Skip to main content

Etiologic Treatment of Chagas Disease: Old Drugs, New Insights, Challenges, and Perspectives

  • Chapter
  • First Online:
Chagas Disease

Abstract

We review the current status of etiological treatment for Chagas disease, focusing on the first ever randomized and placebo-controlled trials for the prevalent symptomatic and asymptomatic chronic stage of this condition, completed in the last 10 years using the clinically available drugs (the nitroheterocyclic derivatives benznidazole and nifurtimox, introduced empirically half a century ago), as well as novel candidates (the ergosterol biosynthesis inhibitors (SBI) posaconazole and fosravuconazole, a prodrug of ravuconazole). Three clinical trials investigated the parasitological efficacy of posaconazole (CHAGASAZOL, STOP CHAGAS) and fosravuconazole (E1224) in chronic patients without cardiac involvement and found that, at the doses used for the management of invasive fungal infections, these compounds were significantly less effective than benznidazole at the conventional dose (2.5 mg/kg bid for 60 days) to induce sustained parasitemia suppression 1 year after treatment initiation. A critical assessment of the objectives, design, and results of these studies leads to the proposal of novel therapeutic schemes with the established drugs and new entrants, including combination therapies, consistent with their mechanisms of actions and basic pharmacokinetic/pharmacodynamic analyses. In addition, two clinical trials investigated the effect of benznidazole administered at the conventional dose, which is highly effective against acute T. cruzi infections, on the clinical evolution of patients with (BENEFIT) and mostly without (TRAENA) cardiac compromise and found that, despite some evidence on reduction of the parasite load, no effect on the clinical deterioration of the patients was observed in a mean of 5–7 years follow-up after the end of treatment. Unfortunately, there were limitations on sample size and no assessment of durability of parasitological response for the evaluation of treatment in patients with no or early cardiac involvement. Finally, we also emphasize the critical need of biomarkers to evaluate early response to etiological treatment in chronic patients, and the potential need for combination of etiological treatment with host-directed therapies, including promoters of inflammation resolution and immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zingales B, Miles MA, Campbell DA, Tibayrenc M, Macedo AM, Teixeira MM, et al. The revised Trypanosoma cruzi subspecific nomenclature: rationale, epidemiological relevance and research applications. Infect Genet Evol. 2012;12(2):240–53. https://doi.org/10.1016/j.meegid.2011.12.009.

    Article  PubMed  Google Scholar 

  2. Aufderheide AC, Salo W, Madden M, Streitz J, Buikstra J, Guhl F, et al. A 9,000-year record of Chagas’ disease. Proc Natl Acad Sci U S A. 2004;101(7):2034–9.

    Article  CAS  Google Scholar 

  3. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ. Global economic burden of chagas disease: a computational simulation model. Lancet Infect Dis. 2013;13(4):342–8. https://doi.org/10.1016/S1473-3099(13)70002-1.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brener Z, Gazzinelli RT. Immunological control of trypanosoma cruzi infection and pathogenesis of Chagas’ disease. Int Arch Allergy Immunol. 1997;114(2):103–10.

    Article  CAS  Google Scholar 

  5. Padilla AM, Bustamante JM, Tarleton RL. CD8+ T cells in trypanosoma cruzi infection. Curr Opin Immunol. 2009;21(4):385–90. https://doi.org/10.1016/j.coi.2009.07.00.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Machado FS, Dutra WO, Esper L, Gollob KJ, Teixeira MM, Factor SM, et al. Current understanding of immunity to Trypanosoma cruzi infection and pathogenesis of Chagas disease. Semin Immunopathol. 2012;34(6):753–70. https://doi.org/10.1007/s00281-012-0351-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Gutierrez FR, Guedes PM, Gazzinelli RT, Silva JS. The role of parasite persistence in pathogenesis of Chagas heart disease. Parasite Immunol. 2009;31(11):673–85. https://doi.org/10.1111/j.1365-3024.2009.01108.

    Article  PubMed  CAS  Google Scholar 

  8. Marin-Neto JA, Cunha-Neto E, Maciel BC, Simoes MV. Pathogenesis of chronic Chagas heart disease. Circulation. 2007;115(9):1109–23.

    Article  Google Scholar 

  9. Rassi A Jr, Rassi A, Marin-Neto JA. Chagas heart disease: pathophysiologic mechanisms, prognostic factors and risk stratification. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):152–8. S0074-02762009000900021 [pii].

    Article  Google Scholar 

  10. Rassi A, Marin JA, Rassi A. Chronic Chagas cardiomyopathy: a review of the main pathogenic mechanisms and the efficacy of aetiological treatment following the benznidazole evaluation for interrupting trypanosomiasis (BENEFIT) trial. Mem Inst Oswaldo Cruz. 2017;112(3):224–35. https://doi.org/10.1590/0074-02760160334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Dias JC, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz. 2002;97(5):603–12.

