Skip to main content

Skeletal Muscle Development: From Stem Cells to Body Movement

  • Chapter
  • First Online:
Concepts and Applications of Stem Cell Biology

Abstract

Development is the story of how stem cells multiply and specialise to differentiate into specific cell types which will make the tissues, organs and systems of the adult organism. In this chapter, this concept is illustrated by the example of the development of one tissue, namely skeletal muscle. Skeletal muscles are a component of the musculo-skeletal system which also includes the bones, tendons, nerves and blood vessels. All muscle stem cells (except the ones forming the muscles of the head) arise from specific transient mesodermal structures of early embryos called dermomyotomes. Along embryonic, then foetal and post-natal development, these cells are specified by a combination of different signals. They respond to these combinatory signals by migrating to their final destination, where they align and differentiate in perfect synchrony with the developing nerves, bones, tendons and blood vessels. During this process, some muscle stem cells keep their stemness until adulthood and are set aside, forming a reservoir of quiescent muscle stem cells. These cells, called satellite cells, are activated upon exercise, injury or disease. Knowing the story of muscle stem cells during development not only shows us how muscles are constructed but also provides a better understanding of the mechanisms of muscle-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mauro A. Satellite cell of skeletal muscle fibers. J Biophys Biochem Cytol. 1961;9:493–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol. 2007;308(2):281–93.

    CAS  PubMed  Google Scholar 

  3. Tajbakhsh S. Skeletal muscle stem cells in developmental versus regenerative myogenesis. J Intern Med. 2009;266(4):372–89.

    CAS  PubMed  Google Scholar 

  4. Relaix F, Marcelle C. Muscle stem cells. Curr Opin Cell Biol. 2009;21(6):748–53.

    CAS  PubMed  Google Scholar 

  5. Hollway G, Currie P. Vertebrate myotome development. Birth Defects Res C Embryo Today. 2005;75(3):172–9.

    CAS  PubMed  Google Scholar 

  6. Emerson CP Jr. Embryonic signals for skeletal myogenesis: arriving at the beginning. Curr Opin Cell Biol. 1993;5(6):1057–64.

    CAS  PubMed  Google Scholar 

  7. Pownall ME, Emerson CP Jr. Sequential activation of three myogenic regulatory genes during somite morphogenesis in quail embryos. Dev Biol. 1992;151(1):67–79.

    CAS  PubMed  Google Scholar 

  8. Ordahl CP, Le Douarin NM. Two myogenic lineages within the developing somite. Development. 1992;114:339–53.

    CAS  PubMed  Google Scholar 

  9. Christ B, Ordahl CP. Early stages of chick somite development. Anat Embryol (Berl). 1995;191(5):381–96.

    CAS  Google Scholar 

  10. Monsoro-Burq AH. Sclerotome development and morphogenesis: when experimental embryology meets genetics. Int J Dev Biol. 2005;49(2–3):301–8.

    PubMed  Google Scholar 

  11. Brent AE, Schweitzer R, Tabin CJ. A somitic compartment of tendon progenitors. Cell. 2003;113(2):235–48.

    CAS  PubMed  Google Scholar 

  12. Buckingham M. Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr Opin Genet Dev. 2006;16(5):525–32.

    CAS  PubMed  Google Scholar 

  13. Christ B, Huang R, Scaal M. Amniote somite derivatives. Dev Dyn. 2007;236(9):2382–96.

    CAS  PubMed  Google Scholar 

  14. Deries M, Thorsteinsdóttir S. Axial and limb muscle development: dialogue with the neighbourhood. Cell Mol Life Sci. 2016;73(23):4415–31.

    CAS  PubMed  Google Scholar 

  15. Thorsteinsdóttir S, Deries M, Cachaço AS, Bajanca F. The extracellular matrix dimension of skeletal muscle development. Dev Biol. 2011;354(2):191–207.

    PubMed  Google Scholar 

  16. Ben-Yair R, Kalcheim C. Lineage analysis of the avian dermomyotome sheet reveals the existence of single cells with both dermal and muscle progenitor fates. Development. 2005;132(4):689–701.

