Skip to main content

Many-Particle Quantum Graphs: A Review

  • Chapter
  • First Online:
Discrete and Continuous Models in the Theory of Networks

Part of the book series: Operator Theory: Advances and Applications ((OT,volume 281))

  • 464 Accesses

Abstract

In this paper we review recent work that has been done on quantum many-particle systems on metric graphs. Topics include the implementation of singular interactions, Bose-Einstein condensation, solvable models and spectral properties of some simple models in connection with superconductivity in quantum wires.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 59.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Alexander, Superconductivity of networks. A percolation approach to the effects of disorder, Phys. Rev. B 27 (1983), 1541–1557.

    MathSciNet  Google Scholar 

  2. P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958), 1492–1505.

    Google Scholar 

  3. P.H. Bérard, Spectres et groupes cristallographiques. I. Domaines euclidiens, Invent. Math. 58 (1980), no. 2, 179–199.

    MathSciNet  MATH  Google Scholar 

  4. J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Theory of superconductivity, Phys. Rev. 108 (1957), 1175–1204.

    MathSciNet  MATH  Google Scholar 

  5. J. Bolte and S. Endres, The trace formula for quantum graphs with general self-adjoint boundary conditions, Ann. H. Poincare 10 (2009), 189–223.

    MathSciNet  MATH  Google Scholar 

  6. J. F. Brasche, P. Exner, Y. A. Kuperin, and P. Seba, Schrödinger-operators with singular interactions, Journal of Mathematical Analysis and Applications 184 (1994), no. 1, 112 – 139.

    MathSciNet  MATH  Google Scholar 

  7. J. Bolte, S. Egger, and R. Rueckriemen, Heat-kernel and resolvent asymptotics for Schrödinger operators on metric graphs, Appl. Math. Res. Express. AMRX (2015), no. 1, 129–165.

    Google Scholar 

  8. J. Bolte, S. Egger, and F. Steiner, Zero modes of quantum graph Laplacians and an index theorem, Ann. H. Poincaré 16 (2015), no. 5, 1155–1189.

    MathSciNet  MATH  Google Scholar 

  9. H. Bethe, Zur Theorie der Metalle I., Z. Phys. 71 (1931), 205–226.

    MATH  Google Scholar 

  10. J. Bolte and G. Garforth, Exactly solvable interacting two-particle quantum graphs, J. Phys. A: Math. Theo. 50 (2017), no. 10, 105101, 27.

    Google Scholar 

  11. ——, Solvable models of interactingn-particle systems on quantum graphs, Mathematical problems in quantum physics, Contemp. Math., vol. 717, Amer. Math. Soc., Providence, RI, 2018, pp. 117–128.

    Google Scholar 

  12. J. Blank, M. Havliček, and P. Exner, Hilbert space operators in quantum physics, Springer Verlag, 2008.

    MATH  Google Scholar 

  13. G. Berkolaiko and P. Kuchment, Introduction to quantum graphs, American Mathematical Society, Providence, RI, 2013.

    MATH  Google Scholar 

  14. J. Bolte and J. Kerner, Quantum graphs with singular two-particle interactions, J. Phys. A: Math. Theo. 46 (2013), no. 4, 045206.

    Google Scholar 

  15. ——, Quantum graphs with two-particle contact interactions, J. Phys. A: Math. Theo. 46 (2013), no. 4, 045207.

    Google Scholar 

  16. ——, Many-particle quantum graphs and Bose-Einstein condensation, Journal of Mathematical Physics 55 (2014), no. 6.

    Google Scholar 

  17. J. Bolte and J. Kerner, Instability of Bose-Einstein condensation into the one-particle ground state on quantum graphs under repulsive perturbations, J. Math. Phys. 57 (2016), no. 4, 043301, 9.

    Google Scholar 

  18. J. Behrndt and A. Luger, On the number of negative eigenvalues of the Laplacian on a metric graph, J. Phys. A: Math. Theo. 43 (2010), 1–10.

    MathSciNet  MATH  Google Scholar 

  19. B. Bellazzini and M. Mintchev, Quantum fields on star graphs, J. Phys. A: Math. Gen. 39 (2006), no. 35, 11101–11117.

    MathSciNet  MATH  Google Scholar 

  20. J. Behrndt, Matthias M. Langer, and V. Lotoreichik, Schrödinger operators withδandδ -potentials supported on hypersurfaces, Ann. H. Poincaré 14 (2013), no. 2, 385–423.

