Skip to main content

Online Partial Conditional Plan Synthesis for POMDPs with Safe-Reachability Objectives

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

  • 970 Accesses

Abstract

The framework of Partially Observable Markov Decision Processes (POMDPs) offers a standard approach to model uncertainty in many robot tasks. Traditionally, POMDPs are formulated with optimality objectives. However, for robotic domains that require a correctness guarantee of accomplishing tasks, boolean objectives are natural formulations. We study POMDPs with a common boolean objective: safe-reachability, which requires that, with a probability above a threshold, the robot eventually reaches a goal state while keeping the probability of visiting unsafe states below a different threshold. The solutions to POMDPs are policies or conditional plans that specify the action to take contingent on every possible event. A full policy or conditional plan that covers all possible events is generally expensive to compute. To improve efficiency, we introduce the notion of partial conditional plans that only cover a sampled subset of all possible events. Our approach constructs a partial conditional plan parameterized by a replanning probability. We prove that the probability of the constructed partial conditional plan failing is bounded by the replanning probability. Our approach allows users to specify an appropriate bound on the replanning probability to balance efficiency and correctness. We validate our approach in several robotic domains. The results show that our approach outperforms a previous approach for POMDPs with safe-reachability objectives in these domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, H., Hsu, D., Lee, W.S.: Integrated perception and planning in the continuous space: a POMDP approach. Int. J. Robot. Res. 33(9), 1288–1302 (2014)

    Article  Google Scholar 

  2. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput. 58, 117–148 (2003)

    Article  Google Scholar 

  3. Cai, P., Luo, Y., Hsu, D., Lee, W.S.: HyP-DESPOT: a hybrid parallel algorithm for online planning under uncertainty. In: RSS (2018)

    Google Scholar 

  4. Chatterjee, K., Chmelík, M., Gupta, R., Kanodia, A.: Qualitative analysis of POMDPs with temporal logic specifications for robotics applications. In: ICRA, pp. 325–330 (2015)

    Google Scholar 

  5. Chatterjee, K., Chmelík, M., Gupta, R., Kanodia, A.: Optimal cost almost-sure reachability in POMDPs. Artif. Intell. 234(C), 26–48 (2016)

    Article  MathSciNet  Google Scholar 

  6. Chatterjee, K., Chmelík, M., Tracol, M.: What is decidable about partially observable Markov decision processes with \(\omega \)-regular objectives. J. Comput. Syst. Sci. 82(5), 878–911 (2016)

    Article  MathSciNet  Google Scholar 

  7. DeMoura, L., Bjørner, N.: Z3: an efficient SMT solver. In: TACAS, pp. 337–340 (2008)

    Google Scholar 

  8. Hadfield-Menell, D., Groshev, E., Chitnis, R., Abbeel, P.: Modular task and motion planning in belief space. In: IROS, pp. 4991–4998 (2015)

    Google Scholar 

  9. Hoey, J., Poupart, P.: Solving POMDPs with continuous or large discrete observation spaces. In: IJCAI, pp. 1332–1338 (2005)

    Google Scholar 

  10. Hou, P., Yeoh, W., Varakantham, P.: Solving risk-sensitive POMDPs with and without cost observations. In: AAAI, pp. 3138–3144 (2016)

    Google Scholar 

  11. Isom, J.D., Meyn, S.P., Braatz, R.D.: Piecewise linear dynamic programming for constrained POMDPs. In: AAAI, pp. 291–296 (2008)

    Google Scholar 

  12. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

    Article  MathSciNet  Google Scholar 

  13. Kaelbling, L.P., Lozano-Pérez, T.: Integrated task and motion planning in belief space. Int. J. Robot. Res. 32(9–10), 1194–1227 (2013)

    Article  Google Scholar 

  14. Kaelbling, L.P., Lozano-Pérez, T.: Implicit belief-space pre-images for hierarchical planning and execution. In: ICRA, pp. 5455–5462 (2016)

    Google Scholar 

  15. Kim, D., Lee, J., Kim, K.E., Poupart, P.: Point-based value iteration for constrained POMDPs. In: IJCAI, pp. 1968–1974 (2011)

