Skip to main content

Advances in Rainfall Thresholds for Landslide Triggering in Italy

  • Chapter
  • First Online:
Applied Geology

Abstract

We reviewed the Italian scientific literature published in the period 2008–2018 on the topic of rainfall thresholds for the landslide triggering, with the aim of analyzing the most significant advances and the main open issues. In the international literature, Italy occupies a relevant position from both a quantitative and a qualitative viewpoint: 65 out of the 163 thresholds published worldwide in the considered period are defined in Italy. The main improvements can be ascribed to rigorous cataloguing of landslides; definition of standard and objective methods for thresholds analysis; quantitative validation of the results and evaluation of the performance of related warning systems; attempts to improve the spatial resolution of the forecasts. However, some shortcomings still limit the research on landslide rainfall thresholds and some open issues recently emerged as priorities to be further investigated: the effects of climatic and environmental changes on the thresholds; their implementation into hazard management procedures and early warning systems; the adoption of combined approaches to account for the hydrological conditions of the slopes; the quantification of diverse uncertainties. This review disseminates the best practices among scientists and stakeholders involved in landslide hazard management, and it draws a national framework of procedures for defining reliable rainfall thresholds, in particular for early warning purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alvioli M, Guzzetti F, Rossi M (2014) Scaling properties of rainfall induced landslides predicted by a physically based model. Geomorphology 213:38–47. https://doi.org/10.1016/j.geomorph.2013.12.039

  • Alvioli M, Melillo M, Guzzetti F, Rossi M, Palazzi E, von Hardenberg J, Brunetti MT, Peruccacci S (2018) Implications of climate change on landslide hazard in Central Italy. Sci Tot Environ 630:1528–1543. https://doi.org/10.1016/j.scitotenv.2018.02.315

  • Battistini A, Segoni S, Manzo G, Catani F, Casagli N (2013) Web data mining for automatic inventory of geohazards at national scale. Appl Geogr 43:147–158. https://doi.org/10.1016/j.apgeog.2013.06.012

  • Battistini A, Rosi A, Segoni S, Lagomarsino D, Catani F, Casagli N (2017) Validation of landslide hazard models using a semantic engine on online news. Appl Geogr 82:59–65. https://doi.org/10.1016/j.apgeog.2017.03.003

  • Berti M, Martina MLV, Franceschini S, Pignone S, Simoni A, Pizziolo M (2012) Probabilistic rainfall thresholds for landslide occurrence using a Bayesian approach. J Geophys Res 117:F04006. https://doi.org/10.1029/2012JF002367

  • Bogaard T, Greco R (2018) Invited perspectives: hydrological perspectives on precipitation intensity-duration thresholds for landslide initiation: proposing hydro-meteorological thresholds. Nat Hazards Earth Syst Sci 18:31–39. https://doi.org/10.5194/nhess-18-31-2018

  • Bovolo CI, Bathurst JC (2012) Modelling catchment-scale shallow landslide occurrence and sediment yield as a function of rainfall return period. Hydrol Proc 26(4):579–596. https://doi.org/10.1002/hyp.8158

  • Brigandì G, Aronica GT, Bonaccorso B, Gueli R, Basile G (2017) Flood and landslide warning based on rainfall thresholds and soil moisture indexes: the HEWS (Hydrohazards EarlyWarning System) for Sicily. Adv Geosci 44:79–88. https://doi.org/10.5194/adgeo-44-79-2017

  • Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458. https://doi.org/10.5194/nhess-10-447-2010

  • Brunetti MT, Melillo M, Peruccacci S, Ciabatta L, Brocca L (2018) How far are we from the use of satellite rainfall products in landslide forecasting? Remote Sens Environ 210:65–75. https://doi.org/10.1016/j.rse.2018.03.016

  • Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geografiska Annal 62A:23–27

    Google Scholar 

  • Calvello M, Pecoraro G (2018) FraneItalia: a catalog of recent Italian landslides. Geoenviron Disasters 5:13. https://doi.org/10.1186/s40677-018-0105-5

  • Campbell RH (1975) Soil slips, debris flows, and rainstorms in the Santa Monica Mountains and vicinity, Southern California. US Geological Survey Professional Paper, 851, 51 pp

    Google Scholar 

  • Caracciolo D, Arnone E, Lo Conti F, Noto LV (2017) Exploiting historical rainfall and landslide data in a spatial database for the derivation of critical rainfall thresholds. Environ Earth Sci 76:222. https://doi.org/10.1007/s12665-017-6545-5