    Google Scholar 

  21. V. Caudrelier, On the inverse scattering method for integrable PDEs on a star graph, Comm. Math. Phys. 338 (2015), no. 2, 893–917.

    MathSciNet  MATH  Google Scholar 

  22. V. Caudrelier and N. Crampé, Exact results for the one-dimensional many-body problem with contact interaction: including a tunable impurity, Rev. Math. Phys. 19 (2007), no. 4, 349–370.

    MathSciNet  MATH  Google Scholar 

  23. M.A. Cazalilla, R. Citro, T. Giamarchi, E. Orignac, and M. Rigol, One dimensional bosons: From condensed matter systems to ultracold gases, Rev. Mod. Phys. 83 (2011), no. 4, 1405.

    Google Scholar 

  24. H. L. Cycon, R. G. Froese, W. Kirsch, and B. Simon, Schrödinger operators with application to quantum mechanics and global geometry, Texts and Monographs in Physics, Springer-Verlag, Berlin, 1987.

    MATH  Google Scholar 

  25. Leon N. Cooper, Bound electron pairs in a degenerate Fermi gas, Phys. Rev. 104 (1956), 1189–1190.

    MATH  Google Scholar 

  26. P. G. de Gennes, C. R. Acad, Sci. B 292 (1981), 279.

    Google Scholar 

  27. P. G. de Gennes, C. R. Acad. Sci. Ser. B 292 (1981), 9.

    Google Scholar 

  28. M. Dobrowolski, Angewandte Funktionalanalysis: Funktionalanalysis, Sobolev-Räume und Elliptische Differentialgleichungen, Springer-Verlag, Berlin, 2005.

    MATH  Google Scholar 

  29. A. Einstein, Sitzber. Kgl. Preuss. Akadm. Wiss. (1925), 3.

    Google Scholar 

  30. S. Egger and J. Kerner, Scattering properties of two singularly interacting particles on the half-line, Rev. Math. Phys. 29 (2017), no. 10.

    Google Scholar 

  31. P. Exner, J. P. Keating, P. Kuchment, T. Sunada, and A. Teplyaev (eds.), Analysis on graphs and its applications, Proceedings of Symposia in Pure Mathematics, vol. 77, American Mathematical Society, Providence, RI, 2008.

    Google Scholar 

  32. K. Fossheim and A. Sudboe, Superconductivity: Physics and applications, Wiley, 2004.

    Google Scholar 

  33. M. Gaudin, Boundary energy of a Bose gase in one dimension, Phys. Rev. A 4 (1971), 386–394.

    Google Scholar 

  34. ——, The Bethe wavefunction, Cambridge University Press, New York, 2014, Translated from the 1983 French original by Jean-Sébastien Caux.

    Google Scholar 

  35. N. Goldman and P. Gaspard, Quantum graphs and the integer quantum Hall effect, Phys. Rev. B 77 (2008), 024302.

    Google Scholar 

  36. M. D. Girardeau, Relationship between systems of impenetrable bosons and fermions in one dimension, J. Math. Phys. 1 (1960), 516–523.

    MathSciNet  MATH  Google Scholar 

  37. M. L. Glasser, A solvable non-separable quantum two-body problem, J. Phys. A: Math. Gen. 26 (1993), no. 17, L825.

    Google Scholar 

  38. M. L. Glasser and L. M. Nieto, Solvable quantum two-body problem: entanglement, J. Phys. A: Math. Gen. 38 (2005), no. 24, L455.

    Google Scholar 

  39. S. Gnutzmann and U. Smilansky, Quantum graphs: Applications to quantum chaos and universal spectral statistics, Taylor and Francis. Advances in Physics 55 (2006), 527–625.

    Google Scholar 

  40. M.C. Gutzwiller, Chaos in classical and quantum mechanics, Interdisciplinary Applied Mathematics, vol. 1, Springer-Verlag, New York, 1990.