    Article  CAS  Google Scholar 

  12. Vazquez-Prokopec GM, Spillmann C, Zaidenberg M, Kitron U, Gurtler RE. Cost-effectiveness of Chagas disease vector control strategies in northwestern Argentina. PLoS Negl Trop Dis. 2009;3(1):e363. https://doi.org/10.1371/journal.pntd.000036.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Reithinger R, Tarleton RL, Urbina JA, Kitron U, Gurtler RE. Eliminating Chagas disease: challenges and a roadmap. BMJ. 2009;338:b1283.

    Article  Google Scholar 

  14. Horstick O, Runge-Ranzinger S. Protection of the house against Chagas disease, dengue, leishmaniasis, and lymphatic filariasis: a systematic review. Lancet Infect Dis. 2018;18(5):e147–58. https://doi.org/10.1016/S1473-3099(17)30422-X.

    Article  PubMed  Google Scholar 

  15. Urbina JA. Recent clinical trials for the etiological treatment of chronic Chagas disease: advances, challenges and perspectives. J Eukaryot Microbiol. 2015;62(1):149–56. https://doi.org/10.1111/jeu.1218.

    Article  PubMed  CAS  Google Scholar 

  16. Urbina JA. The long road towards a safe and effective treatment of chronic Chagas disease. Lancet Infect Dis. 2018;18(4):363–5. https://doi.org/10.1016/S1473-3099(17)30535-2.

    Article  PubMed  Google Scholar 

  17. Serna C, Lara JA, Rodrigues SP, Marques AF, Almeida IC, Maldonado RA. A synthetic peptide from Trypanosoma cruzi mucin-like associated surface protein as candidate for a vaccine against Chagas disease. Vaccine. 2014;32(28):3525–32. https://doi.org/10.1016/j.vaccine.2014.04.026.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Hotez PJ, Bottazzi ME, Strych U. New vaccines for the world’s poorest people. Annu Rev Med. 2016;67:405–17. https://doi.org/10.1146/annurev-med-051214-024241.

    Article  PubMed  CAS  Google Scholar 

  19. Jones K, Versteeg L, Damania A, Keegan B, Kendricks A, Pollet J, et al. Vaccine-Linked chemotherapy improves benznidazole efficacy for acute Chagas disease. Infect Immun. 2018;86(4):e00876–17. https://doi.org/10.1128/IAI.00876-17.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Rodriques Coura J, de Castro SL. A critical review on Chagas disease chemotherapy. Mem Inst Oswaldo Cruz. 2002;97(1):3–24.

    Article  Google Scholar 

  21. Steverding D. The history of Chagas disease. Parasit Vectors. 2014;7:317.

    Article  Google Scholar 

  22. Britto C, Silveira C, Cardoso MA, Marques P, Luquetti A, Macedo V, Fernandes O. Parasite persistence in treated chagasic patients revealed by xenodiagnosis and polymerase chain reaction. Mem Inst Oswaldo Cruz. 2001;96(6):823–6.

    Article  CAS  Google Scholar 

  23. Aguiar C, Batista AM, Pavan TB, Almeida EA, Guariento ME, Wanderley JS, Costa SC. Serological profiles and evaluation of parasitemia by PCR and blood culture in individuals chronically infected by Trypanosoma cruzi treated with benznidazole. Trop Med Int Health. 2012;17(3):368–73. https://doi.org/10.1111/j.1365-3156.2011.02936.x.

    Article  PubMed  CAS  Google Scholar 

  24. Fernandes CD, Tiecher FM, Balbinot MM, Liarte DB, Scholl D, Steindel M, Romanha A. Efficacy of benznidazol treatment for asymptomatic chagasic patients from state of Rio grande do Sul evaluated during a three years follow-up. Mem Inst Oswaldo Cruz. 2009;104(1):27–32. S0074-02762009000100004 [pii].

    Article  CAS  Google Scholar 

  25. Machado-de-Assis GF, Silva AR, Do Bem VA, Bahia MT, Martins-Filho OA, Dias JC, et al. Post-therapeutic cure criteria in Chagas’ disease: conventional serology followed by supplementary serological, parasitological, and molecular tests. Clin Vaccine Immunol. 2012;19(8):1283–91. https://doi.org/10.1128/CVI.00274-12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Anez N, Carrasco H, Parada H, Crisante G, Rojas A, Fuenmayor C, et al. Myocardial parasite persistence in chronic chagasic patients. Am J Trop Med Hyg. 1999;60(5):726–32.

    Article  CAS  Google Scholar 

  27. Filardi LS, Brener Z. Susceptibility and natural resistance of Trypanosoma cruzi strains to drugs used clinically in chagas disease. Trans R Soc Trop Med Hyg. 1987;81(5):755–9.

