco S (1981b) Locally (f,g) invariant distributions. Syst Control Lett 1:12–15

    Article  MathSciNet  MATH  Google Scholar 

  • Kostyukovskii YML (1968a) Observability of nonlinear controlled systems. Autom Remote Control 9:1384–1396

    MathSciNet  Google Scholar 

  • Kostyukovskii YML (1968b) Simple conditions for observability of nonlinear controlled systems. Autom Remote Control 10:1575-1584-1396

    Google Scholar 

  • Kou SR, Elliot DL, Tarn TJ (1973) Observability of nonlinear systems. Inf Control 22: 89–99

    Article  MathSciNet  MATH  Google Scholar 

  • Krener AJ (1971) A generalization of the Pontryagin maximal principle and the bang-bang principle. PhD dissertation, University of California, Berkeley

    Google Scholar 

  • Krener AJ (1974) A generalization of Chow’s theorem and the bang-bang theorem to nonlinear control problems. SIAM J Control 12:43–52

    Article  MathSciNet  MATH  Google Scholar 

  • Krener AJ (1975) Local approximation of control systems. J Differ Equ 19:125–133

    Article  MathSciNet  MATH  Google Scholar 

  • Krener AJ (2002a) The convergence of the extended Kalman filter. In: Rantzer A, Byrnes CI (eds) Directions in mathematical systems theory and optimization. Springer, Berlin, pp 173–182. Corrected version available at arXiv:math.OC/0212255 v. 1

    Google Scholar 

  • Krener AJ (2002b) The convergence of the minimum energy estimator. I. In: Kang W, Xiao M, Borges C (eds) New trends in nonlinear dynamics and control, and their applications. Springer, Heidelberg, pp 187–208

    Google Scholar 

  • Krener AJ (2010a) The accessible sets of linear free nilpotent control systems. In: Proceeding of NOLCOS 2010, Bologna

    Google Scholar 

  • Krener AJ (2010b) The accessible sets of quadratic free nilpotent control systems. Commun Inf Syst 11:35–46

    MathSciNet  MATH  Google Scholar 

  • Krener AJ (2013) Feedback linearization of nonlinear systems. Baillieul J, Samad T (eds) Encyclopedia of systems and control. Springer

    Google Scholar 

  • Krener AJ, Schaettler H (1988) The structure of small time reachable sets in low dimensions. SIAM J Control Optim 27:120–147

    Article  MathSciNet  Google Scholar 

  • Lobry C (1970) Cotrollabilite des Systemes Non Lineaires. SIAM J Control 8:573–605

    Article  MathSciNet  MATH  Google Scholar 

  • Sussmann HJ (1973) Minimal realizations of nonlinear systems. In: Mayne DQ, Brockett RW (eds) Geometric methods in systems theory. D. Ridel, Dordrecht

    Google Scholar 

  • Sussmann HJ (1975) A generalization of the closed subgroup theorem to quotients of arbitrary manifolds. J Differ Geom 10:151–166

    Article  MathSciNet  MATH  Google Scholar 

  • Sussmann HJ (1977) Existence and uniqueness of minimal realizations of nonlinear systems. Math Syst Theory 10:263–284

    Article  MathSciNet  Google Scholar 

  • Sussmann HJ, Jurdjevic VJ (1972) Controllability of nonlinear systems. J Differ Equ 12:95–116

    Article  MathSciNet  MATH  Google Scholar 

  • Wonham WM, Morse AS (1970) Decoupling an pole assignment in linear multivariable systems: a geometric approach. SIAM J Control 8:1–18

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur J. Krener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

J. Krener, A. (2021). Differential Geometric Methods in Nonlinear Control. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_80

Download citation

Publish with us

Policies and ethics