Skip to main content

Meta-learning Priors for Efficient Online Bayesian Regression

  • Conference paper
  • First Online:
Algorithmic Foundations of Robotics XIII (WAFR 2018)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 14))

Included in the following conference series:

Abstract

Gaussian Process (GP) regression has seen widespread use in robotics due to its generality, simplicity of use, and the utility of Bayesian predictions. The predominant implementation of GP regression is a nonparametric kernel-based approach, as it enables fitting of arbitrary nonlinear functions. However, this approach suffers from two main drawbacks: (1) it is computationally inefficient, as computation scales poorly with the number of samples; and (2) it can be data inefficient, as encoding prior knowledge that can aid the model through the choice of kernel and associated hyperparameters is often challenging and unintuitive. In this work, we propose ALPaCA, an algorithm for efficient Bayesian regression which addresses these issues. ALPaCA uses a dataset of sample functions to learn a domain-specific, finite-dimensional feature encoding, as well as a prior over the associated weights, such that Bayesian linear regression in this feature space yields accurate online predictions of the posterior predictive density. These features are neural networks, which are trained via a meta-learning (or “learning-to-learn”) approach. ALPaCA extracts all prior information directly from the dataset, rather than restricting prior information to the choice of kernel hyperparameters. Furthermore, by operating in the weight space, it substantially reduces sample complexity. We investigate the performance of ALPaCA on two simple regression problems, two simulated robotic systems, and on a lane-change driving task performed by humans. We find our approach outperforms kernel-based GP regression, as well as state of the art meta-learning approaches, thereby providing a promising plug-in tool for many regression tasks in robotics where scalability and data-efficiency are important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code for all of our experiments is available at https://github.com/StanfordASL/ALPaCA.

  2. 2.

    While the expressions in this work and [21] are not obviously equivalent, they can be shown to be the same by applying the Woodbury identity.

  3. 3.

    Data available at: https://github.com/StanfordASL/TrafficWeavingCVAE.

References

  1. Deisenroth, M., Rasmussen, C.E.: PILCO: a model-based and data-efficient approach to policy search. In: International Conference on Machine Learning (ICML) (2011)

    Google Scholar 

  2. Berkenkamp, F., Turchetta, M., Schoellig, A., Krause, A.: Safe model-based reinforcement learning with stability guarantees. In: Neural Information Processing Systems (NIPS) (2017)

    Google Scholar 

  3. Bauza, M., Rodriguez, A.: A probabilistic data-driven model for planar pushing. In: IEEE International Conference on Robotics and Automation (ICRA) (2017)

    Google Scholar 

  4. Vasudevan, S., Ramos, F., Nettleton, E., Durrant-Whyte, H.: Gaussian process modeling of large-scale terrain. J. Field Robot. 26, 812–840 (2009)

    Article  Google Scholar 

  5. O’Callaghan, S.T., Ramos, F.T.: Gaussian process occupancy maps. Int. J. Robot. Res. 31, 42–62 (2012)

    Article  Google Scholar 

  6. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30, 283–298 (2008)

    Article  Google Scholar 

  7. Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with Gaussian process dynamical models. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2006)

    Google Scholar 

  8. Mukadam, M., Yan, X., Boots, B.: Gaussian process motion planning. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  9. Ko, J., Fox, D.: GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models. Auton. Robots 27, 75–90 (2009)

    Article  Google Scholar 

  10. Ferris, B., Fox, D., Lawrence, N.: WiFi-SLAM using Gaussian process latent variable models. In: International Joint Conference on Artificial Intelligence (IJCAI) (2007)

    Google Scholar 

  11. Snoek, J., Larochelle, H., Adams, R.P.: Practical Bayesian optimization of machine learning algorithms. In: Neural Information Processing Systems (NIPS) (2012)

    Google Scholar 

  12. Rasmussen, C.E.: Gaussian processes in machine learning. Springer (2004)

    Google Scholar 

  13. Hensman, J., Fusi, N., Lawrence, N.D.: Gaussian processes for big data. In: Uncertainty in Artificial Intelligence (UAI) (2013)

    Google Scholar 

  14. Smola, A.J., Bartlett, P.L.: Sparse greedy Gaussian process regression. In: Neural Information Processing Systems (NIPS) (2001)

    Google Scholar 

  15. Hinton, G.E., Salakhutdinov, R.R.: Using deep belief nets to learn covariance kernels for Gaussian processes. In: Neural Information Processing Systems (NIPS) (2008)

    Google Scholar 

  16. Calandra, R., Peters, J., Rasmussen, C.E., Deisenroth, M.P.: Manifold Gaussian processes for regression. In: International Joint Conference on Neural Networks (IJCNN) (2016)

    Google Scholar 

  17. Snelson, E., Ghahramani, Z.: Sparse Gaussian processes using pseudo-inputs. In: Neural Information Processing Systems (NIPS) (2006)