    Article  CAS  Google Scholar 

  28. Sosa-Estani S, Cura E, Velazquez E, Yampotis C, Segura EL. Etiological treatment of young women infected with Trypanosoma cruzi, and prevention of congenital transmission. Rev Soc Bras Med Trop. 2009;42(5):484–7.

    Article  Google Scholar 

  29. Fabbro DL, Danesi E, Olivera V, Codebó MO, Denner S, Heredia C, et al. Trypanocide treatment of women infected with Trypanosoma cruzi and its effect on preventing congenital chagas. PLoS Negl Trop Dis. 2014;8(11):e3312. https://doi.org/10.1371/journal.pntd.0003312.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Moscatelli G, Moroni S, García-Bournissen F, Ballering G, Bisio M, Freilij H, Altcheh J. Prevention of congenital Chagas through treatment of girls and women of childbearing age. Mem Inst Oswaldo Cruz. 2015;110(4):507–9.

    Article  CAS  Google Scholar 

  31. Murcia L, Simón M, Carrilero B, Roig M, Segovia M. Treatment of infected women of childbearing age prevents congenital Trypanosoma cruzi infection by eliminating the parasitemia detected by PCR. J Infect Dis. 2017;215(9):1452–8. https://doi.org/10.1093/infdis/jix087.

    Article  PubMed  CAS  Google Scholar 

  32. Álvarez MG, Vigliano C, Lococo B, Bertocchi G, Viotti R. Prevention of congenital Chagas disease by benznidazole pre-treatment in reproductive-age women. An observational study. Acta Trop. 2017;174:149–52. https://doi.org/10.1016/j.actatropica.2017.07.004.

    Article  PubMed  CAS  Google Scholar 

  33. Docampo R. Recent developments in the chemotherapy of Chagas’ disease. Curr Pharm Design. 2001;7:1157–64.

    Article  CAS  Google Scholar 

  34. Machado FS, Tyler KM, Brant F, Esper L, Teixeira MM, Tanowitz HB. Pathogenesis of Chagas disease: time to move on. Front Biosci (Elite Ed). 2012;4:1743–58.

    Article  Google Scholar 

  35. Kalil J, Cunha-Neto E. Autoimmunity in Chagas disease cardiomyopathy: fulfilling the criteria at last? Parasitol Today. 1996;12(10):396–9. https://doi.org/10.1016/0169-4758(96)10058-2.

    Article  PubMed  CAS  Google Scholar 

  36. Bonney KM, Luthringer DJ, Kim SA, Garg NJ, Engman DM. Pathology and pathogenesis of Chagas heart disease. Annu Rev Pathol. 2018;14:421–47. https://doi.org/10.1146/annurev-pathol-020117-043711.

    Article  PubMed  CAS  Google Scholar 

  37. Viotti R, Alarcón de Noya B, Araujo-Jorge T, Grijalva MJ, Guhl F, López MC, et al. Towards a paradigm shift in the treatment of chronic Chagas disease. Antimicrob Agents Chemother. 2014;58(2):635–9. https://doi.org/10.1128/AAC.01662-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ribeiro I, Sevcsik AM, Alves F, Diap G, Don R, Harhay MO, et al. New, improved treatments for Chagas disease: from the R&D pipeline to the patients. PLoS Negl Trop Dis. 2009;3(7):e484.

    Article  Google Scholar 

  39. Levin MJ. In chronic Chagas heart disease, don’t forget the parasite. Parasitol Today. 1996;12(11):415–6. https://doi.org/10.1016/0169-4758(96)20051-1.

    Article  PubMed  CAS  Google Scholar 

  40. Brandariz S, Schijman A, Vigliano C, Viotti R, Levin MJ. Role of parasites in the pathogenesis of Chagas’ cardiomyopathy. Lancet. 1996;347:914–0.

    Google Scholar 

  41. Tarleton RL, Zhang L. Chagas disease etiology: autoimmunity or parasite persistence? Parasitol Today. 1999;15(3):94–9.

    Article  CAS  Google Scholar 

  42. Tarleton RL. Parasite persistence in the aetiology of Chagas disease. Int J Parasitol. 2001;31(5–6):550–4.

    Article  CAS  Google Scholar 

  43. Hyland KV, Leon JS, Daniels MD, Giafis N, Woods LM, Bahk TJ, et al. Modulation of autoimmunity by treatment of an infectious disease. Infect Immun. 2007;75(7):3641–50. https://doi.org/10.1128/IAI.00423-0.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Viotti R, Vigliano C. Etiological treatment of chronic Chagas disease: neglected ‘evidence’ by evidence-based medicine. Expert Rev Anti Infect Ther. 2007;5(4):717–26.

    Article  Google Scholar 

  45. Fabbro DL, Streiger ML, Arias ED, Bizai ML, del Barco M, Amicone NA. Trypanocide treatment among adults with chronic Chagas disease living in Santa Fe city (Argentina), over a mean follow-up of 21 years: parasitological, serological and clinical evolution. Rev Soc Bras Med Trop. 2007;40(1):1–10. https://doi.org/10.1590/s0037-86822007000100001.

