Skip to main content

Preimplantation Development: From Germ Cells to Blastocyst

  • Chapter
  • First Online:
Concepts and Applications of Stem Cell Biology

Part of the book series: Learning Materials in Biosciences ((LMB))

  • 866 Accesses

Abstract

In mammals, after germ cells have arrived in the gonads, they have to undergo several steps to become cells that are competent of forming a totipotent zygote after fusion. The zygote undergoes a series of cleavage divisions which will give rise to a morula stage embryo. At around this stage, the first lineage segregation event takes place leading to the formation of an outer trophectoderm layer and a pluripotent inner cell mass that will give rise to the fetus. In a second lineage segregation event, NANOG-expressing cells form the pluripotent epiblast while GATA4/6-expressing cells will give rise to the yolk sac. Around this time, the blastocyst stage embryo arrives at the uterus for implantation. Blastocyst stage embryos of mouse and human have an invasive type of implantation, while embryos of other mammalian species can have a more superficial type of implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Epifano O, Liang LF, Familari M, Moos MC Jr, Dean J. Coordinate expression of the three zona pellucida genes during mouse oogenesis. Development. 1995;121(7):1947–56.

    CAS  PubMed  Google Scholar 

  2. Aerts JM, Bols PE. Ovarian follicular dynamics. A review with emphasis on the bovine species. Part II: antral development, exogenous influence and future prospects. Reprod Domest Anim. 2010;45(1):180–7.

    CAS  PubMed  Google Scholar 

  3. Reyes JM, Ross PJ. Cytoplasmic polyadenylation in mammalian oocyte maturation. Wiley Interdiscip Rev RNA. 2016;7(1):71–89.

    CAS  PubMed  Google Scholar 

  4. Norbury CJ. Cytoplasmic RNA: a case of the tail wagging the dog. Nat Rev Mol Cell Biol. 2013;14(10):643–53.

    CAS  PubMed  Google Scholar 

  5. de Rooij DG. The nature and dynamics of spermatogonial stem cells. Development. 2017;144(17):3022–30.

    PubMed  Google Scholar 

  6. Yang P, Wu W, Macfarlan TS. Maternal histone variants and their chaperones promote paternal genome activation and boost somatic cell reprogramming. BioEssays. 2015;37(1):52–9.

    CAS  PubMed  Google Scholar 

  7. Flechon JE. The acrosome of eutherian mammals. Cell Tissue Res. 2016;363(1):147–57.

    CAS  PubMed  Google Scholar 

  8. Svoboda P. Mammalian zygotic genome activation. Semin Cell Dev Biol. 2018;84:118–26.

    CAS  PubMed  Google Scholar 

  9. Saini D, Yamanaka Y. Cell polarity-dependent regulation of cell allocation and the first lineage specification in the preimplantation mouse embryo. Curr Top Dev Biol. 2018;128:11–35.

    CAS  PubMed  Google Scholar 

  10. Turlier H, Maitre JL. Mechanics of tissue compaction. Semin Cell Dev Biol. 2015;47–48:110–7.

    PubMed  PubMed Central  Google Scholar 

  11. Strumpf D, Mao CA, Yamanaka Y, Ralston A, Chawengsaksophak K, Beck F, et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development. 2005;132(9):2093–102.

    CAS  PubMed  Google Scholar 

  12. Niwa H, Toyooka Y, Shimosato D, Strumpf D, Takahashi K, Yagi R, et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell. 2005;123(5):917–29.

    CAS  PubMed  Google Scholar 

  13. Sasaki H. Mechanisms of trophectoderm fate specification in preimplantation mouse development. Develop Growth Differ. 2010;52(3):263–73.

    CAS  Google Scholar 

  14. Kuijk EW, Du Puy L, Van Tol HT, Oei CH, Haagsman HP, Colenbrander B, et al. Differences in early lineage segregation between mammals. Dev Dyn. 2008;237(4):918–27.