    CAS  PubMed  Google Scholar 

  17. Gros J, Manceau M, Thomé V, Marcelle C. A common somitic origin for embryonic muscle progenitors and satellite cells. Nature. 2005;435(7044):954–8.

    CAS  PubMed  Google Scholar 

  18. Kassar-Duchossoy L, Giacone E, Gayraud-Morel B, Jory A, Gomes D, Tajbakhsh S. Pax3/Pax7 mark a novel population of primitive myogenic cells during development. Genes Dev. 2005;19(12):1426–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Relaix F, Rocancourt D, Mansouri A, Buckingham M. A Pax3/Pax7-dependent population of skeletal muscle progenitor cells. Nature. 2005;435(7044):948–53.

    CAS  PubMed  Google Scholar 

  20. Bajanca F, Luz M, Raymond K, Martins GG, Sonnenberg A, Tajbakhsh S, et al. Integrin α6β1-laminin interactions regulate early myotome formation in the mouse embryo. Development. 2006;133(9):1635–44.

    CAS  PubMed  Google Scholar 

  21. Buckingham M. How the community effect orchestrates muscle differentiation. BioEssays. 2003;25(1):13–6.

    PubMed  Google Scholar 

  22. Babiuk RP, Zhang W, Clugston R, Allan DW, Greer JJ. Embryological origins and development of the rat diaphragm. J Comp Neurol. 2003;455(4):477–87.

    PubMed  Google Scholar 

  23. Sambasivan R, Kuratani S, Tajbakhsh S. An eye on the head: the development and evolution of craniofacial muscles. Development. 2011;138(12):2401–15.

    CAS  PubMed  Google Scholar 

  24. Munsterberg AE, Lassar AB. Combinatorial signals from the neural tube, floor plate and notochord induce myogenic bHLH gene expression in the somite. Development. 1995;121(3):651–60.

    CAS  PubMed  Google Scholar 

  25. Chang CN, Kioussi C. Location, location, location: signals in muscle specification. J Dev Biol. 2018;18:6(2).

    Google Scholar 

  26. Rios AC, Serralbo O, Salgado D, Marcelle C. Neural crest regulates myogenesis through the transient activation of NOTCH. Nature. 2011;473(7348):532–5.

    CAS  PubMed  Google Scholar 

  27. Sieiro D, Rios AC, Hirst CE, Marcelle C. Cytoplasmic NOTCH and membrane-derived beta-catenin link cell fate choice to epithelial-mesenchymal transition during myogenesis. elife. 2016;24:5.

    Google Scholar 

  28. Serralbo O, Marcelle C. Migrating cells mediate long-range WNT signaling. Development. 2014;141(10):2057–63.

    CAS  PubMed  Google Scholar 

  29. Borello U, Berarducci B, Murphy P, Bajard L, Buffa V, Piccolo S, et al. The Wnt/β-catenin pathway regulates Gli-mediated Myf5 expression during somitogenesis. Development. 2006;133(18):3723–32.

    CAS  PubMed  Google Scholar 

  30. Borycki AG, Brunk B, Tajbakhsh S, Buckingham M, Chiang C, Emerson CP Jr. Sonic hedgehog controls epaxial muscle determination through Myf5 activation. Development. 1999;126(18):4053–63.

    CAS  PubMed  Google Scholar 

  31. Gustafsson MK, Pan H, Pinney DF, Liu Y, Lewandowski A, Epstein DJ, et al. Myf5 is a direct target of long-range Shh signaling and Gli regulation for muscle specification. Genes Dev. 2002;16(1):114–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Marcelle C, Stark MR, Bronner-Fraser M. Coordinate actions of BMPs, Wnts, Shh and noggin mediate patterning of the dorsal somite. Development. 1997;124(20):3955–63.

    CAS  PubMed  Google Scholar 

  33. Kablar B, Rudnicki MA. Skeletal muscle development in the mouse embryo. Histol Histopathol. 2000;15(2):649–56.

    CAS  PubMed  Google Scholar 

  34. Venters SJ, Thorsteinsdóttir S, Duxson MJ. Early development of the myotome in the mouse. Dev Dyn. 1999;216(3):219–32.