    Article  PubMed  Google Scholar 

  46. Fragata-Filho AA, França FF, Fragata Cda S, Lourenço AM, Faccini CC, Costa CA Evaluation of parasiticide treatment with benznidazol in the electrocardiographic, clinical, and serological evolution of Chagas disease. PLoS Negl Trop Dis. 2016;10(3):e0004508. https://doi.org/10.1371/journal.pntd.0004508.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Cardoso CS, Ribeiro ALP, Oliveira CDL, Oliveira LC, Ferreira AM, Bierrenbach AL, et al. Beneficial effects of benznidazole in Chagas disease: NIH sami-trop cohort study. PLoS Negl Trop Dis. 2018;12(11):e0006814. https://doi.org/10.1371/journal.pntd.000681.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Urbina JA, McKerrow JH. Drug susceptibility of genetically engineered Trypanosoma cruzi strains and sterile cure in animal models as a criterion for potential clinical efficacy of anti-T. cruzi drugs. Antimicrob Agents Chemother. 2015;59(12):7923–4. https://doi.org/10.1128/AAC.01714-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Marin-Neto JA, Rassi AJ, Morillo CA, Avezum A, Connolly SJ, Sosa-Estani S, et al. Rationale and design of a randomized placebo-controlled trial assessing the effects of etiologic treatment in Chagas’ cardiomyopathy: the benznidazole evaluation for interrupting trypanosomiasis (BENEFIT). Am Heart J. 2008;156(1):37–43. https://doi.org/10.1016/j.ahj.2008.04.001.

    Article  PubMed  CAS  Google Scholar 

  50. Morillo CA, Marin-Neto JA, Avezum A, Sosa-Estani S, Rassi A, Rosas F, et al. Randomized trial of benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2015;373(14):1295–306. https://doi.org/10.1056/NEJMoa1507574.

    Article  PubMed  CAS  Google Scholar 

  51. Urbina JA, Gascon J, Ribeiro I. Benznidazole for chronic Chagas’ cardiomyopathy. N Engl J Med. 2016;374(2):189. https://doi.org/10.1056/NEJMc1514453.

    Article  PubMed  Google Scholar 

  52. Riarte A. TRAENA: Placebo-controlled evaluation of impact of benznidazole treatment on long-term disease progression in adults with chronic Chagas disease. 62nd Annual Meeting of the American 460 Society of Tropical Medicine and Hygiene, November 13–17, 2013, Washington, DC.

    Google Scholar 

  53. Urbina JA. Ergosterol biosynthesis and drug development for Chagas disease. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):311–8. https://doi.org/10.1590/s0074-02762009000900041.

  54. Urbina JA. Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop. 2010;115(1–2):55–68. https://doi.org/10.1016/j.actatropica.2009.10.023.

    Article  PubMed  Google Scholar 

  55. Urbina JA. New insights in Chagas’ disease treatment. Drugs Future. 2010;35(5):409–19. https://doi.org/10.1358/dof.2010.35.5.1484391.

    Article  CAS  Google Scholar 

  56. Buckner FS, Urbina JA. Recent developments in sterol 14-demethylase inhibitors for Chagas disease. Int J Parasitol Drugs Drug Resist. 2012;2:236–42. https://doi.org/10.1016/j.ijpddr.2011.12.002.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Diniz Lde F, Urbina JA, de Andrade IM, Mazzeti AL, Martins TA, Caldas IS, et al. Benznidazole and posaconazole in experimental Chagas disease: positive interaction in concomitant and sequential treatments. PLoS Negl Trop Dis. 2013;7(8):e2367. https://doi.org/10.1371/journal.pntd.0002367.

    Article  PubMed  CAS  Google Scholar 

  58. Bustamante JM, Craft JM, Crowe BD, Ketchie SA, Tarleton RL. New, combined, and reduced dosing treatment protocols cure Trypanosoma cruzi infection in mice. J Infect Dis. 2014;209(1):150–62. https://doi.org/10.1093/infdis/jit420.

    Article  PubMed  CAS  Google Scholar 

  59. Molina I, Gómez i, Prat J, Salvador F, Treviño B, Sulleiro E, Serre N, et al. Randomized trial of posaconazole and benznidazole for chronic Chagas’ disease. N Engl J Med. 2014;370(20):1899–908. https://doi.org/10.1056/NEJMoa1313122.

    Article  PubMed  CAS  Google Scholar 

  60. Ullmann AJ, Cornely OA, Burchardt A, Hachem R, Kontoyiannis DP, Topelt K, et al. Pharmacokinetics, safety, and efficacy of posaconazole in patients with persistent febrile neutropenia or refractory invasive fungal infection. Antimicrob Agents Chemother. 2006;50(2):658–66.