    Google Scholar 

  18. Garnelo, M., Schwarz, J., Rosenbaum, D., Viola, F., Rezende, D.J., Eslami, S.A., Teh, Y.W.: Neural processes. In: International Conference on Machine Learning (ICML) (2018)

    Google Scholar 

  19. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Neural Information Processing Systems (NIPS) (2008)

    Google Scholar 

  20. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: International Conference on Machine Learning (ICML) (2017)

    Google Scholar 

  21. Minka, T.: Bayesian linear regression. MIT Technical Report (2000)

    Google Scholar 

  22. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. MIT Press, Cambridge (2012)

    MATH  Google Scholar 

  23. Harrison, J., Sharma, A., Pavone, M.: Meta-learning priors for efficient online Bayesian regression (extended version). arXiv:1807.08912 (2018)

  24. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat, Adams, R.: Scalable Bayesian optimization using deep neural networks. In: International Conference on Machine Learning (ICML) (2015)

    Google Scholar 

  25. Bauer, M., Rojas-Carulla, M., Swiatkowski, J.B., Scholkopf, B., Turner, R.E.: Discriminative k-shot learning using probabilistic models. arXiv:1706.00326 (2017)

  26. Morris, C.N.: Parametric empirical Bayes inference: theory and applications. J. Am. Stat. Assoc. 78, 47–55 (1983)

    Article  MathSciNet  Google Scholar 

  27. Ljung, L., Söderström, T.: Theory and Practice of Recursive Identification. MIT Press, Cambridge (1983)

    MATH  Google Scholar 

  28. Grant, E., Finn, C., Levine, S., Darrell, T., Griffiths, T.: Recasting gradient-based meta-learning as hierarchical Bayes. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  29. Santos, R.J.: Equivalence of regularization and truncated iteration for general ill-posed problems. Linear Algebra Appl. 236, 25–33 (1996)

    Article  MathSciNet  Google Scholar 

  30. Cioffi, J., Kailath, T.: Fast, recursive-least-squares transversal filters for adaptive filtering. IEEE Trans. Acoust. Speech Sig. Process. 32, 304–337 (1984)

    Article  Google Scholar 

  31. Finn, C., Xu, K., Levine, S.: Probabilistic model-agnostic meta-learning. In: Neural Information Processing Systems (NIPS) (2018)

    Google Scholar 

  32. Kim, T., Yoon, J., Dia, O., Kim, S., Bengio, Y., Ahn, S.: Bayesian model-agnostic meta-learning. In: Neural Information Processing Systems (NIPS) (2018)

    Google Scholar 

  33. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  34. Yan, X., Yang, J., Sohn, K., Lee, H.: Attribute2Image: conditional image generation from visual attributes. In: European Conference on Computer Vision (ECCV) (2016)

    Google Scholar 

  35. Yu, K., Tresp, V., Schwaighofer, A.: Learning Gaussian processes from multiple tasks. In: International Conference on Machine Learning (ICML) (2005)

    Google Scholar 

  36. Azizzadenesheli, K., Brunskill, E., Anandkumar, A.: Efficient exploration through Bayesian deep Q-networks. arXiv:1802.04412 (2018)

  37. Bertinetto, L., Henriques, J.F., Torr, P.H., Vedaldi, A.: Meta-learning with differentiable closed-form solvers. arXiv:1805.08136 (2018)

  38. Clavera, I., Nagabandi, A., Fearing, R.S., Abbeel, P., Levine, S., Finn, C.: Learning to adapt: meta-learning for model-based control. arXiv:1803.11347 (2018)

  39. Svensson, A., Schön, T.B.: A flexible state-space model for learning nonlinear dynamical systems. Automatica 80, 189–199 (2017)

    Article  MathSciNet  Google Scholar 

  40. Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J., Zaremba, W.: OpenAI gym. arXiv:1606.01540 (2016)

  41. Schmerling, E., Leung, K., Vollprecht, W., Pavone, M.: Multimodal probabilistic model-based planning for human-robot interaction. In: IEEE International Conference on Robotics and Automation (ICRA) (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Office of Naval Research YIP program (Grant N00014-17-1-2433), by DARPA under the Assured Autonomy program, and by the Toyota Research Institute (“TRI”). This article solely reflects the opinions and conclusions of its authors and not ONR, DARPA, TRI or any other Toyota entity. James Harrison was supported in part by the Stanford Graduate Fellowship and the National Sciences and Engineering Research Council (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James Harrison .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Harrison, J., Sharma, A., Pavone, M. (2020). Meta-learning Priors for Efficient Online Bayesian Regression. In: Morales, M., Tapia, L., Sánchez-Ante, G., Hutchinson, S. (eds) Algorithmic Foundations of Robotics XIII. WAFR 2018. Springer Proceedings in Advanced Robotics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-030-44051-0_19

Download citation

Publish with us

Policies and ethics