    CAS  PubMed  Google Scholar 

  35. Gros J, Scaal M, Marcelle C. A two-step mechanism for myotome formation in chick. Dev Cell. 2004;6(6):875–82.

    CAS  PubMed  Google Scholar 

  36. Kalcheim C, Ben-Yair R. Cell rearrangements during development of the somite and its derivatives. Curr Opin Genet Dev. 2005;15(4):371–80.

    CAS  PubMed  Google Scholar 

  37. deLapeyrière O, Ollendorff V, Planche J, Ott MO, Pizette S, Coulier F, et al. Expression of the Fgf6 Gene is restricted to developing skeletal muscle in the mouse embryo. Development. 1993;118(2):601–11.

    PubMed  Google Scholar 

  38. Han JK, Martin GR. Embryonic expression of Fgf-6 is restricted to the skeletal muscle lineage. Dev Biol. 1993;158(2):549–54.

    CAS  PubMed  Google Scholar 

  39. Brent AE, Braun T, Tabin CJ. Genetic analysis of interactions between the somitic muscle, cartilage and tendon cell lineages during mouse development. Development. 2005;132(3):515–28.

    CAS  PubMed  Google Scholar 

  40. Vinagre T, Moncaut N, Carapuco M, Novoa A, Bom J, Mallo M. Evidence for a myotomal Hox/Myf cascade governing nonautonomous control of rib specification within global vertebral domains. Dev Cell. 2010;18(4):655–61.

    CAS  PubMed  Google Scholar 

  41. Delfini MC, De La Celle M, Gros J, Serralbo O, Marics I, Seux M, et al. The timing of emergence of muscle progenitors is controlled by an FGF/ERK/SNAIL1 pathway. Dev Biol. 2009;333(2):229–37.

    CAS  PubMed  Google Scholar 

  42. Francis-West PH, Antoni L, Anakwe K. Regulation of myogenic differentiation in the developing limb bud. J Anat. 2003;202(1):69–81.

    PubMed  PubMed Central  Google Scholar 

  43. Lee AS, Harris J, Bate M, Vijayraghavan K, Fisher L, Tajbakhsh S, et al. Initiation of primary myogenesis in amniote limb muscles. Dev Dyn. 2013;242(9):1043–55.

    CAS  PubMed  Google Scholar 

  44. Deries M, Collins JJ, Duxson MJ. The mammalian myotome: a muscle with no innervation. Evol Dev. 2008;10(6):746–55.

    PubMed  Google Scholar 

  45. Tajbakhsh S, Rocancourt D, Cossu G, Buckingham M. Redefining the genetic hierarchies controlling skeletal myogenesis: Pax-3 and Myf-5 act upstream of MyoD. Cell. 1997;89(1):127–38.

    CAS  PubMed  Google Scholar 

  46. Nogueira JM, Hawrot K, Sharpe C, Noble A, Wood WM, Jorge EC, et al. The emergence of Pax7-expressing muscle stem cells during vertebrate head muscle development. Front Aging Neurosci. 2015;7:62.

    PubMed  PubMed Central  Google Scholar 

  47. Kelly AM, Zacks SI. The histogenesis of rat intercostal muscle. J Cell Biol. 1969;42:135–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Ross JJ, Duxson MJ, Harris AJ. Formation of primary and secondary myotubes in rat lumbrical muscles. Development. 1987;100(3):383–94.

    CAS  PubMed  Google Scholar 

  49. Ontell M, Hughes D, Bourke D. Secondary myogenesis or normal muscle produces abnormal myotubes. Anat Rec. 1982;204:199–207.

    CAS  PubMed  Google Scholar 

  50. Mourikis P, Sambasivan R, Castel D, Rocheteau P, Bizzarro V, Tajbakhsh S. A critical requirement for notch signaling in maintenance of the quiescent skeletal muscle stem cell state. Stem Cells. 2012;30(2):243–52.