    Article  CAS  Google Scholar 

  61. Nomeir AA, Kumari P, Hilbert MJ, Gupta S, Loebenberg D, Cacciapuoti A, et al. Pharmacokinetics of SCH 56592, a new azole broad-spectrum antifungal agent, in mice, rats, rabbits, dogs, and cynomolgus monkeys. Antimicrob Agents Chemother. 2000;44(3):727–31.

    Article  CAS  Google Scholar 

  62. Urbina JA. Pharmacodynamics and follow-up period in the treatment of human Trypanosoma cruzi infections with posaconazole. J Am Coll Cardiol. 2017;70(2):299–300. https://doi.org/10.1016/j.jacc.2017.03.611.

    Article  PubMed  CAS  Google Scholar 

  63. Guarascio AJ, Slain D. Review of the new delayed-release oral tablet and intravenous dosage forms of posaconazole. Pharmacotherapy. 2015;35(2):208–19. https://doi.org/10.1002/phar.1533.

    Article  PubMed  CAS  Google Scholar 

  64. Cumpston A, Caddell R, Shillingburg A, Lu X, Wen S, Hamadani M, et al. Superior serum concentrations with posaconazole delayed-release tablets compared to suspension formulation in hematological malignancies. Antimicrob Agents Chemother. 2015;59(8):4424–8. https://doi.org/10.1128/AAC.00581-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Durani U, Tosh PK, Barreto JN, Estes LL, Jannetto PJ, Tande AJ. Retrospective comparison of posaconazole levels in patients taking the delayed-release tablet versus the oral suspension. Antimicrob Agents Chemother. 2015;59(8):4914–8. https://doi.org/10.1128/AAC.00496-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Morillo CA, Waskin H, Sosa-Estani S, Del Carmen Bangher M, Cuneo C, Milesi R, et al. Benznidazole and posaconazole in eliminating parasites in asymptomatic T. cruzi carriers: the STOP-CHAGAS trial. J Am Coll Cardiol. 2017;69(8):939–47. https://doi.org/10.1016/S1473-3099(17)30538-8.

    Article  PubMed  CAS  Google Scholar 

  67. Torrico F, Gascon J, Ortiz L, Alonso-Vega C, Pinazo MJ, Schijman A, et al. Treatment of adult chronic indeterminate Chagas disease with benznidazole and three E1224 dosing regimens: a proof-of-concept, randomised, placebo-controlled trial. Lancet Infect Dis. 2018;18(4):419–30. https://doi.org/10.1016/S1473-3099(17)30538-8.

    Article  PubMed  CAS  Google Scholar 

  68. Santos FM, Mazzeti AL, Caldas S, Gonçalves KR, Lima WG, Torres RM, Bahia MT. Chagas cardiomyopathy: the potential effect of benznidazole treatment on diastolic dysfunction and cardiac damage in dogs chronically infected with Trypanosoma cruzi. Acta Trop. 2016;161:44–54. https://doi.org/10.1016/j.actatropica.2016.05.007.

    Article  PubMed  CAS  Google Scholar 

  69. Álvarez MG, Hernández Y, Bertocchi G, Fernández M, Lococo B, Ramírez JC, et al. New scheme of intermittent benznidazole administration in patients chronically infected with Trypanosoma cruzi: a pilot short-term follow-up study with adult patients. Antimicrob Agents Chemother. 2016;60(2):833–7. https://doi.org/10.1128/AAC.00745-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Soy D, Aldasoro E, Guerrero L, Posada E, Serret N, Mejía T, et al. Population pharmacokinetics of benznidazole in adult patients with Chagas disease. Antimicrob Agents Chemother. 2015;59(6):3342–9. https://doi.org/10.1128/AAC.05018-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Torreele E, Bourdin Trunz B, Tweats D, Kaiser M, Brun R, Mazue G, et al. Fexinidazole—a new oral nitroimidazole drug candidate entering clinical development for the treatment of sleeping sickness. PLoS Negl Trop Dis. 2010;4(12):e923. https://doi.org/10.1371/journal.pntd.0000923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Mesu VKBK, Kalonji WM, Bardonneau C, Mordt OV, Blesson S, Simon F, et al. Oral fexinidazole for late-stage African Trypanosoma brucei gambiense trypanosomiasis: a pivotal multicentre, randomised, non-inferiority trial. Lancet. 2018;391(10116):144–54. https://doi.org/10.1016/S0140-6736(17)32758-7.