    CAS  PubMed  Google Scholar 

  15. Berg DK, Smith CS, Pearton DJ, Wells DN, Broadhurst R, Donnison M, et al. Trophectoderm lineage determination in cattle. Dev Cell. 2011;20(2):244–55.

    CAS  PubMed  Google Scholar 

  16. Frankenberg S, Shaw G, Freyer C, Pask AJ, Renfree MB. Early cell lineage specification in a marsupial: a case for diverse mechanisms among mammals. Development. 2013;140(5):965–75.

    CAS  PubMed  Google Scholar 

  17. Marikawa Y, Alarcon VB. Creation of trophectoderm, the first epithelium, in mouse preimplantation development. Results Probl Cell Differ. 2012;55:165–84.

    PubMed  PubMed Central  Google Scholar 

  18. Kwon GS, Viotti M, Hadjantonakis AK. The endoderm of the mouse embryo arises by dynamic widespread intercalation of embryonic and extraembryonic lineages. Dev Cell. 2008;15(4):509–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Frankenberg SR, de Barros FR, Rossant J, Renfree MB. The mammalian blastocyst. Wiley Interdiscip Rev Dev Biol. 2016;5(2):210–32.

    PubMed  Google Scholar 

  20. Chazaud C, Yamanaka Y, Pawson T, Rossant J. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev Cell. 2006;10(5):615–24.

    CAS  PubMed  Google Scholar 

  21. Yamanaka Y, Lanner F, Rossant J. FGF signal-dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development. 2010;137(5):715–24.

    CAS  PubMed  Google Scholar 

  22. Kang M, Garg V, Hadjantonakis AK. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev Cell. 2017;41(5):496–510.e5.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev Cell. 2017;41(5):511–26.e4.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. du Puy L, Lopes SM, Haagsman HP, Roelen BA. Analysis of co-expression of OCT4, NANOG and SOX2 in pluripotent cells of the porcine embryo, in vivo and in vitro. Theriogenology. 2011;75(3):513–26.

    PubMed  Google Scholar 

  25. Kuijk EW, van Tol LT, Van de Velde H, Wubbolts R, Welling M, Geijsen N, et al. The roles of FGF and MAP kinase signaling in the segregation of the epiblast and hypoblast cell lineages in bovine and human embryos. Development. 2012;139(5):871–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Roode M, Blair K, Snell P, Elder K, Marchant S, Smith A, et al. Human hypoblast formation is not dependent on FGF signalling. Dev Biol. 2012;361(2):358–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Brons IG, Smithers LE, Trotter MW, Rugg-Gunn P, Sun B, Chuva de Sousa Lopes SM, et al. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature. 2007;448(7150):191–5.

    CAS  PubMed  Google Scholar 

  28. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP, Mack DL, et al. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature. 2007;448(7150):196–9.

    CAS  PubMed  Google Scholar 

  29. Nichols J, Smith A. Naive and primed pluripotent states. Cell Stem Cell. 2009;4(6):487–92.

    CAS  PubMed  Google Scholar 

  30. Rossant J, Frels WI. Interspecific chimeras in mammals: successful production of live chimeras between Mus musculus and Mus caroli. Science. 1980;208(4442):419–21.

    CAS  PubMed  Google Scholar 

  31. Fehilly CB, Willadsen SM, Tucker EM. Interspecific chimaerism between sheep and goat. Nature. 1984;307(5952):634–6.

    CAS  PubMed  Google Scholar 

  32. Boklage CE. Embryogenesis of chimeras, twins and anterior midline asymmetries. Hum Reprod. 2006;21(3):579–91.

    PubMed  Google Scholar 

  33. Koller BH, Hagemann LJ, Doetschman T, Hagaman JR, Huang S, Williams PJ, et al. Germ-line transmission of a planned alteration made in a hypoxanthine phosphoribosyl transferase gene by homologous recombination in embryonic stem cells. Proc Natl Acad Sci U S A. 1989;86(22):8927–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Wood SA, Allen ND, Rossant J, Auerbach A, Nagy A. Non-injection methods for the production of embryonic stem cell-embryo chimaeras. Nature. 1993;365(6441):87–9.