    CAS  PubMed  Google Scholar 

  51. Vasyutina E, Lenhard DC, Birchmeier C. Notch function in myogenesis. Cell Cycle. 2007;6(12):1451–4.

    CAS  PubMed  Google Scholar 

  52. Hirsinger E, Malapert P, Dubrulle J, Delfini MC, Duprez D, Henrique D, et al. Notch signalling acts in postmitotic avian myogenic cells to control MyoD activation. Development. 2001;128(1):107–16.

    CAS  PubMed  Google Scholar 

  53. Delfini MC, Hirsinger E, Pourquié O, Duprez D. Delta 1-activated notch inhibits muscle differentiation without affecting Myf5 and Pax3 expression in chick limb myogenesis. Development. 2000;127(23):5213–24.

    CAS  PubMed  Google Scholar 

  54. Schuster-Gossler K, Cordes R, Gossler A. Premature myogenic differentiation and depletion of progenitor cells cause severe muscle hypotrophy in Delta1 mutants. Proc Natl Acad Sci U S A. 2007;104(2):537–42.

    CAS  PubMed  Google Scholar 

  55. Beckers J, Clark A, Wunsch K, Hrabe De Angelis M, Gossler A. Expression of the mouse Delta1 gene during organogenesis and fetal development. Mech Dev. 1999;84(1–2):165–8.

    CAS  PubMed  Google Scholar 

  56. Mourikis P, Gopalakrishnan S, Sambasivan R, Tajbakhsh S. Cell-autonomous Notch activity maintains the temporal specification potential of skeletal muscle stem cells. Development. 2012;139(24):4536–48.

    CAS  PubMed  Google Scholar 

  57. Deries M, Gonçalves AB, Vaz R, Martins GG, Rodrigues G, Thorsteinsdóttir S. Extracellular matrix remodeling accompanies axial muscle development and morphogenesis in the mouse. Dev Dyn. 2012;241(2):350–64.

    CAS  PubMed  Google Scholar 

  58. Deries M, Schweitzer R, Duxson MJ. Developmental fate of the mammalian myotome. Dev Dyn. 2010;239(11):2898–910.

    PubMed  Google Scholar 

  59. Goulding M, Lumsden A, Paquette AJ. Regulation of Pax-3 Expression in the dermomyotome and its role in muscle development. Development. 1994;120(4):957–71.

    CAS  PubMed  Google Scholar 

  60. Messina G, Biressi S, Monteverde S, Magli A, Cassano M, Perani L, et al. Nfix regulates fetal-specific transcription in developing skeletal muscle. Cell. 2010;140(4):554–66.

    CAS  PubMed  Google Scholar 

  61. Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev. 2009;23(8):997–1013.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Biressi S, Tagliafico E, Lamorte G, Monteverde S, Tenedini E, Roncaglia E, et al. Intrinsic phenotypic diversity of embryonic and fetal myoblasts is revealed by genome-wide gene expression analysis on purified cells. Dev Biol. 2007;304(2):633–51.

    CAS  PubMed  Google Scholar 

  63. Duxson MJ, Usson Y. Cellular insertion of primary and secondary myotubes in embryonic rat muscles. Development. 1989;107:243–51.

    CAS  PubMed  Google Scholar 

  64. Nunes AM, Wuebbles RD, Sarathy A, Fontelonga TM, Deries M, Burkin DJ, et al. Impaired fetal muscle development and JAK-STAT activation mark disease onset and progression in a mouse model for merosin-deficient congenital muscular dystrophy. Hum Mol Genet. 2017;26(11):2018–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Cachaço AS, Pereira CS, Pardal RG, Bajanca F, Thorsteinsdóttir S. Integrin repertoire on myogenic cells changes during the course of primary myogenesis in the mouse. Dev Dyn. 2005;232(4):1069–78.

    PubMed  Google Scholar 

  66. Hurren B, Collins JJ, Duxson MJ, Deries M. First neuromuscular contact correlates with onset of primary myogenesis in rat and mouse limb muscles. PLoS One. 2015;10(7):e0133811.