    Article  PubMed  CAS  Google Scholar 

  73. Bahia MT, de Andrade IM, Martins TA, do Nascimento AF, Diniz Lde F, Caldas IS, et al. Fexinidazole: a potential new drug candidate for Chagas disease. PLoS Negl Trop Dis. 2012;6(11):e1870. https://doi.org/10.1371/journal.pntd.0001870.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Bahia MT, Nascimento AF, Mazzeti AL, Marques LF, Gonçalves KR, Mota LW, et al. Antitrypanosomal activity of fexinidazole metabolites, potential new drug candidates for Chagas disease. Antimicrob Agents Chemother. 2014;58(8):4362–70. https://doi.org/10.1128/AAC.02754-13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Caldas S, Caldas IS, Cecílio AB, Diniz LD, Talvani A, Ribeiro I, Bahia MT. Therapeutic responses to different anti-Trypanosoma cruzi drugs in experimental infection by benznidazole-resistant parasite stock. Parasitology. 2014;21:1–10. https://doi.org/10.1017/S0031182014000882.

    Article  CAS  Google Scholar 

  76. Croft SL. Leishmania and other intracellular pathogens: selectivity, drug distribution and PK-PD. Parasitology. 2017;6:1–11. https://doi.org/10.1017/S0031182017001664.

    Article  Google Scholar 

  77. Pinazo MJ, Espinosa G, Gallego M, Lopez-Chejade PL, Urbina JA, Gascon J. Successful treatment with posaconazole of a patient with chronic chagas disease and systemic lupus erythematosus. Am J Trop Med Hyg. 2010;82(4):583–7. https://doi.org/10.4269/ajtmh.2010.09-0620.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Perfect JR. The antifungal pipeline: a reality check. Nat Rev Drug Discov. 2017;16(9):603–16. https://doi.org/10.1038/nrd.2017.46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Lepesheva GI, Friggeri L, Waterman MR. CYP51 as drug targets for fungi and protozoan parasites: past, present and future. Parasitology. 2018;12:1–17. https://doi.org/10.1017/S0031182018000562.

    Article  Google Scholar 

  80. Lepesheva GI, Hargrove TY, Anderson S, Kleshchenko Y, Furtak V, Wawrzak Z, et al. Structural insights into inhibition of sterol 14alpha-demethylase in the human pathogen Trypanosoma cruzi. J Biol Chem. 2010;285(33):25582–90. https://doi.org/10.1074/jbc.M110.133215.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Chen CK, Leung SS, Guilbert C, Jacobson MP, McKerrow JH, Podust LM. Structural characterization of CYP51 from Trypanosoma cruzi and Trypanosoma brucei bound to the antifungal drugs posaconazole and fluconazole. PLoS Negl Trop Dis. 2010;4(4):e651. https://doi.org/10.1371/journal.pntd.0000651.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Choi JY, Podust LM, Roush WR. Drug strategies targeting CYP51 in neglected tropical diseases. Chem Rev. 2014;114(22):11242–71. https://doi.org/10.1021/cr5003134.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Hoekstra WJ, Hargrove TY, Wawrzak Z, da Gama Jaen Batista D, da Silva CF, Nefertiti AS, et al. Clinical candidate VT-1161’s antiparasitic effect in vitro, activity in a murine model of Chagas disease, and structural characterization in complex with the target enzyme CYP51 from Trypanosoma cruzi. Antimicrob Agents Chemother. 2016;60(2):1058–66. https://doi.org/10.1128/AAC.02287-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Calvet CM, Vieira DF, Choi JY, Kellar D, Cameron MD, Siqueira-Neto JL, et al. 4-Aminopyridyl-based CYP51 inhibitors as anti-Trypanosomas cruzi drug leads with improved pharmacokinetic profile and in vivo potency. J Med Chem. 2014;57(16):6989–7005. https://doi.org/10.1021/jm500448u.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Calvet CM, Choi JY, Thomas D, Suzuki B, Hirata K, Lostracco-Johnson S, et al. 4-aminopyridyl-based lead compounds targeting CYP51 prevent spontaneous parasite relapse in a chronic model and improve cardiac pathology in an acute model of Trypanosoma cruzi infection. PLoS Negl Trop Dis. 2017;11(12):e0006132. https://doi.org/10.1371/journal.pntd.0006132.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ottilie S, Goldgof GM, Calvet CM, Jennings GK, LaMonte G, Schenken J, et al. Rapid Chagas disease drug target discovery using directed evolution in drug-sensitive yeast. ACS Chem Biol. 2017;12(2):422–34. https://doi.org/10.1021/acschembio.6b01037.

    Article  PubMed  CAS  Google Scholar 

  87. Guedes-da-Silva FH, Batista DG, Da Silva CF, De Araújo JS, Pavão BP, Simões-Silva MR, et al. Antitrypanosomal activity of sterol 14α-demethylase (CYP51) inhibitors VNI and VFV in the swiss mouse models of Chagas disease induced by the Trypanosoma cruzi Y strain. Antimicrob Agents Chemother. 2017;61(4):e02098–16. https://doi.org/10.1128/AAC.02098-16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Kappagoda S, Singh U, Blackburn BG. Antiparasitic therapy. Mayo Clin Proc. 2011;86(6):561–83. https://doi.org/10.4065/mcp.2011.0203.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Fügi MA, Kaiser M, Tanner M, Schneiter R, Mäser P, Guan XL. Match-making for posaconazole through systems thinking. Trends Parasitol. 2014;31(2):46–51. https://doi.org/10.1016/j.pt.2014.11.004.