  • Ciabatta L, Camici S, Brocca L, Ponziani F, Stelluti M, Berni N, Moramarco T (2016) Assessing the impact of climate-change scenarios on landslide occurrence in Umbria region, Italy. J Hydrol 541:285–295. https://doi.org/10.1016/j.jhydrol.2016.02.007

  • Ciervo F, Rianna G, Mercogliano P, Papa MN (2017) Effects of climate change on shallow landslides in a small coastal catchment in southern Italy. Landslides 14(3):1043–1055. https://doi.org/10.1007/s10346-016-0743-1

  • Cremonini R, Tiranti D (2018) The weather radar observations applied to shallow landslides prediction: a case study from North-Western Italy. Front Earth Sci 6:134. https://doi.org/10.3389/feart.2018.00134

  • De Luca DL, Versace P (2017a) A comprehensive framework for empirical modeling of landslides induced by rainfall: the Generalized FLaIR model (GFM). Landslides 14(3):1009–1030. https://doi.org/10.1007/s10346-016-0768-5

  • De Luca DL, Versace P (2017b) Diversity of rainfall thresholds for early warning of hydro-geological disasters. Adv Geosci 44:53–60. https://doi.org/10.5194/adgeo-44-53-2017

  • De Vita P, Reichenbach P, Bathurst JC, Borga M, Crozier GM, Glade T, Guzzetti F, Hansen A, Wasowski J (1998) Rainfall-triggered landslides: a reference list. Environ Geol 35:219–233

    Article  Google Scholar 

  • Devoli G, Tiranti D, Cremonini R, Sund M, Boje S (2018) Comparison of landslide forecasting services in Piedmont (Italy) and Norway, illustrated by events in late spring 2013. Nat Hazards Earth Syst Sci 18:1351–1372. https://doi.org/10.5194/nhess-18-1351-2018

  • Dipartimento della Protezione Civile (2016) Indicazioni per l’omogeneizzazione dei messaggi del Sistema di allertamento nazionale: livelli di criticità e di allerta e relativi scenari d’evento. http://www.protezionecivile.gov.it/documents/20182/823803/Allegato+1+livelli+di+criticit%C3%A0+e+di+allerta+e+relativi+scenari+d%27evento/108c1f84-c130-4fc1-bac9-d16596e83046. Accessed 10 July 2019 (in Italian)

  • Endo T (1969) Probable distribution of the amount of rainfall causing landslides, Annual Report 1968, Hokkaido Branch, For. Exp. Stn., Sapporo, pp 122–136

    Google Scholar 

  • Floris M, Bozzano F (2008) Evaluation of landslide reactivation: a modified rainfall threshold model based on historical records of rainfall and landslides. Geomorphology 94(1):40–57. https://doi.org/10.1016/j.geomorph.2007.04.009

  • Floris M, D’Alpaos A, De Agostini A, Stevan G, Tessari G, Genevois R (2012) A process-based model for the definition of hydrological alert systems in landslide risk mitigation. Nat Hazards Earth Syst Sci 12:3343–3357. https://doi.org/10.5194/nhess-12-3343-2012

  • Frattini P, Crosta G, Sosio R (2009) Approaches for defining thresholds and return periods for rainfall-triggered shallow landslides. Hydrol Proc 23(10):1444–1460. https://doi.org/10.1002/hyp.7269

  • Froude MJ, Petley D (2018) Global fatal landslide occurrence from 2004 to 2016. Nat Hazards Earth Syst Sci 18:2161–2181. https://doi.org/10.5194/nhess-18-2161-2018

  • Galanti Y, Barsanti M, Cevasco A, D’Amato Avanzi G, Giannecchini R (2018) Comparison of statistical methods and multi-time validation for the determination of the shallow landslide rainfall thresholds. Landslides 15(5):937–952. https://doi.org/10.1007/s10346-017-0919-3

  • Gariano SL, Guzzetti F (2016) Landslides in a changing climate. Earth Sci Rev 62:227–252. https://doi.org/10.1016/j.earscirev.2016.08.011

  • Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova OG, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. https://doi.org/10.1016/j.geomorph.2014.10.019

  • Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River valley (Tuscany, Italy). Nat Hazards Earth Syst Sci 12:829–842. https://doi.org/10.5194/nhess-12-829-2012

  • Giannecchini R, Galanti Y, D’Amato Avanzi G, Barsanti M (2016) Probabilistic rainfall thresholds for triggering debris flows in a human-modified landscape. Geomorphology 257:94–107. http://dx.doi.org/10.1016/j.geomorph.2015.12.012