    MATH  Google Scholar 

  41. M. Harmer, Two particles on a star graph, I, Russian Journal of Mathematical Physics 14 (2007), 435–439.

    MathSciNet  MATH  Google Scholar 

  42. ——, Two particles on a star graph, II, Russian Journal of Mathematical Physics 15 (2008), 473–480.

    MathSciNet  MATH  Google Scholar 

  43. J. M. Harrison, J. P. Keating, and J. M. Robbins, Quantum statistics on graphs, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 467 (2011), no. 2125, 212–233.

    MathSciNet  MATH  Google Scholar 

  44. J. M. Harrison, J. P. Keating, J. M. Robbins, and A. Sawicki, n-particle quantum statistics on graphs, Comm. Math. Phys. 330 (2014), no. 3, 1293–1326.

    MathSciNet  MATH  Google Scholar 

  45. P. C. Hohenberg, Existence of long-range order in one and two dimensions, Phys. Rev. 158 (1967), 383–386.

    Google Scholar 

  46. P. Harrison and A. Valavanis, Quantum wells, wires and dots, Wiley, 2016.

    Google Scholar 

  47. T. Kato, Perturbation theory for linear operators, Classics in Mathematics, Springer-Verlag, Berlin, 1995.

    Google Scholar 

  48. J. Kerner, A remark on the effect of random singular two-particle interactions, Arch. Math. (Basel) 112 (2019), no. 6, 649–659.

    MathSciNet  MATH  Google Scholar 

  49. J. Kerner, On bound electron pairs on the half-line, Rep. Math. Phys. 83 (2019), no. 1, 129–138.

    MathSciNet  MATH  Google Scholar 

  50. J. Kerner, Impact of surface defects on a condensate of electron pairs in a quantum wire, Theor. Math. Phys. 203 (2020), no. 2, 691–699.

    MathSciNet  MATH  Google Scholar 

  51. J. Kerner, On pairs of interacting electrons in a quantum wire, J. Math. Phys. 59 (2018), no. 6, 063504.

    Google Scholar 

  52. W. Kirsch, An invitation to random Schrödinger operators, Random Schrödinger operators, Panor. Synthèses, vol. 25, Soc. Math. France, Paris, 2008, pp. 1–119.

    Google Scholar 

  53. J. Kerner and T. Mühlenbruch, Two interacting particles on the half-line, J. Math. Phys. 57 (2016), no. 2, 023509, 10. MR 3455670

    Google Scholar 

  54. ——, On a two-particle bound system on the half-line, Rep. Math. Phys. 80 (2017), no. 2, 143–151.

    Google Scholar 

  55. P. Kurasov and M. Nowaczyk, Inverse spectral problem for quantum graphs, J. Phys. A: Math. Gen. 38 (2005), no. 22, 4901.

    Google Scholar 

  56. V. Kostrykin and R. Schrader, Kirchhoff’s rule for quantum wires, J. Phys. A: Math. Gen. 32 (1999), 595–630.

    MathSciNet  MATH  Google Scholar 

  57. T. Kottos and U. Smilansky, Periodic orbit theory and spectral statistics for quantum graphs, Ann. Phys. (NY) 274 (1999), 76–124.

    MathSciNet  MATH  Google Scholar 

  58. V. Kostrykin and R. Schrader, Laplacians on metric graphs: Eigenvalues, resolvents and semigroups, Contemporary Mathematics 415 (2006), 201–225.

    MathSciNet  MATH  Google Scholar 

  59. P. Kuchment, Quantum graphs. I. Some basic structures, Waves Random Media 14 (2004), S107–S128.

    MathSciNet  MATH  Google Scholar 

  60. E. Lieb and W. Liniger, Exact analysis of an interacting Bose gas. I. The general solution and the ground state, Phys. Rev. 130 (1963), 1605–1616.

    MathSciNet  MATH  Google Scholar 

  61. J.M. Leinaas and J. Myrheim, On the theory of identical particles, Il Nouvo Cimento B 37 (1977), no. 1, 1–23.

    Google Scholar 

  62. E. H. Lieb and R. Seiringer, Proof of Bose-Einstein condensation for dilute trapped gases, Phys. Rev. Lett. 88 (2002), 170409.