    Article  PubMed  CAS  Google Scholar 

  90. Assíria Fontes Martins T, de Figueiredo Diniz L, Mazzeti AL, da Silva do Nascimento ÁF, Caldas S, Caldas IS, et al. Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas disease. PLoS One. 2015;10(6):e0128707. https://doi.org/10.1371/journal.pone.0128707.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Diniz LF, Mazzeti AL, Caldas IS, Ribeiro I, Bahia MT. Outcome of E1224/benznidazole combination treatment upon infection with multi-drug resistant Trypanosoma cruzi strain in mice. Antimicrob Agents Chemother. 2018;62(6):e00401–18. https://doi.org/10.1128/AAC.00401-18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Guedes da Silva FH, Batista DDGJ, Da Silva CF, Pavão BP, Batista MM, Moreira ODC, et al. Successful aspects of the co-administration of sterol 14α-demethylase inhibitor VFV and benznidazole in experimental mouse models of chagas disease caused by the drug-resistant strain of Trypanosoma cruzi. ACS Infect Dis. 2019;5:365–71. https://doi.org/10.1021/acsinfecdis.8b0025.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Moreira da Silva R, Oliveira LT, Silva Barcellos NM, de Souza J, de Lana M. Preclinical monitoring of drug association in experimental chemotherapy of Chagas’ disease by a new HPLC-UV method. Antimicrob Agents Chemother. 2012;56(6):3344–8. https://doi.org/10.1128/AAC.05785-11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  94. Raether W, Hänel H. Nitroheterocyclic drugs with broad spectrum activity. Parasitol Res. 2003;90(Supp 1):S19–39. https://doi.org/10.1007/s00436-002-0754-9.

    Article  PubMed  Google Scholar 

  95. Almeida IC, Ferguson MA, Schenkman S, Travassos LR. Lytic anti-alpha-galactosyl antibodies from patients with chronic Chagas’ disease recognize novel o-linked oligosaccharides on mucin-like glycosyl-phosphatidylinositol-anchored glycoproteins of Trypanosoma cruzi. Biochem J. 1994;304(Pt 3):793–802.

    Article  CAS  Google Scholar 

  96. Fernandez-Villegas A, Pinazo MJ, Maranon C, Thomas MC, Posada E, Carrilero B, et al. Short-term follow-up of chagasic patients after benznidazole treatment using multiple serological markers. BMC Infect Dis. 2011;11:206. https://doi.org/10.1186/1471-2334-11-206.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Nagarkatti R, de Araujo FF, Gupta C, Debrabant A. Aptamer based, non-pcr, non-serological detection of Chagas disease biomarkers in Trypanosoma cruzi infected mice. PLoS Negl Trop Dis. 2014;8(1):e2650. https://doi.org/10.1371/journal.pntd.0002650.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. de Araujo FF, Nagarkatti R, Gupta C, Marino AP, Debrabant A. Aptamer-based detection of disease biomarkers in mouse models for Chagas drug discovery. PLoS Negl Trop Dis. 2015;9(1):e3451. https://doi.org/10.1371/journal.pntd.0003451.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Miao Q, Santamaria C, Bailey D, Genest J, Ward BJ, Ndao M. Apolipoprotein A-I truncations in Chagas disease are caused by cruzipain, the major cysteine protease of Trypanosoma cruzi. Am J Pathol. 2014;184(4):976–84. https://doi.org/10.1016/j.ajpath.2013.12.018.

    Article  PubMed  CAS  Google Scholar 

  100. Santamaria C, Chatelain E, Jackson Y, Miao Q, Ward BJ, Chappuis F, Ndao M. Serum biomarkers predictive of cure in Chagas disease patients after nifurtimox treatment. BMC Infect Dis. 2014;14:302.

    Article  CAS  Google Scholar 

  101. Ruiz-Lancheros E, Rasoolizadeh A, Chatelain E, Garcia-Bournissen F, Moroni S, Moscatelli G, et al. Validation of apolipoprotein A-1 and fibronectin fragments as markers of parasitological cure for congenital Chagas disease in children treated with benznidazole. Open Forum Infect Dis. 2018;5(11):ofy236. https://doi.org/10.1093/ofid/ofy236.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  102. Pinazo MJ, Thomas MC, Bua J, Perrone A, Schijman AG, Viotti RJ, et al. Biological markers for evaluating therapeutic efficacy in Chagas disease: a systematic review. Expert Rev Anti Infect Ther. 2014;12(4):479–96. https://doi.org/10.1586/14787210.2014.899150.