    CAS  PubMed  Google Scholar 

  35. Nagy A, Rossant J, Nagy R, Abramow-Newerly W, Roder JC. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc Natl Acad Sci USA. 1993;90(18):8424–8.

    CAS  PubMed  Google Scholar 

  36. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, et al. Embryonic stem cell lines derived from human blastocysts. Science. 1998;282(5391):1145–7.

    CAS  PubMed  Google Scholar 

  37. Masaki H, Kato-Itoh M, Umino A, Sato H, Hamanaka S, Kobayashi T, et al. Interspecific in vitro assay for the chimera-forming ability of human pluripotent stem cells. Development. 2015;142(18):3222–30.

    CAS  PubMed  Google Scholar 

  38. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E, Ben-Yosef D, et al. Derivation of novel human ground state naive pluripotent stem cells. Nature. 2013;504(7479):282–6.

    CAS  PubMed  Google Scholar 

  39. Wang X, Li T, Cui T, Yu D, Liu C, Jiang L, et al. Human embryonic stem cells contribute to embryonic and extraembryonic lineages in mouse embryos upon inhibition of apoptosis. Cell Res. 2018;28(1):126–9.

    PubMed  Google Scholar 

  40. Mascetti VL, Pedersen RA. Human-mouse chimerism validates human stem cell pluripotency. Cell Stem Cell. 2016;18(1):67–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bazer FW, Spencer TE, Johnson GA, Burghardt RC, Wu G. Comparative aspects of implantation. Reproduction. 2009;138(2):195–209.

    CAS  PubMed  Google Scholar 

  42. Gellersen B, Brosens IA, Brosens JJ. Decidualization of the human endometrium: mechanisms, functions, and clinical perspectives. Semin Reprod Med. 2007;25(6):445–53.

    CAS  PubMed  Google Scholar 

  43. Salker M, Teklenburg G, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: impaired decidualization of endometrium disables embryo-maternal interactions and causes recurrent pregnancy loss. PLoS One. 2010;5(4):e10287.

    PubMed  PubMed Central  Google Scholar 

  44. Teklenburg G, Salker M, Molokhia M, Lavery S, Trew G, Aojanepong T, et al. Natural selection of human embryos: decidualizing endometrial stromal cells serve as sensors of embryo quality upon implantation. PLoS One. 2010;5(4):e10258.

    PubMed  PubMed Central  Google Scholar 

  45. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83.

    CAS  PubMed  Google Scholar 

  46. Pomar FJ, Teerds KJ, Kidson A, Colenbrander B, Tharasanit T, Aguilar B, et al. Differences in the incidence of apoptosis between in vivo and in vitro produced blastocysts of farm animal species: a comparative study. Theriogenology. 2005;63(8):2254–68.

    CAS  PubMed  Google Scholar 

  47. Geisert RD, Brookbank JW, Roberts RM, Bazer FW. Establishment of pregnancy in the pig: II. Cellular remodeling of the porcine blastocyst during elongation on day 12 of pregnancy. Biol Reprod. 1982;27(4):941–55.

    CAS  PubMed  Google Scholar 

  48. Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G, Zhu M, et al. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature. 2017;552(7684):239–43.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard A. J. Roelen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Roelen, B.A.J. (2020). Preimplantation Development: From Germ Cells to Blastocyst. In: Rodrigues, G., Roelen, B.A.J. (eds) Concepts and Applications of Stem Cell Biology. Learning Materials in Biosciences. Springer, Cham. https://doi.org/10.1007/978-3-030-43939-2_2

Download citation

Publish with us

Policies and ethics