    Google Scholar 

  16. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP planning by approximating optimally reachable belief spaces. In: RSS (2008)

    Google Scholar 

  17. Luo, Y., Bai, H., Hsu, D., Lee, W.S.: Importance sampling for online planning under uncertainty. In: WAFR (2016)

    Google Scholar 

  18. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning and related stochastic optimization problems. Artif. Intell. 147, 5–34 (2003)

    Article  MathSciNet  Google Scholar 

  19. Marecki, J., Varakantham, P.: Risk-sensitive planning in partially observable environments. In: AAMAS, pp. 1357–1368 (2010)

    Google Scholar 

  20. Mundhenk, M., Goldsmith, J., Lusena, C., Allender, E.: Complexity of finite-horizon Markov decision process problems. J. ACM 47(4), 681–720 (2000)

    Article  MathSciNet  Google Scholar 

  21. Papadimitriou, C., Tsitsiklis, J.N.: The complexity of Markov decision processes. Math. Oper. Res. 12(3), 441–450 (1987)

    Article  MathSciNet  Google Scholar 

  22. Paz, A.: Introduction to Probabilistic Automata. Academic Press Inc., Cambridge (1971)

    MATH  Google Scholar 

  23. Pineau, J., Gordon, G., Thrun, S.: Point-based value iteration: an anytime algorithm for POMDPs. In: IJCAI, pp. 1025–1030 (2003)

    Google Scholar 

  24. Porta, J.M., Vlassis, N., Spaan, M.T.J., Poupart, P.: Point-based value iteration for continuous POMDPs. J. Mach. Learn. Res. 7, 2329–2367 (2006)

    MathSciNet  MATH  Google Scholar 

  25. Poupart, P., Malhotra, A., Pei, P., Kim, K.E., Goh, B., Bowling, M.: Approximate linear programming for constrained partially observable Markov decision processes. In: AAAI, pp. 3342–3348 (2015)

    Google Scholar 

  26. Ross, S., Pineau, J., Paquet, S., Chaib-Draa, B.: Online planning algorithms for POMDPs. J. Artif. Intell. Res. 32(1), 663–704 (2008)

    Article  MathSciNet  Google Scholar 

  27. Santana, P., Thiébaux, S., Williams, B.: RAO*: an algorithm for chance-constrained POMDP’s. In: AAAI, pp. 3308–3314 (2016)

    Google Scholar 

  28. Seiler, K.M., Kurniawati, H., Singh, S.P.N.: An online and approximate solver for POMDPs with continuous action space. In: ICRA, pp. 2290–2297 (2015)

    Google Scholar 

  29. Smallwood, R.D., Sondik, E.J.: The optimal control of partially observable Markov processes over a finite horizon. Oper. Res. 21(5), 1071–1088 (1973)

    Article  Google Scholar 

  30. Somani, A., Ye, N., Hsu, D., Lee, W.S.: DESPOT: online POMDP planning with regularization. In: NIPS, pp. 1772–1780 (2013)

    Google Scholar 

  31. Svoreňová, M., Chmelík, M., Leahy, K., Eniser, H.F., Chatterjee, K., Černá, I., Belta, C.: Temporal logic motion planning using POMDPs with parity objectives: case study paper. In: HSCC, pp. 233–238 (2015)

    Google Scholar 

  32. Undurti, A., How, J.P.: An online algorithm for constrained POMDPs. In: ICRA, pp. 3966–3973 (2010)

    Google Scholar 

  33. Wang, Y., Chaudhuri, S., Kavraki, L.E.: Bounded policy synthesis for POMDPs with safe-reachability objectives. In: AAMAS, pp. 238–246 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by NSF CCF 1139011, NSF CCF 1514372, NSF CCF 1162076 and NSF IIS 1317849. We thank the reviewers for their insightful comments, and Juan David Hernández, Bryce Willey and Constantinos Chamzas for their assistance in the physical experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydia E. Kavraki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Y., Chaudhuri, S., Kavraki, L.E. (2020). Online Partial Conditional Plan Synthesis for POMDPs with Safe-Reachability Objectives. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_8

Download citation

Publish with us

Policies and ethics