Skip to main content

Control of Quantum Systems

  • Reference work entry
  • First Online:
Encyclopedia of Systems and Control
  • 59 Accesses

Abstract

Quantum control theory is concerned with the control of systems whose dynamics are governed by the laws of quantum mechanics. Quantum control may take the form of open-loop quantum control or quantum feedback control. Also, quantum feedback control may consist of measurement-based feedback control, in which the controller is a classical system governed by the laws of classical physics. Alternatively, quantum feedback control may take the form of coherent feedback control in which the controller is a quantum system governed by the laws of quantum mechanics. In the area of open-loop quantum control, questions of controllability along with optimal control and Lyapunov control methods are discussed. In the case of quantum feedback control, LQG and H control methods are discussed.

This work was supported by the Australian Research Council under grants FL11010002 and DP180101805.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,699.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • Albertini F, D Alessandro D (2003) Notions of controllability for bilinear multilevel quantum systems. IEEE Trans Autom Control 48:1399–1403

    Google Scholar 

  • Bachor H, Ralph T (2004) A guide to experiments in quantum optics, 2nd edn. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Bertet P, Ong FR, Boissonneault M, Bolduc A, Mallet F, Doherty AC, Blais A, Vion D, Esteve D (2012) Circuit quantum electrodynamics with a nonlinear resonator. In: Dykman M (ed) Fluctuating nonlinear oscillators: from nanomechanics to quantum superconducting circuits. Oxford University Press, Oxford

    Google Scholar 

  • Bouten L, van Handel R, James M (2007) An introduction to quantum filtering. SIAM J Control Optim 46(6):2199–2241

    Article  MathSciNet  MATH  Google Scholar 

  • Breuer H, Petruccione F (2002) The theory of open quantum systems. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Brif C, Chakrabarti R, Rabitz H (2010) Control of quantum phenomena: past, present and future. New J Phys 12:075008

    Article  MATH  Google Scholar 

  • D’Alessandro D (2007) Introduction to quantum control and dynamics. Chapman & Hall/CRC, Boca Raton

    Book  MATH  Google Scholar 

  • Doherty A, Jacobs K (1999) Feedback-control of quantum systems using continuous state-estimation. Phys Rev A 60:2700–2711

    Article  Google Scholar 

  • Dong D, Petersen IR (2010) Quantum control theory and applications: a survey. IET Control Theory Appl 4(12):2651–2671. arXiv:0910.2350

    Google Scholar 

  • Dong D, Lam J, Tarn T (2009) Rapid incoherent control of quantum systems based on continuous measurements and reference model. IET Control Theory Appl 3: 161–169

    Article  MathSciNet  Google Scholar 

  • Gough J, James MR (2009) The series product and its application to quantum feedforward and feedback networks. IEEE Trans Autom Control 54(11):2530– 2544

    Article  MathSciNet  MATH  Google Scholar 

  • Gough JE, James MR, Nurdin HI, Combes J (2012) Quantum filtering for systems driven by fields in single-photon states or superposition of coherent states. Phys Rev A 86:043819

    Article  Google Scholar 

  • Grigoriu A, Rabitz H, Turinici G (2013) Controllability analysis of quantum systems immersed within an engineered environment. J Math Chem 51(6):1548–1560

    Article  MathSciNet  MATH  Google Scholar 

  • Jacobs K (2014) Quantum measurement theory and its applications. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  • James MR, Nurdin HI, Petersen IR (2008) H control of linear quantum stochastic systems. IEEE Trans Autom Control 53(8):1787–1803

    Article  MathSciNet  MATH  Google Scholar 

  • Kerckhoff J, Nurdin HI, Pavlichin DS, Mabuchi H (2010) Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction. Phys Rev Lett 105:040502

    Article  Google Scholar 

  • Khaneja N, Brockett R, Glaser S (2001) Time optimal control in spin systems. Phys Rev A 63(032308)

    Google Scholar 

  • Khodaparastsichani A, Vladimirov IG, Petersen IR (2017) A numerical approach to optimal coherent quantum LQG controller design using gradient descent. Automatica 85:314–326

    Article  MathSciNet  MATH  Google Scholar 

  • Lloyd S (2000) Coherent quantum feedback. Phys Rev A 62(022108)

    Google Scholar 

  • Merzbacher E (1970) Quantum mechanics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Mirrahimi M, van Handel R (2007) Stabilizing feedback controls for quantum systems. SIAM J Control Optim 46(2):445–467

    Article  MathSciNet  MATH  Google Scholar 

  • Mirrahimi M, Rouchon P, Turinici G (2005) Lyapunov control of bilinear Schrödinger equations. Automatica 41:1987–1994

    Article  MathSciNet  MATH  Google Scholar 

  • Nielsen M, Chuang I (2000) Quantum computation and quantum information. Cambridge University Press, Cambridge, UK

    MATH  Google Scholar 

  • Nurdin HI, Yamamoto N (2017) Linear Dynamical quantum systems: analysis, synthesis, and control. Springer, Berlin

    Book  MATH  Google Scholar 

  • Nurdin HI, James MR, Petersen IR (2009) Coherent quantum LQG control. Automatica 45(8):1837–1846

    Article  MathSciNet  MATH  Google Scholar 

  • Polderman JW, Willems JC (1998) Introduction to mathematical systems theory: a behavioral approach. Springer, New York

    Book  MATH  Google Scholar 

  • Shaiju AJ, Petersen IR (2012) A frequency domain condition for the physical realizability of linear quantum systems. IEEE Trans Autom Control 57(8):2033–2044

    Article  MathSciNet  MATH  Google Scholar 

  • Shor P (1994) Algorithms for quantum computation: discrete logarithms and factoring. In: Goldwasser S (ed) Proceedings of the 35th Annual Symposium on the Foundations of Computer Science. IEEE Computer Society, Los Alamitos, pp 124–134

    Chapter  Google Scholar 

  • Wang W, Schirmer SG (2010) Analysis of Lyapunov method for control of quantum states. IEEE Trans Autom Control 55(10):2259–2270

    Article  MathSciNet  MATH  Google Scholar 

  • Wiseman HM, Milburn GJ (2010) Quantum measurement and control. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Zhang G, Grivopoulos S, Petersen IR, Gough JE (2018) The Kalman decomposition for linear quantum systems. IEEE Trans Autom Control 63(2):331–346

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Petersen, I.R. (2021). Control of Quantum Systems. In: Baillieul, J., Samad, T. (eds) Encyclopedia of Systems and Control. Springer, Cham. https://doi.org/10.1007/978-3-030-44184-5_147

Download citation

Publish with us

Policies and ethics