    PubMed  PubMed Central  Google Scholar 

  67. Marmigère F, Ernfors P. Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci. 2007;8(2):114–27.

    PubMed  Google Scholar 

  68. Bonanomi D, Pfaff SL. Motor axon pathfinding. Cold Spring Harb Perspect Biol. 2010;2(3):a001735.

    PubMed  PubMed Central  Google Scholar 

  69. Jessen KR, Mirsky R, Lloyd AC. Schwann cells: development and role in nerve repair. Cold Spring Harb Perspect Biol. 2015;7(7):a020487.

    PubMed  PubMed Central  Google Scholar 

  70. Weatherbee SD, Anderson KV, Niswander LA. LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development. 2006;133(24):4993–5000.

    CAS  PubMed  Google Scholar 

  71. Kim N, Stiegler AL, Cameron TO, Hallock PT, Gomez AM, Huang JH, et al. Lrp4 is a receptor for Agrin and forms a complex with MuSK. Cell. 2008;135(2):334–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Burden SJ, Yumoto N, Zhang W. The role of MuSK in synapse formation and neuromuscular disease. Cold Spring Harb Perspect Biol. 2013;5(5):a009167.

    PubMed  PubMed Central  Google Scholar 

  73. Bao ZZ, Lakonishok M, Kaufman S, Horwitz AF. α7β1 integrin is a component of the myotendinous junction on skeletal muscle. J Cell Sci. 1993;106(Part 2):579–90.

    CAS  PubMed  Google Scholar 

  74. Velling T, Collo G, Sorokin L, Durbeej M, Zhang H, Gullberg D. Distinct α7Aβ1 and α7Bβ1 integrin expression patterns during mouse development: α7A is restricted to skeletal muscle but α7B is expressed in striated muscle, vasculature, and nervous system. Dev Dyn. 1996;207(4):355–71.

    CAS  PubMed  Google Scholar 

  75. van der Flier A, Gaspar AC, Thorsteinsdóttir S, Baudoin C, Groeneveld E, Mummery CL, et al. Spatial and temporal expression of the β1D integrin during mouse development. Dev Dyn. 1997;210(4):472–86.

    PubMed  Google Scholar 

  76. Nawrotzki R, Willem M, Miosge N, Brinkmeier H, Mayer U. Defective integrin switch and matrix composition at alpha 7-deficient myotendinous junctions precede the onset of muscular dystrophy in mice. Hum Mol Genet. 2003;12(5):483–95.

    CAS  PubMed  Google Scholar 

  77. Kardon G. Muscle and tendon morphogenesis in the avian hind limb. Development. 1998;125(20):4019–32.

    CAS  PubMed  Google Scholar 

  78. Chevallier A, Kieny M. On the role of the connective tissue in the patterning of the chick limb musculature. Wilhelm Roux Arch Dev Biol. 1982;191:277–80.

    Google Scholar 

  79. Mathew SJ, Hansen JM, Merrell AJ, Murphy MM, Lawson JA, Hutcheson DA, et al. Connective tissue fibroblasts and Tcf4 regulate myogenesis. Development. 2011;138(2):371–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Brent AE, Tabin CJ. FGF acts directly on the somitic tendon progenitors through the Ets transcription factors Pea3 and Erm to regulate scleraxis expression. Development. 2004;131(16):3885–96.

    CAS  PubMed  Google Scholar 

  81. Edom-Vovard F, Schuler B, Bonnin MA, Teillet MA, Duprez D. Fgf4 positively regulates scleraxis and tenascin expression in chick limb tendons. Dev Biol. 2002;247(2):351–66.

    CAS  PubMed  Google Scholar 

  82. Eloy-Trinquet S, Wang H, Edom-Vovard F, Duprez D. Fgf signaling components are associated with muscles and tendons during limb development. Dev Dyn. 2009;238(5):1195–206.

    CAS  PubMed  Google Scholar 

  83. Ontell M, Hughes D, Bourke D. Morphometric analysis of the developing mouse soleus muscle. Am J Anat. 1988;181:279–88.