    Google Scholar 

  63. J. Lauwers, A. Verbeure, and V.A. Zagrebnov, Proof of Bose-Einstein condensation for interacting gases with a one-particle gap, J. Phys. A: Math. Gen. 36 (2003), 169–174.

    MathSciNet  MATH  Google Scholar 

  64. L. J. Landau and I. F. Wilde, On the Bose-Einstein condensation of an ideal gas, Comm. Math. Phys. 70 (1979), no. 1, 43–51.

    MathSciNet  Google Scholar 

  65. J. B. McGuire, Study of exactly soluble one-dimensionalN-body problems, J. Math. Phys. 5 (1964), 622–636.

    MathSciNet  MATH  Google Scholar 

  66. Yu. B. Melnikov and B. S. Pavlov, Two-body scattering on a graph and application to simple nanoelectronic devices, J. Math. Phys. 36 (1995), 2813–2825.

    MathSciNet  MATH  Google Scholar 

  67. P. A. Martin and F. Rothen, Many-Body Problems and Quantum Field Theory, Springer Verlag, Berlin-Heidelberg, 2004.

    MATH  Google Scholar 

  68. M. Mintchev and E. Ragoucy, Interplay between Zamolodchikov-Faddeev and reflection-transmission algebras, J. Phys. A: Math. Gen. 37 (2004), no. 2, 425–431, Special issue on recent advances in the theory of quantum integrable systems.

    Google Scholar 

  69. T. Maci ążek and A. Sawicki, Homology groups for particles on one-connected graphs, J. Math. Phys. 58 (2017), no. 6, 062103.

    Google Scholar 

  70. D. Noja, Nonlinear Schrödinger equation on graphs: recent results and open problems, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014), no. 2007, 20130002, 20.

    Google Scholar 

  71. L. Pastur and A. Figotin, Spectra of random and almost-periodic operators, Grundlehren der Mathematischen Wissenschaften, vol. 297, Springer-Verlag, Berlin, 1992.

    MATH  Google Scholar 

  72. O. Penrose and L. Onsager, Bose-Einstein condensation and liquid helium, Phys. Rev. 104 (1956), 576–584.

    MATH  Google Scholar 

  73. J. Perez and P. Stollmann, Heat kernel estimates for the Neumann problem on g-manifolds, Manuscripta Mathematica 138 (2012), no. 3, 371–394.

    MathSciNet  MATH  Google Scholar 

  74. F. Queisser and W. G. Unruh, Long-lived resonances at mirrors, Phys. Rev. D 94 (2016), 116018, 9.

    Google Scholar 

  75. J.-P. Roth, Spectre du laplacien sur un graphe, C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 793–795.

    MathSciNet  Google Scholar 

  76. M. Sabri, Anderson localization for a multi-particle quantum graph, Rev. Math. Phys. (2014), no. 1, 1350020, 52.

    Google Scholar 

  77. F. Schwabl, Statistical mechanics, Springer-Verlag, 2006.

    MATH  Google Scholar 

  78. R. Schrader, Finite propagation speed and causal free quantum fields on networks, J. Phys. A: Math. Theo. 42 (2009), no. 49, 495401, 39.

    Google Scholar 

  79. G. Stolz, Localization for random Schrödinger operators with Poisson potential, Ann. Inst. H. Poincaré Phys. Théor. 63 (1995), no. 3, 297–314.

    MathSciNet  MATH  Google Scholar 

  80. P. Stollmann, Caught by disorder: bound states in random media, vol. 20, Springer Science & Business Media, 2001.

    Google Scholar 

  81. A.F. Verbeure, Many-body boson systems, Theoretical and Mathematical Physics, Springer-Verlag London, Ltd., London, 2011, Half a century later.

    Google Scholar 

  82. B. Winn, A conditionally convergent trace formula for quantum graphs, Analysis on graphs and its applications, Proc. Sympos. Pure Math., vol. 77, Amer. Math. Soc., Providence, RI, 2008, pp. 491–501.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Bolte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bolte, J., Kerner, J. (2020). Many-Particle Quantum Graphs: A Review. In: Atay, F., Kurasov, P., Mugnolo, D. (eds) Discrete and Continuous Models in the Theory of Networks. Operator Theory: Advances and Applications, vol 281. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-44097-8_2

Download citation

Publish with us

Policies and ethics