  • Gioia E, Carone T, Marincioni F (2015) Rainfall and land use empirically coupled to forecast landslides in the Esino river basin, Central Italy. Nat Hazards Earth Syst Sci 15(6):1289–1295. https://doi.org/10.5194/nhess-15-1289-2015

  • Greco R, Giorgio M, Capparelli G, Versace P (2013) Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol 153:68–79. https://doi.org/10.1016/j.enggeo.2012.11.009

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267. https://doi.org/10.1007/s00703-007-0262-7

  • Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. https://doi.org/10.1007/s10346-007-0112-1

  • Haque U, Blum P, Da Silva PF et al (2016) Fatal landslides in Europe. Landslides 13(6):1545–1554. https://doi.org/10.1007/s10346-016-0689-3

  • Haque U, da Silva PF, Devoli G, Pilz J, Zhao B, Khaloua A, Wilopo W, Andersen P, Lu P, Lee J, Yamamoto T, Keellings D, Wu J-H, Glass GE (2019) The human cost of global warming: deadly landslides and their triggers (1995–2014). Sci Tot Environ 682:673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415

  • Iadanza C, Trigila A, Napolitano F (2016) Identification and characterization of rainfall events responsible for triggering of debris flows and shallow landslides. J Hydrol 541:230–245. https://doi.org/10.1016/j.jhydrol.2016.01.018

  • Lagomarsino D, Segoni S, Fanti R, Catani F (2013) Updating and tuning a regional-scale landslide early warning system. Landslides 10:91–97. https://doi.org/10.1007/s10346-012-0376-y

  • Lagomarsino D, Segoni S, Rosi A, Rossi G, Battistini A, Catani F, Casagli N (2015) Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat Hazards Earth Syst Sci 15:2413–2423. https://doi.org/10.5194/nhess-15-2413-2015

  • Marra F (2018) Rainfall thresholds for landslide occurrence: systematic underestimation using coarse temporal resolution data. Nat Hazards 95:1–8. https://doi.org/10.1007/s11069-018-3508-4

  • Marra F, Nikolopoulos EI, Creutin JD, Borga M (2016) Space–time organization of debris flows-triggering rainfall and its effect on the identification of the rainfall threshold relationship. J Hydrol 541:246–255. https://doi.org/10.1016/j.jhydrol.2015.10.010

  • Marra F, Destro E, Nikolopoulos EI, Zoccatelli D, Creutin JD, Guzzetti F, Borga M (2017) Impact of rainfall spatial aggregation on the identification of debris flow occurrence thresholds. Hydrol Earth Syst Sci 21:4525–4532. https://doi.org/10.5194/hess-21-4525-2017

  • Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(485–495):485. https://doi.org/10.1007/s10346-011-0308-2

  • Martelloni G, Segoni S, Lagomarsino D, Fanti R, Catani F (2013) Snow accumulation/melting model (SAMM) for integrated use in regional scale landslide early warning systems. Hydrol Earth Syst Sci 17:1229–1240. https://doi.org/10.5194/hess-17-1229-2013

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12(2):311–320. https://doi.org/10.1007/s10346-014-0471-3

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2016) Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1):165–172. https://doi.org/10.1007/s10346-015-0630-1

  • Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Roccati A, Guzzetti F (2018) A tool for the automatic calculation of rainfall thresholds for landslide occurrence. Environ Model Softw 105:230–243. https://doi.org/10.1016/j.envsoft.2018.03.024

  • Napolitano E, Fusco F, Baum RL, Godt JW, De Vita P (2016) Effect of antecedent hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy). Landslides 13:967–983. https://doi.org/10.1007/s10346-015-0647-5

  • Nikolopoulos EI, Crema S, Marchi L, Marra F, Guzzetti F, Borga M (2014) Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 221:286–297. https://doi.org/10.1016/j.geomorph.2014.06.015

  • Nikolopoulos EI, Borga M, Creutin JD, Marra F (2015) Estimation of debris flow triggering rainfall: influence of rain gauge density and interpolation methods. Geomorphology 243:40–50. https://doi.org/10.1016/j.geomorph.2015.04.028

  • Nikolopoulos EI, Destro E, Maggioni V, Marra F, Borga M (2017) Satellite rainfall estimates for debris flow prediction: an evaluation based on rainfall accumulation–duration thresholds. J Hydrometeorol 18:2207–2214. https://doi.org/10.1175/JHM-D-17-0052.1