    CAS  PubMed  Google Scholar 

  84. Duxson MJ, Usson Y, Harris AJ. The origin of secondary myotubes in mammalian skeletal muscles: ultrastructural studies. Development. 1989;107:743–50.

    CAS  PubMed  Google Scholar 

  85. Harris AJ. Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers. Philos Trans R Soc Lond Ser B Biol Sci. 1981;293(1065):257–77.

    CAS  Google Scholar 

  86. Cossu G, Ranaldi G, Senni MI, Molinaro M, Vivarelli E. ‘Early’ mammalian myoblasts are resistant to phorbol ester-induced block of differentiation. Development. 1988;102(1):65–9.

    CAS  PubMed  Google Scholar 

  87. Cusella-De Angelis MG, Molinari S, Le Donne A, Coletta M, Vivarelli E, Bouche M, et al. Differential response of embryonic and fetal myoblasts to TGFβ: a possible regulatory mechanism of skeletal muscle histogenesis. Development. 1994;120(4):925–33.

    CAS  PubMed  Google Scholar 

  88. White RB, Bierinx AS, Gnocchi VF, Zammit PS. Dynamics of muscle fibre growth during postnatal mouse development. BMC Dev Biol. 2010;10:21.

    PubMed  PubMed Central  Google Scholar 

  89. Tierney MT, Gromova A, Sesillo FB, Sala D, Spenle C, Orend G, et al. Autonomous extracellular matrix remodeling controls a progressive adaptation in muscle stem cell regenerative capacity during development. Cell Rep. 2016;14(8):1940–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Tierney MT, Sacco A. Satellite cell heterogeneity in skeletal muscle homeostasis. Trends Cell Biol. 2016;26(6):434–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Dumont NA, Bentzinger CF, Sincennes MC, Rudnicki MA. Satellite cells and skeletal muscle regeneration. Compr Physiol. 2015;5(3):1027–59.

    PubMed  Google Scholar 

  92. Ontell M, Kozeka K. Organogenesis of the mouse extensor digitorum logus muscle: a quantitative study. Am J Anat. 1984;171(2):149–61.

    CAS  PubMed  Google Scholar 

  93. Wang YX, Dumont NA, Rudnicki MA. Muscle stem cells at a glance. J Cell Sci. 2014;127(21):4543–8.

    PubMed  PubMed Central  Google Scholar 

  94. Webster MT, Manor U, Lippincott-Schwartz J, Fan CM. Intravital imaging reveals ghost fibers as architectural units guiding myogenic progenitors during regeneration. Cell Stem Cell. 2016;18(2):243–52.

    CAS  PubMed  Google Scholar 

  95. Bentzinger CF, Wang YX, von Maltzahn J, Rudnicki MA. The emerging biology of muscle stem cells: implications for cell-based therapies. BioEssays. 2013;35(3):231–41.

    CAS  PubMed  Google Scholar 

  96. Le Grand F, Jones AE, Seale V, Scime A, Rudnicki MA. Wnt7a activates the planar cell polarity pathway to drive the symmetric expansion of satellite stem cells. Cell Stem Cell. 2009;4(6):535–47.

    PubMed  PubMed Central  Google Scholar 

  97. Kuang S, Kuroda K, Le Grand F, Rudnicki MA. Asymmetric self-renewal and commitment of satellite stem cells in muscle. Cell. 2007;129(5):999–1010.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Kuang S, Gillespie MA, Rudnicki MA. Niche regulation of muscle satellite cell self-renewal and differentiation. Cell Stem Cell. 2008;2(1):22–31.

    CAS  PubMed  Google Scholar 

  99. Blau HM, Cosgrove BD, Ho AT. The central role of muscle stem cells in regenerative failure with aging. Nat Med. 2015;21(8):854–62.