    Article  PubMed  CAS  Google Scholar 

  103. Pinazo MJ, Pinto J, Ortiz L, Sánchez J, García W, Saravia R, et al. A strategy for scaling up access to comprehensive care in adults with chagas disease in endemic countries: the Bolivian Chagas platform. PLoS Negl Trop Dis. 2017;11(8):e0005770. https://doi.org/10.1371/journal.pntd.0005770.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Neal RA, van Bueren J. Comparative studies of drug susceptibility of five strains of Trypanosoma cruzi in vivo and in vitro. Trans R Soc Trop Med Hyg. 1988;82(5):709–14. https://doi.org/10.1371/journal.pntd.0000740.

    Article  PubMed  CAS  Google Scholar 

  105. Canavaci AM, Bustamante JM, Padilla AM, Perez Brandan CM, Simpson LJ, Xu D, et al. In vitro and in vivo high-throughput assays for the testing of anti-trypanosoma cruzi compounds. PLoS Negl Trop Dis. 2010;4(7):e740.

    Article  CAS  Google Scholar 

  106. Moreno M, D’ávila DA, Silva MN, Galvão LM, Macedo AM, Chiari E, et al. Trypanosoma cruzi benznidazole susceptibility in vitro does not predict the therapeutic outcome of human Chagas disease. Mem Inst Oswaldo Cruz. 2010;105(7):918–24.

    Google Scholar 

  107. Sánchez-Valdéz FJ, Padilla A, Wang W, Orr D, Tarleton RL. Spontaneous dormancy protects Trypanosoma cruzi during extended drug exposure. Elife. 2018;7:e34039. https://doi.org/10.7554/eLife.34039.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Trachtenberg BH, Hare JM. Inflammatory cardiomyopathic syndromes. Circ Res. 2017;121(7):803–18. https://doi.org/10.1161/CIRCRESAHA.117.310221.

    Article  PubMed  CAS  Google Scholar 

  109. Shapiro H, Meymandi S, Shivkumar K, Bradfield JS. Cardiac inflammation and ventricular tachycardia in Chagas disease. Heart Rhythm Case Rep. 2017;3(8):392–5. https://doi.org/10.1016/j.hrcr.2017.05.007.

    Article  Google Scholar 

  110. Pereira IR, Vilar-Pereira G, Silva AA, Moreira OC, Britto C, Sarmento ED, Lannes-Vieira J. Tumor necrosis factor is a therapeutic target for immunological unbalance and cardiac abnormalities in chronic experimental Chagas’ heart disease. Mediators Inflamm. 2014;2014:798078. https://doi.org/10.1155/2014/798078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Pereira IR, Vilar-Pereira G, Moreira OC, Ramos IP, Gibaldi D, Britto C, et al. Pentoxifylline reverses chronic experimental chagasic cardiomyopathy in association with repositioning of abnormal CD8+ t-cell response. PLoS Negl Trop Dis. 2015;9(3):e0003659. https://doi.org/10.1371/journal.pntd.0003659.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Vilar-Pereira G, Carneiro VC, Mata-Santos H, Vicentino AR, Ramos IP, Giarola NL, et al. Resveratrol reverses functional Chagas heart disease in mice. PLoS Pathog. 2016;12(10):e1005947. https://doi.org/10.1371/journal.ppat.1005947.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Cruz JS, Machado FS, Ropert C, Roman-Campos D. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: role of TNF and TGF-β. Trends Cardiovasc Med. 2017;27(2):81–91.

    Article  CAS  Google Scholar 

  114. Tabas I, Glass CK. Anti-inflammatory therapy in chronic disease: challenges and opportunities. Science. 2013;339(6116):166–72. https://doi.org/10.1126/science.1230720.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature. 2014;510(7503):92–101. https://doi.org/10.1038/nature13479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. González-Herrera F, Cramer A, Pimentel P, Castillo C, Liempi A, Kemmerling U, et al. Simvastatin attenuates endothelial activation through 15-epi-lipoxin A4 production in murine chronic Chagas cardiomyopathy. Antimicrob Agents Chemother. 2017;61(3):e02137–16. https://doi.org/10.1128/AAC.02137-16.

    Article  PubMed  PubMed Central  Google Scholar 

  117. López-Muñoz RA, Molina-Berríos A, Campos-Estrada C, Abarca-Sanhueza P, Urrutia-Llancaqueo L, Peña-Espinoza M, Maya JD. Inflammatory and pro-resolving lipids in trypanosomatid infections: a key to understanding parasite control. Front Microbiol. 2018;9:1961. https://doi.org/10.3389/fmicb.2018.01961.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Urbina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Urbina, J.A. (2020). Etiologic Treatment of Chagas Disease: Old Drugs, New Insights, Challenges, and Perspectives. In: Pinazo Delgado, MJ., Gascón, J. (eds) Chagas Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-44054-1_8

Download citation

Publish with us

Policies and ethics