  • Onodera T, Yoshinaka R, Kazama H (1974) Slope failures caused by heavy rainfall in Japan. In: Proceedings 2nd international congress of the International Association Engineering Geology, San Paulo, 11, pp 1–10

    Google Scholar 

  • Palladino MR, Viero A, Turconi L, Brunetti MT, Peruccacci S, Melillo M, Deganutti AM, Guzzetti F (2018) Rainfall thresholds for the activation of shallow landslides in the Italian Alps: the role of environmental conditioning factors. Geomorphology 303:53–67. https://doi.org/10.1016/j.geomorph.2017.11.009

  • Papa MN, Medina V, Ciervo F, Bateman A (2013) Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems. Hydrol Earth Syst Sci 17(10):4095–4107. https://doi.org/10.5194/hess-17-4095-2013

  • Peres DJ, Cancelliere A (2014) Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach. Hydrol Earth Syst Sci 18:4913–4931. https://doi.org/10.5194/hess-18-4913-2014

  • Peres DJ, Cancelliere A, Greco R, Bogaard T (2018) Influence of uncertain identification of triggering rainfall on the assessment of landslide early warning thresholds. Nat Hazards Earth Syst Sci 18:633–646. https://doi.org/10.5194/nhess-18-633-2018

  • Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in Central Italy. Geomorphology 139-140:79–90. https://doi.org/10.1016/j.geomorph.2011.10.005

  • Peruccacci S, Brunetti MT, Gariano SL, Melillo M, Rossi M, Guzzetti F (2017) Rainfall thresholds for possible landslide occurrence in Italy. Geomorphology 290:39–57. https://doi.org/10.1016/j.geomorph.2017.03.031

  • Piciullo L, Gariano SL, Melillo M, Brunetti MT, Peruccacci S, Guzzetti F, Calvello M (2017) Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides. Landslides 14:995–1008. https://doi.org/10.1007/s10346-016-0750-2

  • Piciullo L, Calvello M, Cepeda JM (2018) Territorial early warning systems for rainfall-induced landslides. Earth Sci Rev 179:228–247. https://doi.org/10.1016/j.earscirev.2018.02.013

  • Ponziani F, Pandolfo C, Stelluti M, Berni N, Brocca L, Moramarco T (2012) Assessment of rainfall thresholds and soil moisture modeling for operational hydrogeological risk prevention in the Umbria region (Central Italy). Landslides 9(2):229–237. https://doi.org/10.1007/s10346-011-0287-3

  • Reichenbach P, Rossi M, Malamud BD, Mihir M, Guzzetti F (2018) A review of statistically-based landslide susceptibility models. Earth Sci Rev 180:69–91. https://doi.org/10.1016/j.earscirev.2018.03.001

  • Roccati A, Faccini F, Luino F, Turconi L, Guzzetti F (2018) Rainfall events with shallow landslides in the Entella catchment, Liguria, northern Italy. Nat Hazards Earth Syst Sci 18:2367–2386. https://doi.org/10.5194/nhess-18-2367-2018

  • Rosi A, Segoni S, Catani F, Casagli N (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). J of Geogr Sci 22(4):617–629. https://doi.org/10.1007/s11442-012-0951-0

  • Rosi A, Lagomarsino D, Rossi G, Segoni S, Battistini A, Casagli N (2015) Updating EWS rainfall thresholds for the triggering of landslides. Nat Hazards 78:297–308. https://doi.org/10.1007/s11069-015-1717-7

  • Rossi M, Luciani S, Valigi D, Kirschbaum D, Brunetti MT, Peruccacci S, Guzzetti F (2017) Statistical approaches for the definition of landslide rainfall thresholds and their uncertainty using rain gauge and satellite data. Geomorphology 285:16–27. https://doi.org/10.1016/j.geomorph.2017.02.001

  • Salciarini D, Tamagnini C, Conversini P, Rapinesi S (2012) Spatially distributed rainfall thresholds for the initiation of shallow landslides. Nat Hazards 61:229–245. https://doi.org/10.1007/s11069-011-9739-2

  • Salvati P, Bianchi C, Fiorucci F, Giostrella P, Marchesini I, Guzzetti F (2014) Perception of flood and landslide risk in Italy: a preliminary analysis. Nat Hazards Earth Syst Sci 14:2589–2603. https://doi.org/10.5194/nhess-14-2589-2014