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Fukada S, Yamaguchi M, Kokubo H, Ogawa R, Uezumi A, Yoneda T, et al. Hesr1 and Hesr3 are essential to generate undifferentiated quiescent satellite cells and to maintain satellite cell numbers. Development. 2011;138(21):4609–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Wen Y, Bi P, Liu W, Asakura A, Keller C, Kuang S. Constitutive Notch activation upregulates Pax7 and promotes the self-renewal of skeletal muscle satellite cells. Mol Cell Biol. 2012;32(12):2300–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Bjornson CR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA. Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells. 2012;30(2):232–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Shea KL, Xiang W, LaPorta VS, Licht JD, Keller C, Basson MA, et al. Sprouty1 regulates reversible quiescence of a self-renewing adult muscle stem cell pool during regeneration. Cell Stem Cell. 2010;6(2):117–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Baghdadi MB, Castel D, Machado L, Fukada SI, Birk DE, Relaix F, et al. Reciprocal signalling by Notch-Collagen V-CALCR retains muscle stem cells in their niche. Nature. 2018;557(7707):714–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Davies KE, Nowak KJ. Molecular mechanisms of muscular dystrophies: old and new players. Nat Rev Mol Cell Biol. 2006;7(10):762–73.

    CAS  PubMed  Google Scholar 

  106. Mendell JR, Clark KR. Challenges for gene therapy for muscular dystrophy. Curr Neurol Neurosci Rep. 2006;6(1):47–56.

    CAS  PubMed  Google Scholar 

  107. Van Ry PM, Fontelonga TM, Barraza-Flores P, Sarathy A, Nunes AM, Burkin DJ. ECM-related myopathies and muscular dystrophies: pros and cons of protein therapies. Compr Physiol. 2017;7(4):1519–36.

    PubMed  Google Scholar 

  108. Laval SH, Bushby KM. Limb-girdle muscular dystrophies--from genetics to molecular pathology. Neuropathol Appl Neurobiol. 2004;30(2):91–105.

    CAS  PubMed  Google Scholar 

  109. Gawlik KI, Durbeej M. Skeletal muscle laminin and MDC1A: pathogenesis and treatment strategies. Skelet Muscle. 2011;1(1):9.

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Merrick D, Stadler LK, Larner D, Smith J. Muscular dystrophy begins early in embryonic development deriving from stem cell loss and disrupted skeletal muscle formation. Dis Model Mech. 2009;2(7–8):374–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Dumont NA, Wang YX, von Maltzahn J, Pasut A, Bentzinger CF, Brun CE, et al. Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division. Nat Med. 2015;21(12):1455–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Van Ry PM, Minogue P, Hodges BL, Burkin DJ. Laminin-111 improves muscle repair in a mouse model of merosin-deficient congenital muscular dystrophy. Hum Mol Genet. 2014;23(2):383–96.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank the members of our group, particularly Gabriela Rodrigues, Luís Marques and Inês Antunes, for their contributions to this chapter, and multiple generations of students of the MSc in Evolutionary and Developmental Biology (► http://bed.campus.ciencias.ulisboa.pt/) for their interest in this topic. The MF20 and Pax3 antibodies were developed by DA Fischman and CP Ordahl, respectively, and were obtained from the Developmental Studies Hybridoma Bank, developed under the auspices of the NICHD and maintained by the University of Iowa, Department of Biology, Iowa City, IA52242, USA. The original data shown in figures in this chapter were obtained within projects financed by Fundação para a Ciência e a Tecnologia (FCT), Portugal (PTDC/SAU-BID/120130/2010) and Association Française contre les Myopathies (AFM) – Téléthon, France (project n° 19959). MD and ABG were supported by fellowships SFRH/BPD/65370/2009 and SFRH/BD/90827/2012 from FCT. ABG is an alumnus of the MSc in Evolutionary and Developmental Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sólveig Thorsteinsdóttir .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Deries, M., Gonçalves, A.B., Thorsteinsdóttir, S. (2020). Skeletal Muscle Development: From Stem Cells to Body Movement. In: Rodrigues, G., Roelen, B.A.J. (eds) Concepts and Applications of Stem Cell Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43939-2_9

Download citation

Publish with us

Policies and ethics