  • Sangelantoni L, Gioia E, Marincioni F (2018) Impact of climate change on landslides frequency: the Esino river basin case study (Central Italy). Nat Hazards 93:946–884. https://doi.org/10.1007/s11069-018-3328-6

  • Segoni S, Rossi G, Rosi A, Catani F (2014a) Landslides triggered by rainfall: a semiautomated procedure to define consistent intensity-duration thresholds. Comput Geosci 63:123–131. https://doi.org/10.1016/j.cageo.2013.10.009

  • Segoni S, Rosi A, Rossi G, Catani F, Casagni N (2014b) Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional scale warning systems. Nat Hazards Earth Syst Sci 14:2637–2648. https://doi.org/10.5194/nhess-14-2637-2014

  • Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015a) Technical note: an operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds. Nat Hazards Earth Syst Sci 15:853–861. https://doi.org/10.5194/nhess-15-853-2015

  • Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2015b) Integration of rainfall thresholds and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides 12:773–785. https://doi.org/10.1007/s10346-014-0502-0

  • Segoni S, Piciullo L, Gariano SL (2018a) A review of the recent literature on rainfall thresholds for landslide occurrence. Landslides 15:1483–1501. https://doi.org/10.1007/s10346-018-0966-4

  • Segoni S, Rosi A, Fanti R, Gallucci A, Monni A, Casagli N (2018b) A regional-scale landslide warning system based on 20 years of operational experience. Water 10(10):1297. https://doi.org/10.3390/w10101297

  • Segoni S, Rosi A, Lagomarsino D, Fanti R, Casagli N (2018c) Brief communication: using averaged soil moisture estimates to improve the performances of a regional-scale landslide early warning system. Nat Hazards Earth Syst Sci 18(3):807–812. https://doi.org/10.5194/nhess-18-807-2018

  • Segoni S, Tofani V, Rosi A, Catani F, Casagli N (2018d) Combination of rainfall thresholds and susceptibility maps for dynamic landslide hazard assessment at regional scale. Front Earth Sci 6:85. https://doi.org/10.3389/feart.2018.00085

  • Segoni S, Piciullo L, Gariano SL (2018e) Preface: landslide early warning systems: monitoring systems, rainfall thresholds, warning models, performance evaluation and risk perception. Nat Hazards Earth Syst Sci 18:3179–3186. https://doi.org/10.5194/nhess-18-3179-2018

  • Terranova OG, Gariano SL, Iaquinta P, Iovine G (2015) GASAKe: forecasting landslide activations by a genetic-algorithms-based hydrological model. Geosci Model Dev 8:1955–1978. https://doi.org/10.5194/gmd-8-1955-2015

  • Terranova O, Gariano SL, Iaquinta P, Lupiano V, Rago V, Iovine G (2018) Examples of application of GASAKe for predicting the occurrence of rainfall-induced landslides in Southern Italy. Geosciences 8:78. https://doi.org/10.3390/geosciences8020078

  • Tiranti D, Rabuffetti D (2010) Estimation of rainfall thresholds triggering shallow implementation. Landslides 7:471–481. https://doi.org/10.1007/s10346-010-0198-8

  • Tiranti D, Nicolò G, Gaeta AR (2018) Shallow landslides predisposing and triggering factors in developing a regional early warning system. Landslides 16:235–251. https://doi.org/10.1007/s10346-018-1096-8

  • Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330. https://doi.org/10.5194/nhess-14-317-2014

  • Vessia G, Parise M, Brunetti MT, Peruccacci S, Rossi M, Vennari C, Guzzetti F (2014) Automated reconstruction of rainfall events responsible for shallow landslides. Nat Hazards Earth Syst Sci 14(9):2399–2408. https://doi.org/10.5194/nhess-14-2399-2014

  • Vessia G, Pisano L, Vennari C, Rossi M, Parise M (2016) Mimic expert judgement through automated procedure for selecting rainfall events responsible for shallow landslide: a statistical approach to validation. Comput Geosci 86:146–153. https://doi.org/10.1016/j.cageo.2015.10.015

  • Wu X, Chen X, Zhan FB, Hong S (2015) Global research trends in landslides during 1991–2014: a bibliometric analysis. Landslides 12:1215–1226. https://doi.org/10.1007/s10346-015-0624-z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuele Segoni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gariano, S.L., Segoni, S., Piciullo, L. (2020). Advances in Rainfall Thresholds for Landslide Triggering in Italy. In: De Maio, M., Tiwari, A. (eds) Applied Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-43953-8_15

Download citation

Publish with us

Policies and ethics